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(a) W-RDiff sampling strat. (b) MFMC sampling strat. (c) ACV-IS sampling strat. (d) ACV-MF sampling strat.
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Multilevel / Multifidelity Estimators based on Sampling (i) Retona

Laboratories

MLMC 1D: hierarchical, recursive Analytic

MFMC 1D: hierarchical, recursive Analytic, Numerical
MLMF MC 2D: HF,LF pair + resolutions Analytic

ACV Non-recursive / peer: all CV pairings target root Numerical

Gen. ACV Search over approx sets & DAGs (MFMC + ACV + intermediate) Numerical

ML BLUE Model groupings Numerical

Motivation: production deployments of ML/MF methods encounter a variety of challenges that can impede performance

« Accurate a priori / offline estimations of Covar[Q] are often impractical, and should rather be integrated and optimized
- iterated pilot approaches

* LF models often have parameters that trade accuracy vs. cost (set via SME judgment, but intuition often inaccurate in this context)
- hyper-parameter model tuning

* Numerical solutions [ACV, GenACV] often suffer from multi-modality (and multiple solutions may exhibit similar performance)
— augment local solutions: multi-start local from analytic initial guesses, global + local

* For general model ensembles, the best approximation selections and CV pairings/groupings are not known a priori
- ensemble selection and DAG enumeration

Each of these concerns introduces additional sequenced or nested iteration, or expands the scale of an integrated optimization
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Ensemble Configuration in Multifidelity Sampling
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Resource Allocation: cost «== accuracy

N Fixed covariance (GenACV w/ MFMC, ACV as special cases) .-
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Variable covariance: converge on N, .4, tunew.rt. 0 ..
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. ) . Var|Q] o l ] ™ .
Model-tuning argmin |argmin  ——=(1 — F(0,r)) - st N{w+ Z wi(@)ri | <C Not swappable without N, . re-eval.
=l — Refinement is deferable:
Covariance refinement: AN, ., = Covar[Q] tuning often projection-based
Ensemble selection: best subset (drop low value approx.)
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55 Diffusion with & Models, 3 Qol, 4x Cost/Level

MFMC std error Pilot = 5

== MFMC std error Pilet = 10

« == MFMC std error Pilot = 25
+ == MFMC std error Pilot = 50
== MFMC std error Pilot = 100

Outer loops (modifying covariance): review of previous work

Iterated Pilots - integrate pilot sample as online cost and optimize total - _
S

WaHgLAy

Estimator Variance

« {MFMC, ACV, GenACV} utilize a shared N0 for estimation of Covar[Q] across models
Initialize: select small shared pilot N© expected to under-shoot optimal profile : *«r
1) Sample all models __ Pilot, g
2) N0 shared samples > Cov,, @, Cov ) - opt. solver 2> r*, N* over-estimation Ty
3) Compute one-sided AN for shared samples from N} to N*
A. Optional: apply under-relaxation factor y
B. If non-zero increment, advance (i) and return to 1) = e o
Equivalant HF Simulations
* Avoid inefficiency (over-est.) or inaccuracy (under-est.). Numerical solves provide resilience - find near-optimal solns. incorporating large pilots.
Hyper-Parameter Model Tuning - tune approximations to achieve best accuracy vs. cost trade-off —Tl
v MLMF | HF 50x100 <—| LF 50100 | ACY 50x100 E@c;
i . Var[Q] 2 t - :
arg min |arg min N (1-R“(f,r)) st. N|w+ Z wi(@)r; | <C HF 25150 o] L 25x50 — )
6 N . ) = - . = .
r t.—l T%- | ] LF 1326 | LF 25x50 | LF 50x100 | HF 13x26 iF 25550
il . . S Hand-tuned: refine across discrete combinations until p > 0.9 obtained for all Qol
::EP:CHT*E'FLFZ-LFI HF lterated: Online Pilot = 25 Hand-tuned hyper-parameters: Hand-tuned hyper-parameters:
MLGVWAC it LF3.LF1 | ] 0.1 initial time step 0.0 initial time step
—MFI\:C il LF2LF1 HE S I| 0.10 predictor-corrector tol 010 predictor-corrector fol
e S | 0.10 nonlinear residual tol | 27 .3x 0.10 nonlinear residual tol | 24 fx
,I' Projected MLCV Estimator Variance: 050092 Projected ACV Estimator Variance: 053138
." Single fidelity accuracy for equiv cost:  1.3668 {069 HF) Single fidelity accuracy for equiv cost: 11,3178 (1005 HF}
| Single fidelity cost for equiv accuracy: 26,440 HF (Estvar 0.050092) Single fidelity cost for equiv accuracy: 24,925 HF (Estvar .053138)
it EGO-tuned: global minimization of variance of selected estimator (max iter = 80)
Optimal hyper-parameters: Optimal hyper-parameters:
aaf 0.0084007 initial ime step 0.0067487 initial time: step
0.0061138 predictor-corrector tol ; 0.0010880 predictor-cormeactor tol
osf 0.028483 nonlinear residual tol | 39.7x 0.046707 nonlinear residual tol 143x
Projected MLCV Estimator Variance: 034396 " Projected ACV Estimator Variance:  0.0052385
aal Single fidelity accuracy for equiv cost:  1.3654 {970 HF) Single fidelity accuracy for equiv cost: 1.3192 (1004 HF)
Single fidelity cost for equiv accuracy: 38,506 HF (EstVar 0.034396) Single fidelity cost for equiv accuracy: 143,340 HF (Estvar 0.0092395)
e e T 2t ' Greater tuning impact for more flexible estimators > GenACV
Adams, E., Geraci, Portone, Ridgway, Stephens, Wildey, “Deployment of MF UQ for Thermal Battery Assessment, Part |,” SAND2022-11856

E., Geraci, Portone, Gorodetsky, Jakeman, “All-at-Once (and Bi-Level) Model Tuning for Multifidelity Sampling,” SIAM UQ22.
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Inner Loop (fixed covariance): Competed numerical solvers E=.

First iteration; multi-start / multi-solver

* Analytic solutions as initial guesses: « Solvers
« MFMC (ordered, reordered using average p? ) « SQP (via NPSOL)
« Pairwise CVMC for given ensemble + DAG * NIP (via OPT++)

Subsequent iterations (if online/iterated)
« Warm start from previous best soln (1) keyed for active ensemble + DAG

SS Diffusion with 5 models SS Diffusion with 5 models

1 T T L L
=—Ar— ACV-MF SQP from CVMC |
—XF— ACV-MF NIP from CYMC |1
—p— ACV-MF SQP from MFMC | ]
—— ACV-MF NIP from MFMC |]
—4— ACV-MF (best of 4)

MFMC override SQP ]
MFMC override NIP

=—H— MFMC override (best of 2) ||

Estimator Variance
Estimator Variance
=
o
T

my | | | -1 . | . | . |
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10 10 10 10 10 10 10 10
- Total Cost - Total Cost _
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Inner Loop: graph enumeration + model selection (Generalized ACV) () Ratoran

Explore possible model dependencies, as defined by DAGs that identify control variate pairings
 GenACV-MF is inclusive of current estimators MFMC and ACV-MF

K-L (ordered depth = 2) Partial (unordered depth = 2)
3 3 3 3 3 3 3 3 3 3
o1 2 1 2 1 2 2 0 1 o 1 0 1 0 2 0 2
ACV 0 0 o 1 2 2 1 2 0 2 1
Full (unordered depth = all) DAG enumeration 4
* For 3 models, total DAG =3 4 .-
3 3 3 3 3 3 - For 4 models, total DAG = 16 (depicted) 4 ..
) = 1
5 o 1 1 0 0 For 5 models, total DAG = 125 VAN 4
DAG enumeration + model selection 4 ...
T o0 0 2 1 2 Augments 1 set of 5 models (# DAG = 125) 1 3
* For 1 set of 1 model (MC), empty DAG = 1 1
D G 2 ® @ @ * For each of 4 sets of 2 models, # DAG = 1 0 .
MFMC * For each of 6 sets of 3 models, # DAG =3 0O 2
* For each of 4 sets of 4 models, # DAG = 16




Estimator Variance
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Generalized ACV: test problem 1

Steady state 1D diffusion: 5 well-ordered models

resolutions = {4,8,16,32,64}, relative cost = {1,4,16,64,256}

T
—3— ACV-MF
=—f— GenACV-MF KL recur

GenACV-MF full recur
* MFMC numerical

graph enumeration

GenACV-MF partial recur depth=2 |
GenACV-MF partial recur depth=3 ||

2 103

Total Cost

Peer DAG is not well suited > GenACV recovers MFMC at full depth

Estimator Variance
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Total Cost

All approximations are useful (slight improvements for restricted depth)




. ) N =
Generalized ACV: test problem 2 et _ P 8D o osoxefoll=acR ]|
1D transient diffusion (“heat equation”) ] w0 =uox§), te0,tr] and €= CR /)({ \{ AV NV \lt\l” M
« 8 models in 2D hierarchy: multifidelity + multilevel u(x,&,t)|po =0 m\;f" v W \J : V\(/
* Fourier solution modes = 3 LF, 21 HF ([ %, &) = G(§)F1(x) +I(§) F2(x) R —— —
¢ Spatial coordinates = {5 15 30 60} LF, {30 60 100 200} HF Heat Eq with 8 models V
e | - | - I—E—I 3 MFMCInumelricall - I 0 I | - | - IG:eIAAICIVI—MF parTiIaI deplth=2l - .
—3¢— ACV-MF i i GenACV-MF partial depth=2 + selection |}
=—f— GenACV-MF KL recur , I X7+ GenACV-MF partial depth=3 i
» GenACV-MF partial depth=2 » N+ GenACV-MF partial depth=3 + selection
10 GenACV-MF partial depth=3 [ 10 - E
—P— GenACV-MF full recur ] i ]
107% 10'25¢ ,,,,, .
g W
5 = e,
2 10°) T 107 o, |
.,
107'¢ 107 e, - E
//u”l,l
107 . E 107 . .
graph enumeration : - graph enumeration + model selection
1070 ‘ ‘ L ‘ ‘ L . . L 1070 ‘ ‘ L ‘ ‘ L . . L
10? 10° 10" 10° 10? 10° 10" 10°
Total Cost Total Cost
More complex hierarchy benefits significantly from DAG search Model selection adds a small amount of additional performance,
Solver noise could be smoothed with sample replicates but all models generally providing utility
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Putting it all together: tuning, iterated pilots, ensemble + DAG selection National
“Tunable Model” Definitions (JCP 2020) Low-fdelity model propertes
QB) = V1T [ cos(f) «° +sin(h) y° | .
Qi(6,) = V7 | cos(61) o +sin(6,) y° | 4]
Qa2(f2) = V3 [ cos(fle) & +sin(6a) y | ] CostLF1(9)
Start with tuning 1 parameter (¢,) for mid-fidelity L 154:%6
t\iogﬁh / low hyper-parameters fixed: 8 = n/2, 6, = /6 &

~— MLMC with LF2,LF1,HF Iterated: Online Pilot = 25
CVMC with LF1,HF

16 —— MLCVMC with LF2,LF1,HF

——— MFMC with LF2,LF1,HF

——— AGV with LF2,LF1,HF

1.4 GenACV full with LF2,LF1,HF

GenACV full + select
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Putting it all together: tuning, iterated pilots, ensemble + DAG selection
“Tunable Model” Definitions (JCP 2020)

Q(6)

V11 [ cos(f) = +sin(6) y° |
VT [ cos(fy) «® +sin(6q) v°

|

Q2(6) = V3 [ cos(fy) x+sin(6y) y ]
AGVonline "
2)(10 : :
N 'n'm
o ‘-.‘“I b

GenACV online; fu IIDAGrecur

Low-fidelity model properties

Cost
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Cost profile for LF1 and LF2

—— Cost LF1
—— Cost LF2

Cost LF1(64)),

0.6 0.8 1.0
)

1.2 1.4 1.6

GenACV onlin_e_!_f_uI.I?-DAG"r":ei(:::g‘r,\i_‘model select

In general, hyper-parameter model tuning amplifies the utility of non-hierarchical estimators and DAG flexibility
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Production deployments of multifidelity methods encounter a variety of challenges

« Accurate offline estimations of Covar[Q] are expensive and should be integrated and optimized - Iterated online pilots
« LF models often have parameters that trade accuracy vs. cost - Hyper-parameter model tuning
* Numerical solutions are not always reliable w/ local solvers - Multistart/Multisolver, Global/Local
» Best selections/pairings/groupings often unknown a priori - Model selection/DAG enumeration

Outer loop (varying the inter-model covariance; previous work)
* lterated pilots: avoid pilot under-/over-estimation or, with numerical solutions, mitigate the effects
* Hyper-parameter model tuning with bi-level & AAO approaches: especially effective with less structured estimators

Inner loop (fixing the inter-model covariance; recent work)
* Refine solver definitions with competition/sequencing = additional refinements in progress
* Optimize CV pairings via DAG enumeration - clear benefit
« Select most performant ensemble of approximations = marginal additional benefit for std test cases w/ good models;
poor model cases discarded for model mis-tuning
Next steps
« Streamline for efficiency (model tuning + large enumerations can become impractical even for simple test problems)
* Solvers for MFMC/ACV/GenACV: multi-start/multi-solver - sequenced global-local search
 ML-BLUE can unify ensemble configuration steps, SDP may aid in solver challenges?
 MINLP / heuristic search strategies to short-circuit brute-force enumerations in GenACV
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Inner Loop (fixed covariance): Sequenced numerical solvers Lehbories

First iteration

* Global search as initial guess(es): * Local refinement
« EGO (Bayesian opt; maximize EIF w/ DIRECT+local) « SQP (via NPSOL)
« DIRECT (GP indirection may not add much in this case) * NIP (via OPT++)

Subsequent iterations (if online/iterated)
« Warm start from previous best soln (1) keyed for active ensemble + DAG

TO DO LIST:

« Heat eq 8 models: identify best DAGs with/without model selection

 DIRECT + Local

* Model selection for KL

« MLBLUE

* Model selection for MFMC? (ACV fixed depth = all)

* Model selection without DAG enumeration (set ACV partial depth=1 and/or support “no recursion”)
* Include MC case in count and enumeration




