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Multilevel / Multifidelity Estimators based on Sampling
Estimator Type Sample allocation
MLMC 1D: hierarchical, recursive Analytic
MFMC 1D: hierarchical, recursive Analytic, Numerical
MLMF MC 2D: HF,LF pair + resolutions Analytic
ACV Non-recursive / peer: all CV pairings target root Numerical
Gen. ACV Search over approx sets & DAGs (MFMC + ACV + intermediate) Numerical
ML BLUE Model groupings Numerical

Motivation: production deployments of ML/MF methods encounter a variety of challenges that can impede performance
• Accurate a priori / offline estimations of Covar[Q] are often impractical, and should rather be integrated and optimized

 iterated pilot approaches
• LF models often have parameters that trade accuracy vs. cost (set via SME judgment, but intuition often inaccurate in this context)

 hyper-parameter model tuning
• Numerical solutions [ACV, GenACV] often suffer from multi-modality (and multiple solutions may exhibit similar performance)

 augment local solutions: multi-start local from analytic initial guesses, global + local
• For general model ensembles, the best approximation selections and CV pairings/groupings are not known a priori

 ensemble selection and DAG enumeration

Each of these concerns introduces additional sequenced or nested iteration, or expands the scale of an integrated optimization



Ensemble Configuration in Multifidelity Sampling

Resource Allocation: cost           accuracy

Ensemble selection: best subset (drop low value approx.)

CV selection (enumerate/optimize DAG pairings)

Fixed covariance (GenACV w/ MFMC, ACV as special cases)

Separated for 
numerical reasons

Model-tuning

Covariance refinement: DNshared  Covar[Q]

Variable covariance: converge on Nshared , tune w.r.t. q

Not swappable without Nshared re-eval.
Refinement is deferable: 
   tuning often projection-based



Outer loops (modifying covariance): review of previous work
Iterated Pilots  integrate pilot sample as online cost and optimize total
• {MFMC, ACV, GenACV} utilize a shared N(i) for estimation of Covar[Q] across models

• Avoid inefficiency (over-est.) or inaccuracy (under-est.).  Numerical solves provide resilience  find near-optimal solns. incorporating large pilots.

Initialize: select small shared pilot N(0) expected to under-shoot optimal profile
1) Sample all models
2) N(i) shared samples  CovLL

(i), CovLH
(i)  opt. solver  r*, N*

3) Compute one-sided DN for shared samples from N(i) to N*

A. Optional: apply under-relaxation factor g
B. If non-zero increment, advance (i) and return to 1)

Pilot 
over-estimation

Iterated:  Online Pilot = 25

E., Geraci, Portone, Gorodetsky, Jakeman, “All-at-Once (and Bi-Level) Model Tuning for Multifidelity Sampling,” SIAM UQ22. Adams, E., Geraci, Portone, Ridgway, Stephens, Wildey, “Deployment of MF UQ for Thermal Battery Assessment, Part I,” SAND2022-11856

Hyper-Parameter Model Tuning  tune approximations to achieve best accuracy vs. cost trade-off

Greater tuning impact for more flexible estimators  GenACV



Inner Loop (fixed covariance): Competed numerical solvers

5

First iteration: multi-start / multi-solver
• Analytic solutions as initial guesses:

• MFMC (ordered, reordered using average r2LH)
• Pairwise CVMC for given ensemble + DAG

Subsequent iterations (if online/iterated)
• Warm start from previous best soln (1) keyed for active ensemble + DAG

• Solvers
• SQP (via NPSOL)
• NIP (via OPT++)



Inner Loop: graph enumeration + model selection (Generalized ACV)
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Explore possible model dependencies, as defined by DAGs that identify control variate pairings
• GenACV-MF is inclusive of current estimators MFMC and ACV-MF

ACV
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• For 3 models, total DAG = 3
• For 4 models, total DAG = 16 (depicted)
• For 5 models, total DAG = 125

DAG enumeration

G.F. Bomarito, P.E. Leser, J.E. Warner, W.P. Leser, ”On the optimization of approximate control variates with parametrically defined estimators,” JCP 2022.

DAG enumeration + model selection
Augments 1 set of 5 models (# DAG = 125)
• For 1 set of 1 model (MC), empty DAG = 1
• For each of 4 sets of 2 models, # DAG = 1
• For each of 6 sets of 3 models, # DAG = 3
• For each of 4 sets of 4 models, # DAG = 16
Total = 212 DAGs
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Generalized ACV: test problem 1

graph enumeration

Peer DAG is not well suited  GenACV recovers MFMC at full depth

graph enumeration + model selection

All approximations are useful (slight improvements for restricted depth)

Steady state 1D diffusion: 5 well-ordered models 
resolutions = {4,8,16,32,64}, relative cost = {1,4,16,64,256}



• For 1 set of 8 models, # DAG = 214,720
• With model selection,  # DAG = 350,870
 Use partial depth throttles:

• Ordered Depth = 2 (KL): 22
• Depth = 2:   6,323 or   19,693 w/ selection
• Depth = 3: 48,260 or 105,870 w/ selection

 Other options: heuristics, MINLP w/ constraints

Generalized ACV: test problem 2
1D transient diffusion (“heat equation”)
• 8 models in 2D hierarchy: multifidelity + multilevel
• Fourier solution modes = 3 LF, 21 HF
• Spatial coordinates = {5 15 30 60} LF, {30 60 100 200} HF

graph enumeration

More complex hierarchy benefits significantly from DAG search
Solver noise could be smoothed with sample replicates

graph enumeration + model selection

Model selection adds a small amount of additional performance,
but all models generally providing utility



Putting it all together: tuning, iterated pilots, ensemble + DAG selection
“Tunable Model” Definitions (JCP 2020)

Cost LF1(q1)

Start with tuning 1 parameter (q1) for mid-fidelity
high / low hyper-parameters fixed: q  = p/2, q2 = p/6

Iterated:  Online Pilot = 25



Putting it all together: tuning, iterated pilots, ensemble + DAG selection

In general, hyper-parameter model tuning amplifies the utility of non-hierarchical estimators and DAG flexibility

“Tunable Model” Definitions (JCP 2020)

Cost LF1(q1)

Cost LF1(q1), 
Cost LF2(q2)

ACV online GenACV online, full DAG recur GenACV online, full DAG recur, model select



Summary Observations

Production deployments of multifidelity methods encounter a variety of challenges
• Accurate offline estimations of Covar[Q] are expensive and should be integrated and optimized    Iterated online pilots
• LF models often have parameters that trade accuracy vs. cost   Hyper-parameter model tuning
• Numerical solutions are not always reliable w/ local solvers                     Multistart/Multisolver, Global/Local
• Best selections/pairings/groupings often unknown a priori             Model selection/DAG enumeration

Outer loop (varying the inter-model covariance; previous work)
• Iterated pilots: avoid pilot under-/over-estimation or, with numerical solutions, mitigate the effects
• Hyper-parameter model tuning with bi-level & AAO approaches: especially effective with less structured estimators

Inner loop (fixing the inter-model covariance; recent work)
• Refine solver definitions with competition/sequencing  additional refinements in progress
• Optimize CV pairings via DAG enumeration  clear benefit
• Select most performant ensemble of approximations    marginal additional benefit for std test cases w/ good models;

poor model cases discarded for model mis-tuning
Next steps
• Streamline for efficiency (model tuning + large enumerations can become impractical even for simple test problems)

• Solvers for MFMC/ACV/GenACV: multi-start/multi-solver  sequenced global-local search
• ML-BLUE can unify ensemble configuration steps, SDP may aid in solver challenges?
• MINLP / heuristic search strategies to short-circuit brute-force enumerations in GenACV



Extra



Inner Loop (fixed covariance): Sequenced numerical solvers

13

First iteration
• Global search as initial guess(es):

• EGO (Bayesian opt; maximize EIF w/ DIRECT+local)
• DIRECT (GP indirection may not add much in this case)

Subsequent iterations (if online/iterated)
• Warm start from previous best soln (1) keyed for active ensemble + DAG

• Local refinement
• SQP (via NPSOL)
• NIP (via OPT++)

TO DO LIST:
• Heat eq 8 models: identify best DAGs with/without model selection
• DIRECT + Local
• Model selection for KL
• ML BLUE
• Model selection for MFMC? (ACV fixed depth = all)
• Model selection without DAG enumeration (set ACV partial depth=1 and/or support “no recursion”) 
• Include MC case in count and enumeration


