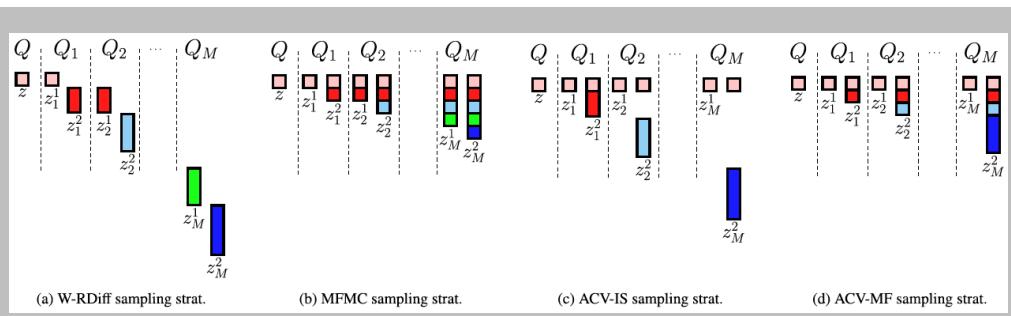
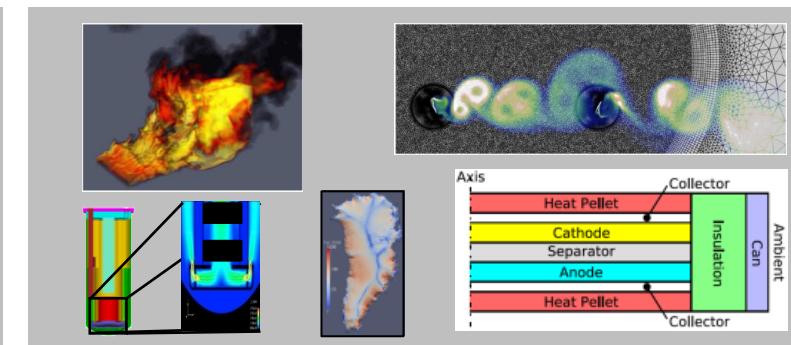


Exceptional service in the national interest



Model Ensemble Configuration for Multifidelity UQ

Michael S. Eldred¹, Gianluca Geraci¹, Alex Gorodetsky², John Jakeman¹

¹Optimization & Uncertainty Quantification Dept, Center for Computing Research, Sandia National Laboratories, Albuquerque NM

²Aerospace Engineering Department, University of Michigan, Ann Arbor MI

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

Multilevel / Multifidelity Estimators based on Sampling

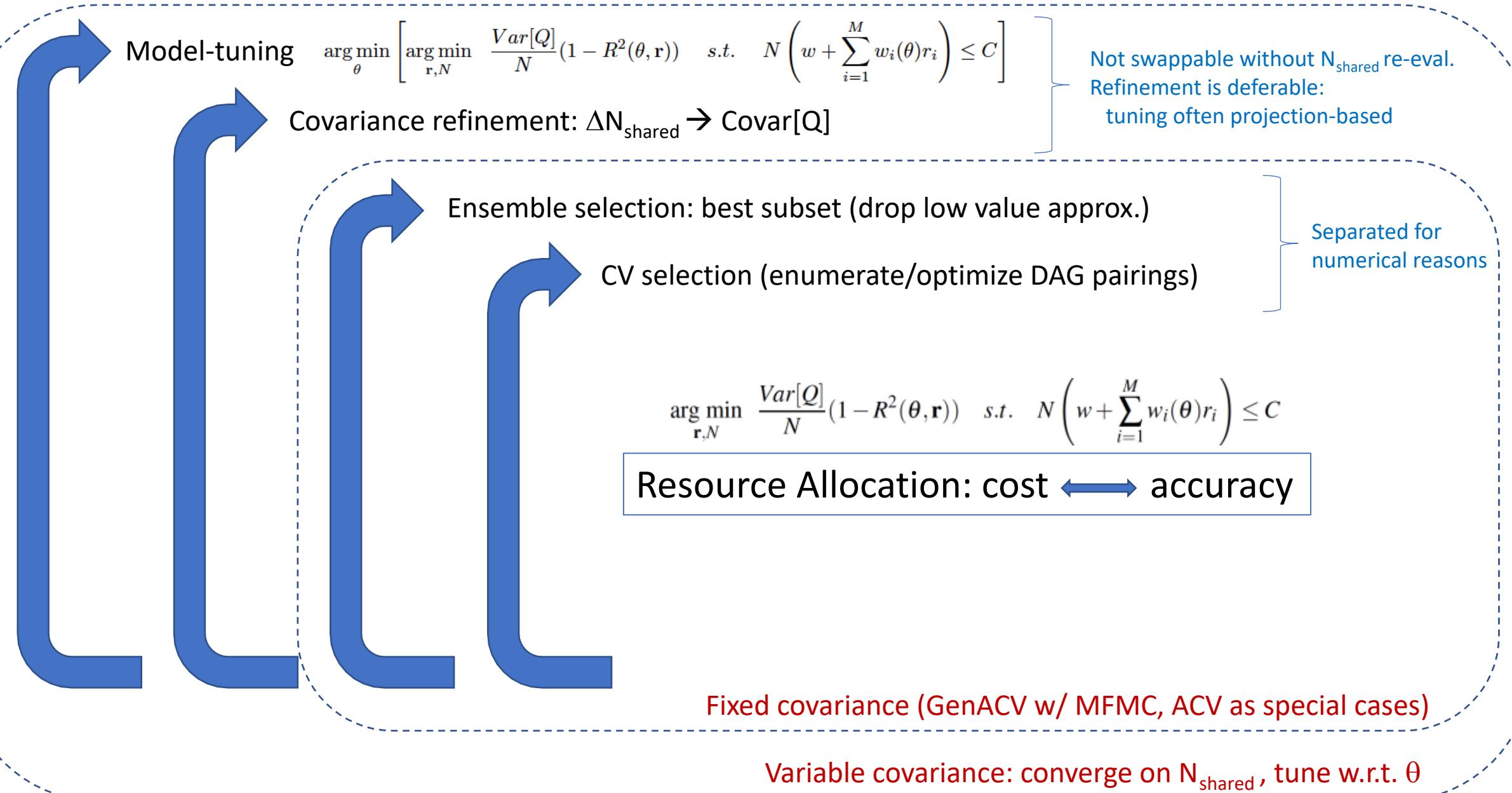
Estimator	Type	Sample allocation
MLMC	1D: hierarchical, recursive	Analytic
MFMC	1D: hierarchical, recursive	Analytic, Numerical
MLMF MC	2D: HF,LF pair + resolutions	Analytic
ACV	Non-recursive / peer: all CV pairings target root	Numerical
Gen. ACV	Search over approx sets & DAGs (MFMC + ACV + intermediate)	Numerical
ML BLUE	Model groupings	Numerical

Motivation: production deployments of ML/MF methods encounter a variety of challenges that can impede performance

- Accurate a priori / offline estimations of $\text{Covar}[Q]$ are often impractical, and should rather be integrated and optimized
→ *iterated pilot approaches*
- LF models often have parameters that trade accuracy vs. cost (set via SME judgment, but intuition often inaccurate in this context)
→ *hyper-parameter model tuning*
- Numerical solutions [ACV, GenACV] often suffer from multi-modality (and multiple solutions may exhibit similar performance)
→ augment local solutions: multi-start local from analytic initial guesses, global + local
- For general model ensembles, the best approximation selections and CV pairings/groupings are not known a priori
→ *ensemble selection and DAG enumeration*

Each of these concerns introduces additional sequenced or nested iteration, or expands the scale of an integrated optimization

Ensemble Configuration in Multifidelity Sampling



Outer loops (modifying covariance): review of previous work

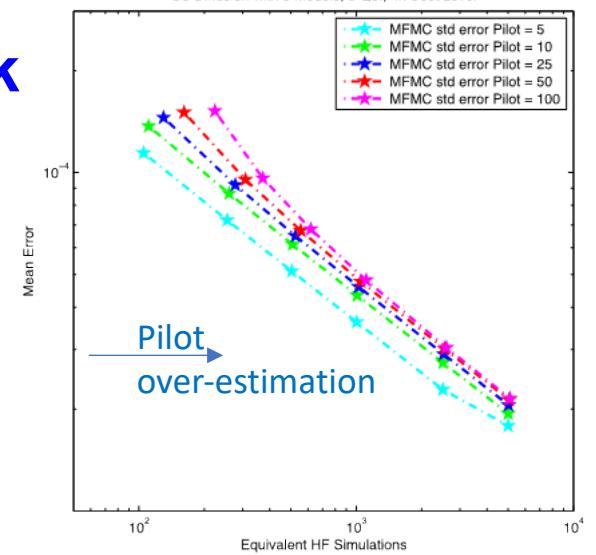
Iterated Pilots → integrate pilot sample as *online cost* and optimize total

- {MFMC, ACV, GenACV} utilize a shared $N^{(i)}$ for estimation of $\text{Covar}[Q]$ across models

Initialize: select small shared pilot $N^{(0)}$ expected to under-shoot optimal profile

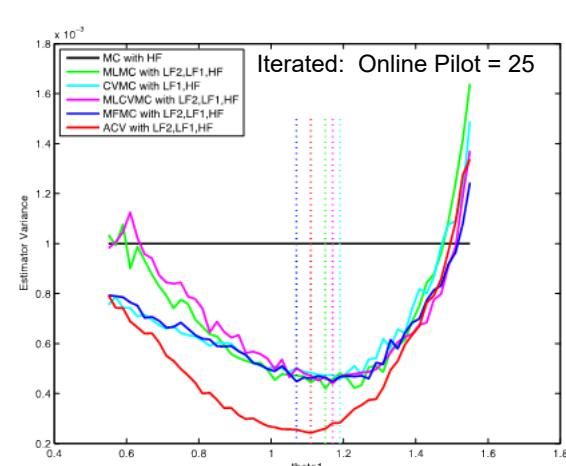
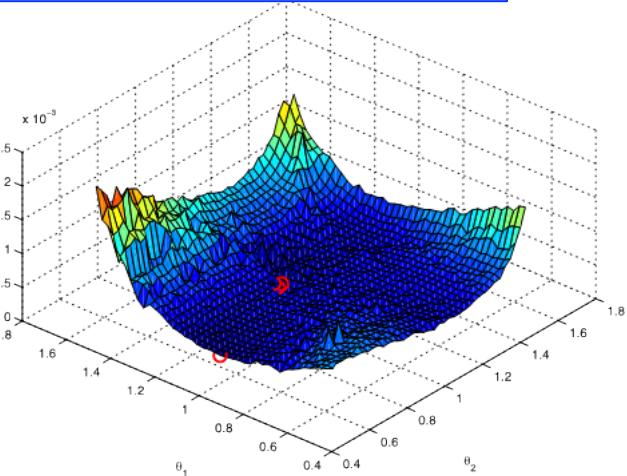
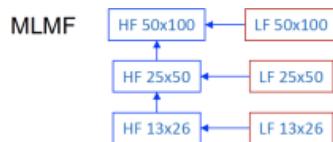
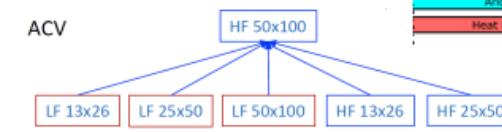
- 1) Sample all models
- 2) $N^{(i)}$ shared samples → $\text{Cov}_{LL}^{(i)}$, $\text{Cov}_{LH}^{(i)}$ → opt. solver → r^* , N^*
- 3) Compute one-sided ΔN for shared samples from $N^{(i)}$ to N^*
 - Optional: apply under-relaxation factor γ
 - If non-zero increment, advance (i) and return to 1

- Avoid inefficiency (over-est.) or inaccuracy (under-est.). Numerical solves provide resilience → find near-optimal solns. incorporating large pilots.



Hyper-Parameter Model Tuning → tune approximations to achieve best accuracy vs. cost trade-off

$$\arg \min_{\theta} \left[\arg \min_{\mathbf{r}, N} \frac{\text{Var}[Q]}{N} (1 - R^2(\theta, \mathbf{r})) \quad \text{s.t.} \quad N \left(w + \sum_{i=1}^M w_i(\theta) r_i \right) \leq C \right]$$



Hand-tuned: refine across discrete combinations until $\rho > 0.9$ obtained for all QoI

Hand-tuned hyper-parameters:

0.01
0.10
0.10

Projected MLCV Estimator Variance:

Single fidelity accuracy for equiv cost: 1.3668 (969 HF)
Single fidelity cost for equiv accuracy: 26,440 HF (EstVar 0.050092)

initial time step
predictor-corrector tol
nonlinear residual tol

.050092

27.3x

Hand-tuned hyper-parameters:

0.01
0.10
0.10

Projected ACV Estimator Variance:

Single fidelity accuracy for equiv cost: 1.3178 (1005 HF)
Single fidelity cost for equiv accuracy: 24,925 HF (EstVar 0.053138)

initial time step
predictor-corrector tol
nonlinear residual tol

.053138

24.8x

EGO-tuned: global minimization of variance of selected estimator (max iter = 80)

Optimal hyper-parameters:

0.0084097
0.0061138
0.028493

Projected MLCV Estimator Variance:

Single fidelity accuracy for equiv cost: 1.3654 (970 HF)
Single fidelity cost for equiv accuracy: 38,506 HF (EstVar 0.034396)

initial time step
predictor-corrector tol
nonlinear residual tol

.034396

39.7x

Optimal hyper-parameters:

0.0067487
0.0010880
0.046707

Projected ACV Estimator Variance:

Single fidelity accuracy for equiv cost: 1.3192 (1004 HF)
Single fidelity cost for equiv accuracy: 143,340 HF (EstVar 0.0092395)

initial time step
predictor-corrector tol
nonlinear residual tol

.0092395

143x

Greater tuning impact for more flexible estimators → GenACV

Inner Loop (fixed covariance): Competed numerical solvers

First iteration: multi-start / multi-solver

- Analytic solutions as initial guesses:

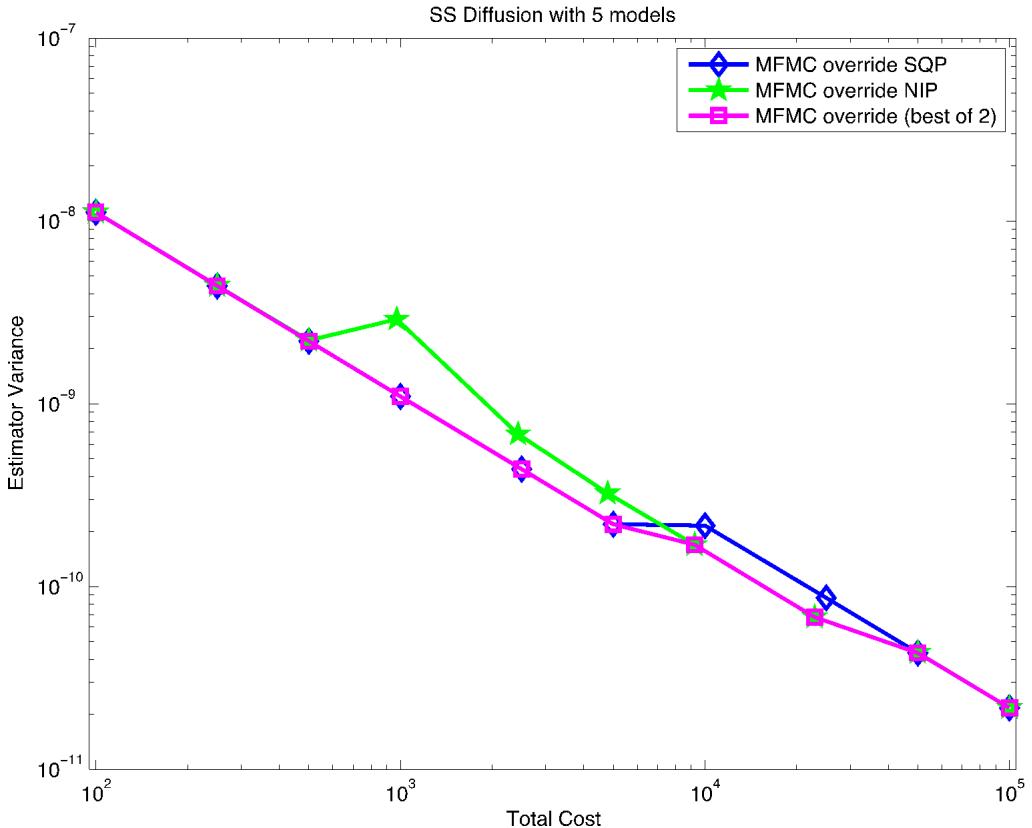
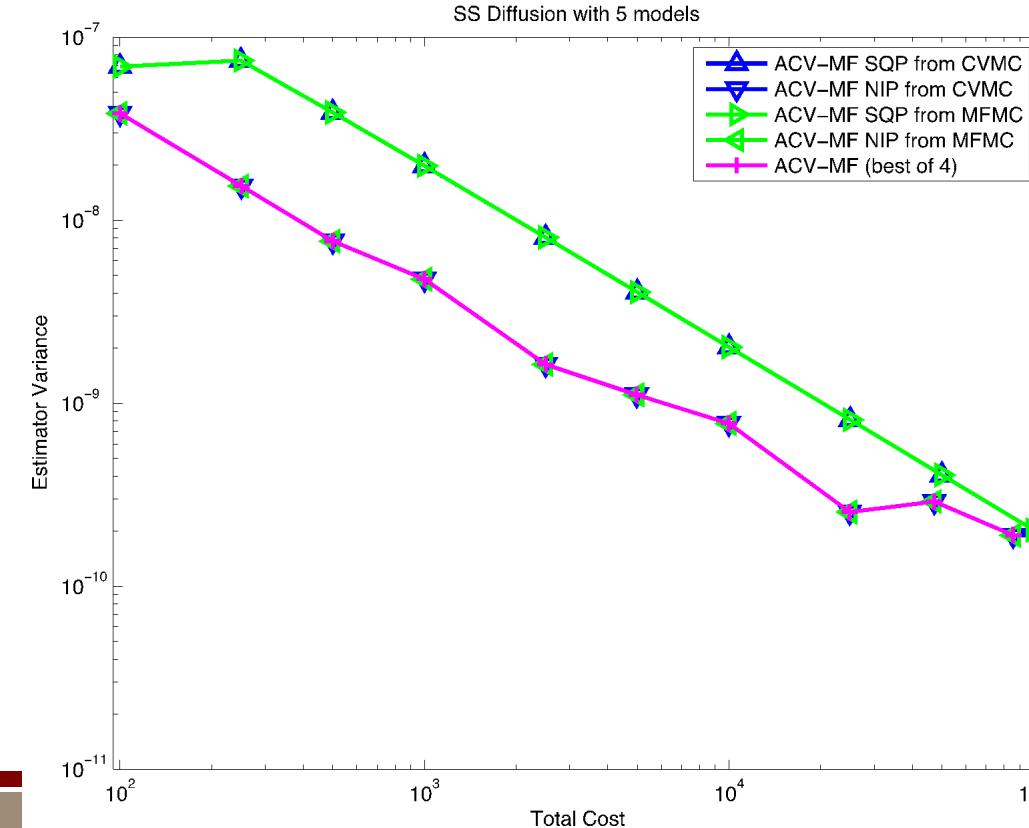
- MFMC (ordered, reordered using average p_{LH}^2)
- Pairwise CVMC for given ensemble + DAG

- Solvers

- SQP (via NPSOL)
- NIP (via OPT++)

Subsequent iterations (if online/iterated)

- Warm start from previous best soln (1) keyed for active ensemble + DAG

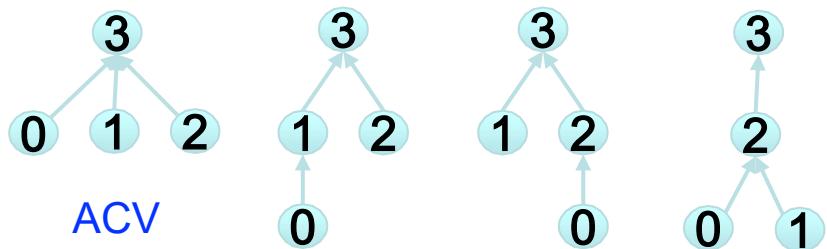


Inner Loop: graph enumeration + model selection (Generalized ACV)

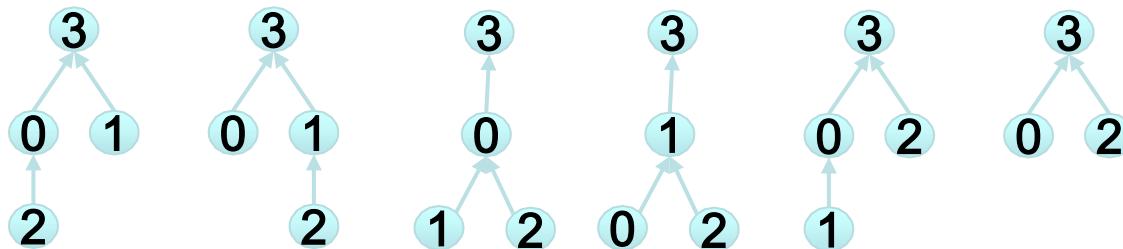
Explore possible model dependencies, as defined by DAGs that identify control variate pairings

- GenACV-MF is inclusive of current estimators MFMC and ACV-MF

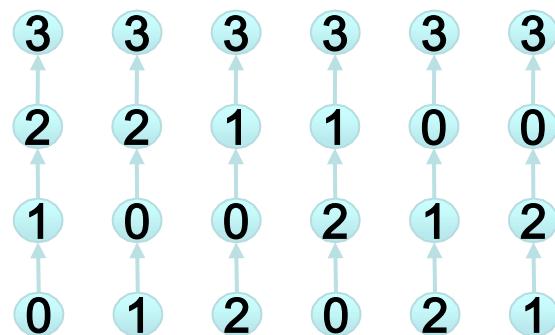
K-L (ordered depth = 2)



Partial (unordered depth = 2)



Full (unordered depth = all)



MFMC

DAG enumeration

- For 3 models, total DAG = 3
- For 4 models, total DAG = 16 (depicted)
- For 5 models, total DAG = 125

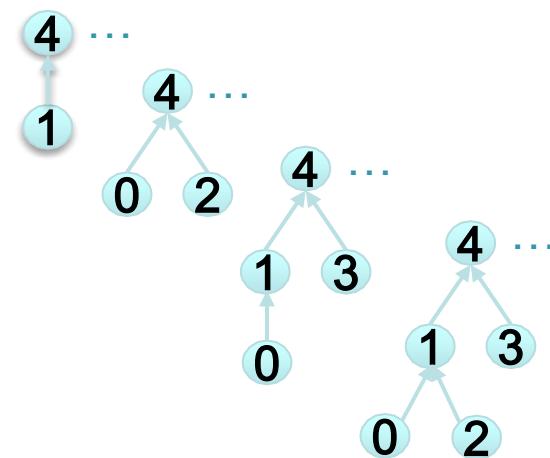
DAG enumeration + model selection

Augments 1 set of 5 models (# DAG = 125)

- For 1 set of 1 model (MC), empty DAG = 1
- For each of 4 sets of 2 models, # DAG = 1
- For each of 6 sets of 3 models, # DAG = 3
- For each of 4 sets of 4 models, # DAG = 16

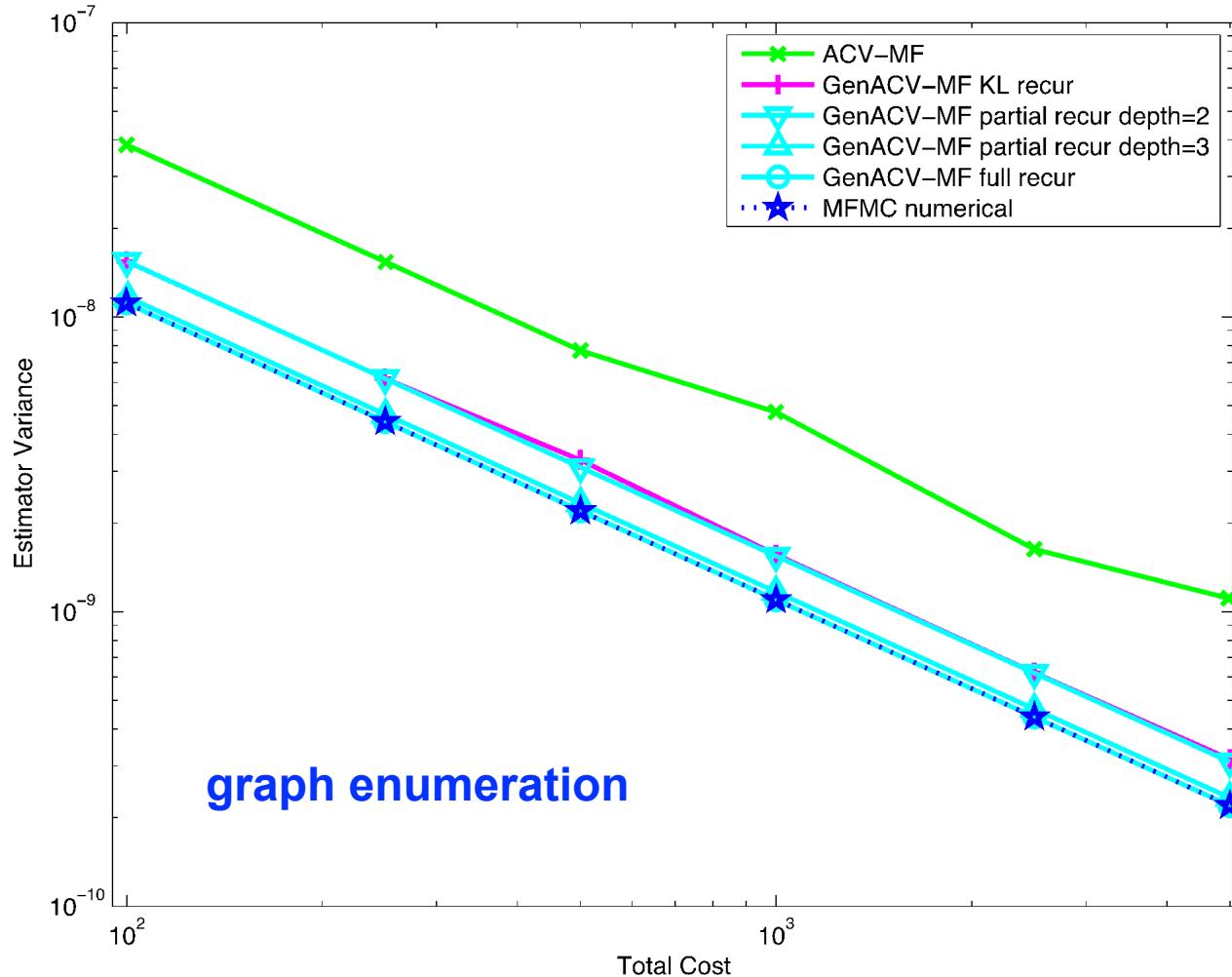
Total = 212 DAGs

4

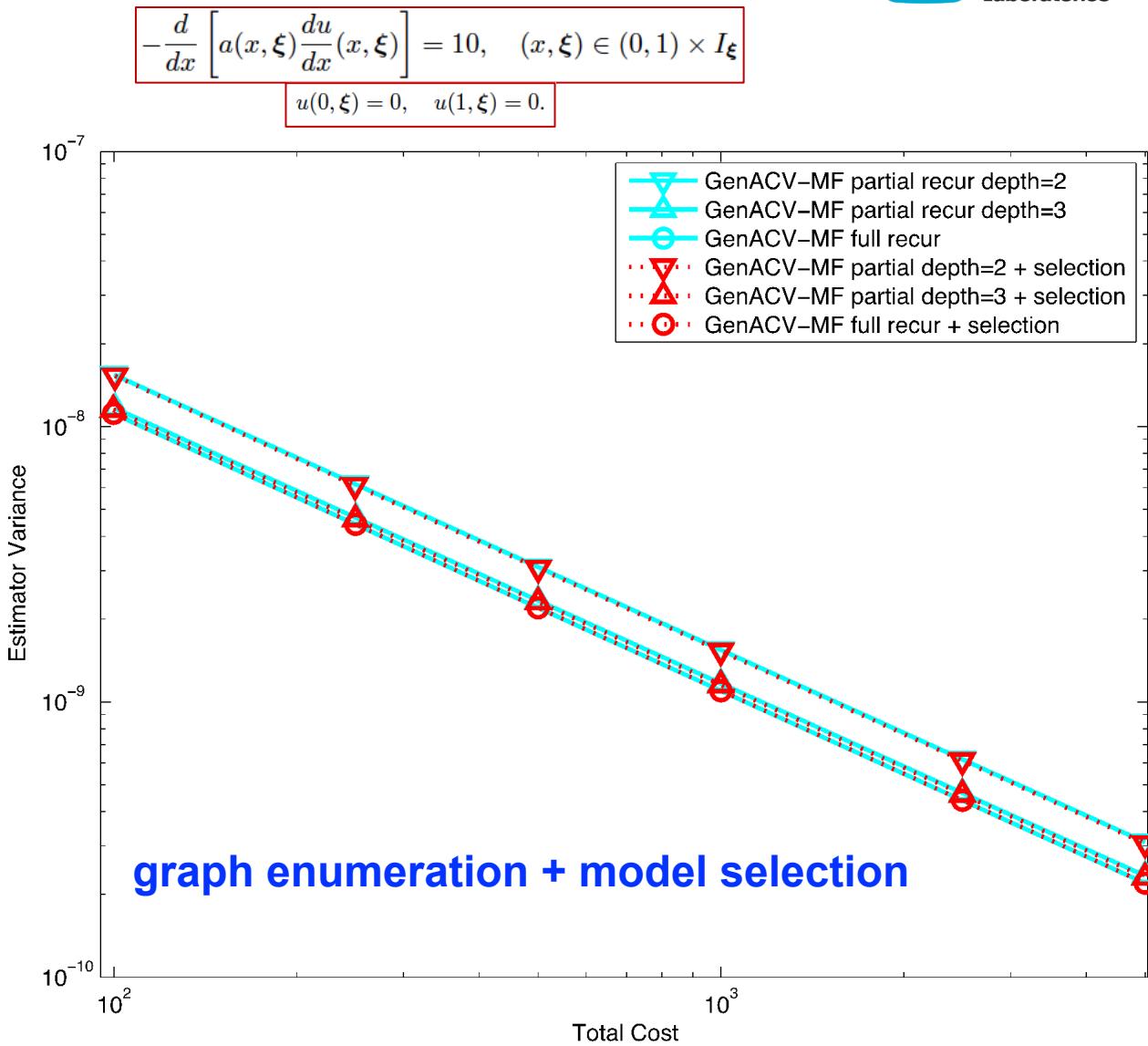


Generalized ACV: test problem 1

Steady state 1D diffusion: 5 well-ordered models
resolutions = {4,8,16,32,64}, relative cost = {1,4,16,64,256}



Peer DAG is not well suited → GenACV recovers MFMC at full depth

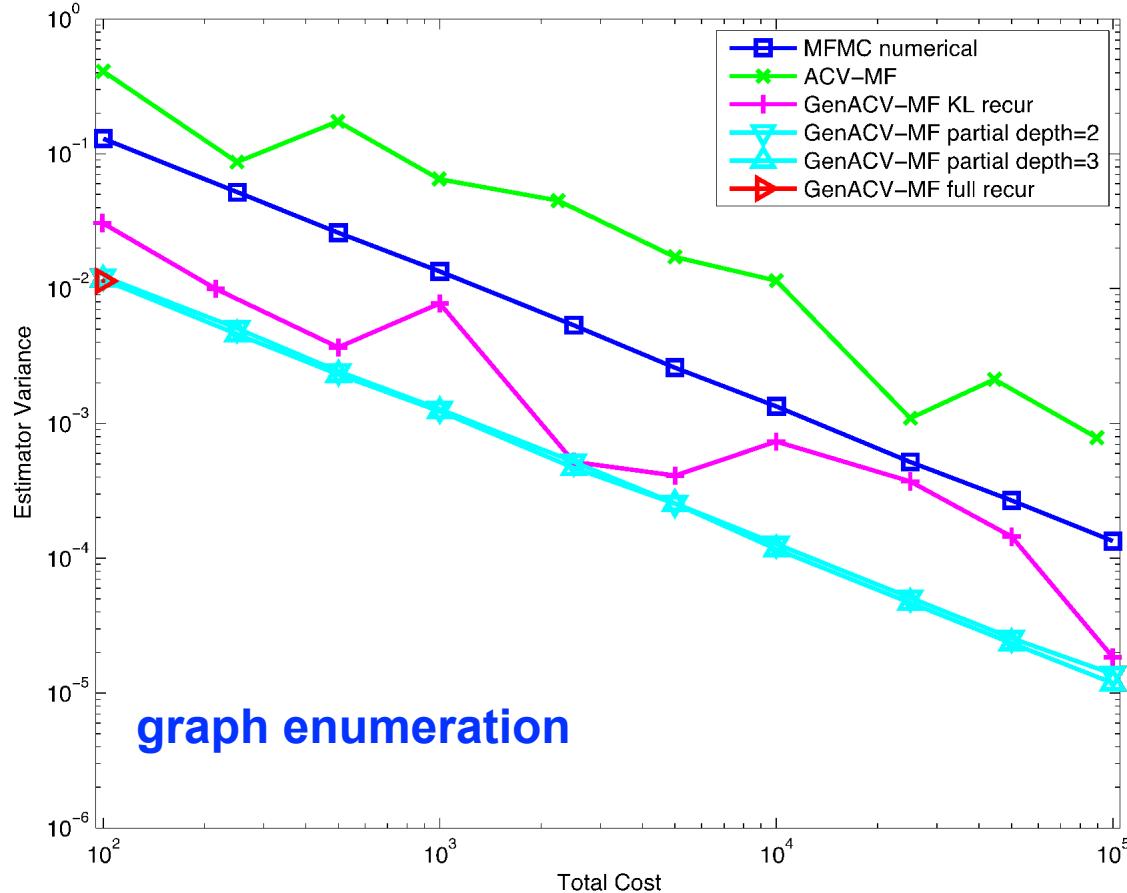


All approximations are useful (slight improvements for restricted depth)

Generalized ACV: test problem 2

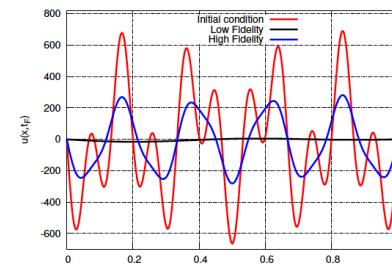
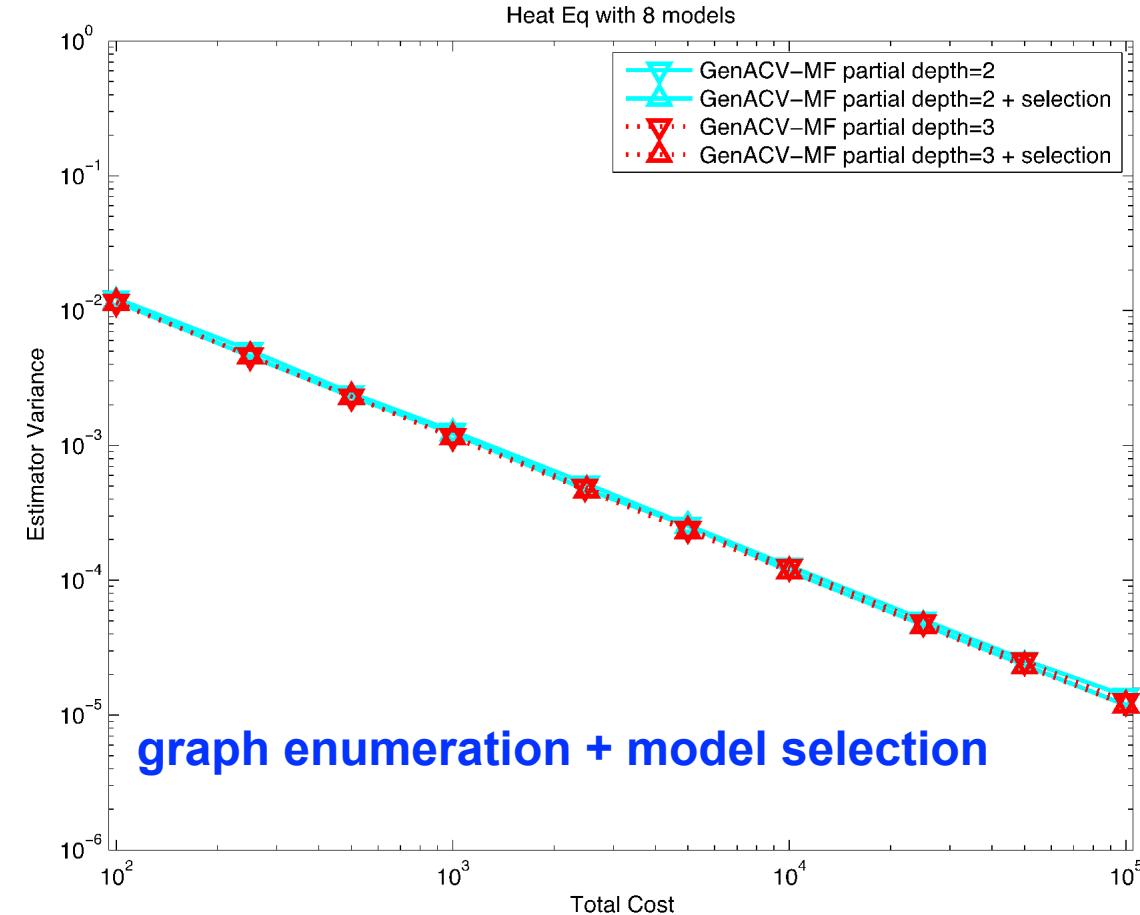
1D transient diffusion (“heat equation”)

- 8 models in 2D hierarchy: multifidelity + multilevel
- Fourier solution modes = 3 LF, 21 HF
- Spatial coordinates = {5 15 30 60} LF, {30 60 100 200} HF



More complex hierarchy benefits significantly from DAG search
Solver noise could be smoothed with sample replicates

$$\begin{cases} \frac{\partial u(x, \xi, t)}{\partial t} - \alpha(\xi) \frac{\partial^2 u(x, \xi, t)}{\partial x^2} = 0, & \alpha > 0, x \in [0, L] = \Omega \subset \mathbb{R} \\ u(x, \xi, 0) = u_0(x, \xi), & t \in [0, t_F] \quad \text{and} \quad \xi \in \Xi \subset \mathbb{R}^d \\ u(x, \xi, t)|_{\partial\Omega} = 0 \\ u_0(x, \xi) = \mathcal{G}(\xi) \mathcal{F}_1(x) + \mathcal{I}(\xi) \mathcal{F}_2(x) \end{cases}$$



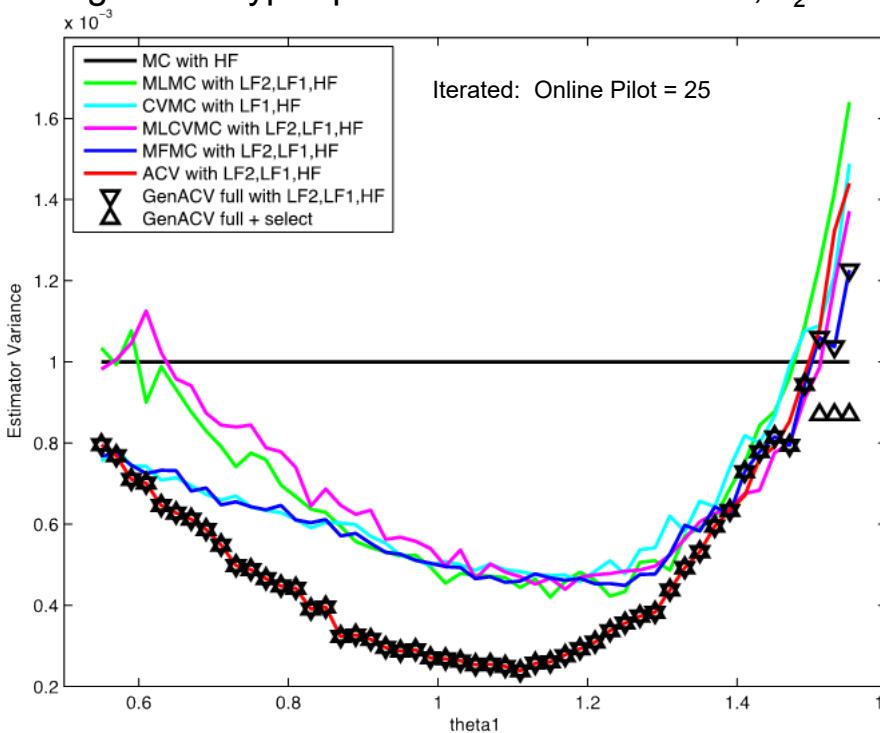
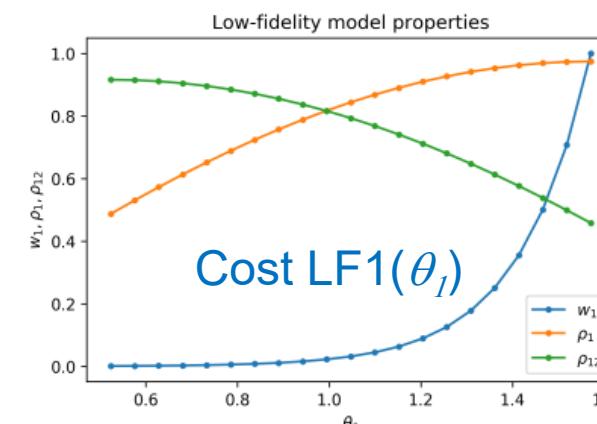
Model selection adds a small amount of additional performance, but all models generally providing utility

Putting it all together: tuning, iterated pilots, ensemble + DAG selection

“Tunable Model” Definitions (JCP 2020)

$$\begin{aligned}
 Q(\theta) &= \sqrt{11} [\cos(\theta) x^5 + \sin(\theta) y^5] \\
 Q_1(\theta_1) &= \sqrt{7} [\cos(\theta_1) x^3 + \sin(\theta_1) y^3] \\
 Q_2(\theta_2) &= \sqrt{3} [\cos(\theta_2) x + \sin(\theta_2) y]
 \end{aligned}$$

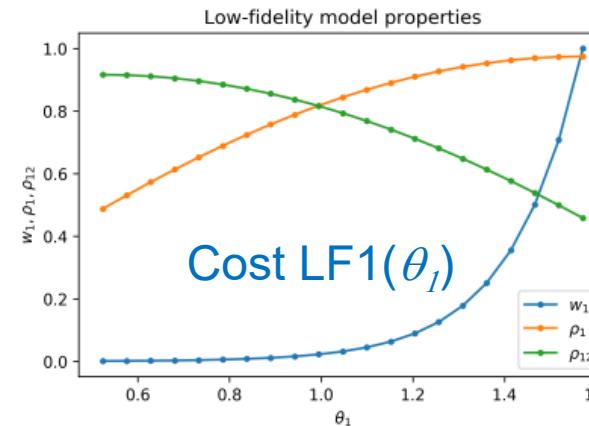
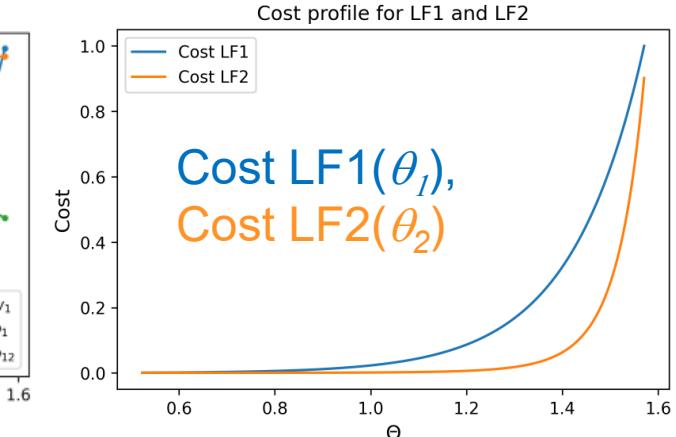
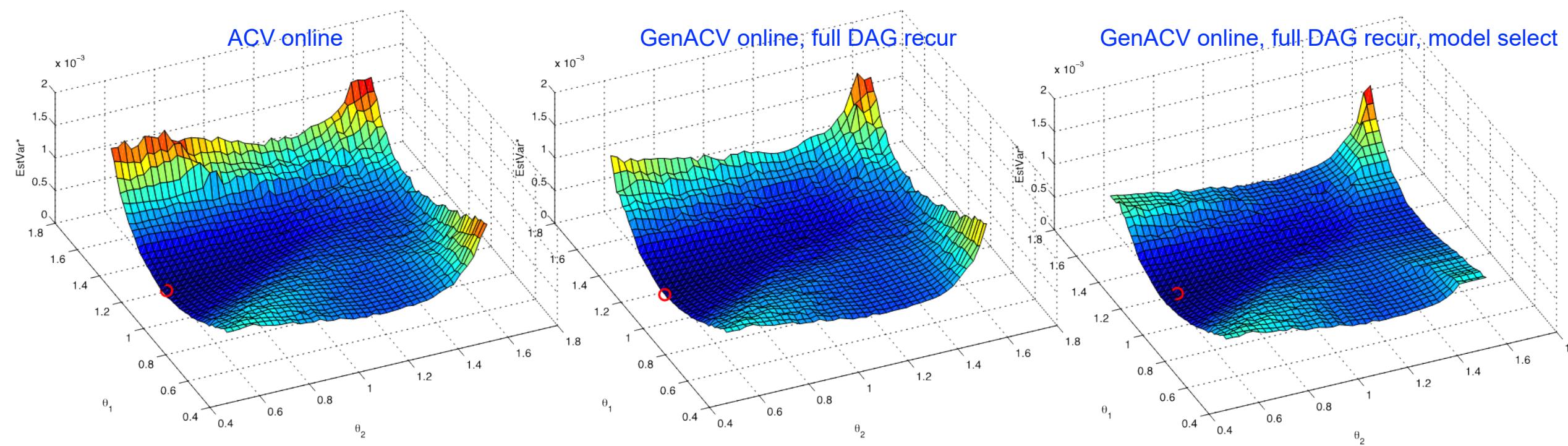
Start with tuning 1 parameter (θ_1) for mid-fidelity
high / low hyper-parameters fixed: $\theta = \pi/2$, $\theta_2 = \pi/6$



Putting it all together: tuning, iterated pilots, ensemble + DAG selection

“Tunable Model” Definitions (JCP 2020)

$$\begin{aligned}
 Q(\theta) &= \sqrt{11} [\cos(\theta) x^5 + \sin(\theta) y^5] \\
 Q_1(\theta_1) &= \sqrt{7} [\cos(\theta_1) x^3 + \sin(\theta_1) y^3] \\
 Q_2(\theta_2) &= \sqrt{3} [\cos(\theta_2) x + \sin(\theta_2) y]
 \end{aligned}$$



In general, hyper-parameter model tuning amplifies the utility of non-hierarchical estimators and DAG flexibility

Production deployments of multifidelity methods encounter a variety of challenges

- Accurate offline estimations of Covar[Q] are expensive and should be integrated and optimized → Iterated online pilots
- LF models often have parameters that trade accuracy vs. cost → Hyper-parameter model tuning
- Numerical solutions are not always reliable w/ local solvers → Multistart/Multisolver, Global/Local
- Best selections/pairings/groupings often unknown a priori → Model selection/DAG enumeration

Outer loop (varying the inter-model covariance; previous work)

- Iterated pilots: avoid pilot under-/over-estimation or, with numerical solutions, mitigate the effects
- Hyper-parameter model tuning with bi-level & AAO approaches: especially effective with less structured estimators

Inner loop (fixing the inter-model covariance; recent work)

- Refine solver definitions with competition/sequencing → *additional refinements in progress*
- Optimize CV pairings via DAG enumeration → *clear benefit*
- Select most performant ensemble of approximations → *marginal additional benefit for std test cases w/ good models; poor model cases discarded for model mis-tuning*

Next steps

- Streamline for efficiency (model tuning + large enumerations can become impractical even for simple test problems)
 - Solvers for MFMC/ACV/GenACV: multi-start/multi-solver → sequenced global-local search
 - ML-BLUE can unify ensemble configuration steps, SDP may aid in solver challenges?
 - MINLP / heuristic search strategies to short-circuit brute-force enumerations in GenACV

Extra

Inner Loop (fixed covariance): Sequenced numerical solvers

First iteration

- Global search as initial guess(es):
 - EGO (Bayesian opt; maximize EIF w/ DIRECT+local)
 - DIRECT (GP indirection may not add much in this case)
- Local refinement
 - SQP (via NPSOL)
 - NIP (via OPT++)

Subsequent iterations (if online/iterated)

- Warm start from previous best soln (1) keyed for active ensemble + DAG

TO DO LIST:

- Heat eq 8 models: identify best DAGs with/without model selection
- DIRECT + Local
- Model selection for KL
- ML BLUE
- Model selection for MFMC? (ACV fixed depth = all)
- Model selection without DAG enumeration (set ACV partial depth=1 and/or support “no recursion”)
- Include MC case in count and enumeration