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THE RADAX JOINT AN
AN

Radial Axial (Radax) joints are a bolted joint commonly used in aerospace applications due to \
their high stiffness and low cyclic hysteresis.[!2]

However, there is little information quantified information on its mechanical response in
structural mechanics (SM) and structural dynamics (SD) scenarios.
Bolted Joint under Quasistatic Tension

N

Fracture:
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Prgload Iloss |
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Joint Displacement
Factors:

«  Complexloading
- Boltlot variation
* Process-induced variation

[1] Weydert, John C. (1968), doi:10.2172/5007820
[2] Schindwaolf, Eric; Swanson, Bruce; and Millard, William. (1998). 12th AIAA/USU Conf on Small Satellites




APPROACH: MULTISCALE ASSEMBLIES

Increasing Mechanical Complexit

Single-Bolt Calibration Single-Joint Calibration ‘Mini-Radax’ Validation

+ Quasistatic (SM) + Quasistatic (SM) + Quasistatic/Fatigue (SM)
+ Bolt lot variation + Multiple loading conditions * Vibration (SD) *
+ Tensile loading behavior » Axial Shock (+Model)

Structural and Dynamic Response of a
Laboratory-Scale Radial-Axial (Radax)
Joint, Chris Laursen, 10:10 AM

« Base mechanical behavior « Multiaxial loading behavior
. i ifi i Calibration of Fastener Radax Joint and
Lot uncertalnty quantlﬁcatlon Statistical Predictions of Joint Performance

. Experimenta/ e Model Calibration in Component-Level Drop-Table Testing,
Paul Miles, 10:30 AM




SINGLE-JOINT TEST

Multiple loading conditions in one standard setup

Opening

Sliding
ing
Material
Bolt A286 Steel
Joint Al7075-T6

(Steel Keensert)




DIGITAL IMAGE CORRELATION (DIC) AND DATA ANALYSIS
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« Exact solution

‘ [3] - Kabsch (1976), Acta Crystallographica 5
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DIRECTIONAL LOADING OVERVIEW
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Little rotation between the two halves of the
joints.

All failures occur in the bolt; little/no flange
deformation seen




CALIBRATION
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TEST REGIME AND CALIBRATION DATA

Load Flange .

(" (Calibration of Mini-Radax under
2 \ 2 \ 2 A longitudinal shock loading
| ooeni Nomina 8-32 - Load Data
PeENng | Nomind | (Nominal + Vertical Displacement between top
\ / \ ) \ J \__and bottom of joint
e B N e | N e %"_20 N W m
—  Sliding —  “Thin” —
(Large) Config 1: Config 2:
) ’ ) ’ ) ’ Fixed-Fixed Pinned-Pinned
— Rotating —  "Thick” * %
‘ _ \ Test Parameters
Mixed m
— Bolt Preload Torque 34 in-Ib
\ J Displacement Rate 0.05 mil/s

Bolt Lots 4




OPENING CONFIGURATION: FIXED-FIXED CONDITIONS |

Lot 1

Lot 2 A
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; o tets Lot Mean Ultimate  Mean Disp. at
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0.5
All failures occur in the bolt; little/no flange
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OPENING CONFIGURATION: FIXED-FIXED CONDITIONS |
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E—— 1 (Blue) 2.9 15.7
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Lot 3
| | | | | 3 (Yellow) 2.8 20.2
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All failures occur in the bolt; little/no flange

Displacement {‘III}'3 in) .
deformation seen

*A moving mean window has been applied to the

data to lessen noise for visualization purposes
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OPENING CONFIGURATION: FIXED-FIXED CONDITIONS Ii AN

Relative Rotation about Z
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BC CHANGE: PINNED-PINNED CONDITIONS |

Load (kip)
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(Green)

13



BC CHANGE: PINNED-PINNED CONDITIONS 1I
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CONCLUSIONS AN
AN

- Baseline mechanical behaviors of RADAX joints determined from single- \
joint geometry tests.
- Raw data was passed to computationalists to model the mini-RADAX validation

« Variability in mechanical behavior seen within lots and between lots.

* In-lot variability possibly stems from process variation, but further repetition is
required.

« Changing the boundary condition from fixed-fixed to pinned-pinned affects
‘early’ mechanical behavior of the bolts up to preload, but has less effect
on ultimate strength or strain to failure.
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DIRECTIONAL LOADING OVERVIEW
Opening/Sliding
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BOLT LOT VARIATION: OPENING CONFIGURATION

Pinned-Pinned Connection
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« Changing loading conditions has little effect on load/displacement behavior

 Increased rotation may not be reflective of actual conditions.
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SOURCES OF BOLT LOT VARIATION: FRACTURE SURFACES AN
AN

N

Failure at thread base for all loading \
conditions.

Few significant differences in fracture
surfaces between conditions.




MULTI-FACTOR VARIATION: ROTATING CONFIGURATION AN
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- Boltlot variation observed in ultimate strength, plastic behavior
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MULTI-FACTOR VARIATION: SLIDING CONFIGURATION
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Bolt lot variation observed in ultimate strength, plastic behavior

Stochasticity of frictional behavior likely stems from tribological factors or process
variation (i.e., preload variability or relative ‘centering’ of bolt and flange)
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RESPONSE OF A RADAX JOINT IN DYNAMIC LOADING CONDITIONS

Radial Axial (Radax) Joint
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‘Mini’-Radax test article \

N\

Three evenly-spaced
Radax connections

Over 40 tests that involve DIC
Need to relate DIC results from one test to another
* Consistently defined Area(s) of Interest
between tests
* Universal coordinate system
Generate useful data for calibration of computer

models
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