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4 | Motivation

Traditional State Estimator

ystsm Dynami
e Stat M

m Control methods that leverage traditional state-based

/ l \ estimation procedures (such as the Kalman filter depicted
° _) ° =) ° =) on the left) work well in benign environments but can be
l easily compromised by sensor errors.

‘o

m Monitoring properties of filters (e.g., Kalman innovations) can be used to detect some
corruptions but these approaches cannot be used to infer information about faulty sensors
and how to respond to it.




5 | Bayesian System ldentification

Novel State Estimator

m The Bayesian framework proposed here augments

¥ . ystem Dynami traditional state estimators with latent variables
Parameters

corresponding to model and measurement errors as

/ l \ well as corrupt observations.

l l m The Bayesian framework can handle limited data and
. . embed additional information through priors.
m The posterior distribution of latent variables A can
. /U /U\ be sampled with Markov Chain Monte Carlo
(Z) = (7)) = () = techniques, to produce dynamics consistent with

available information.

4 A
Corruption @ rruption Mod

Model Parameters
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Bayesian System l|dentification
parameter uncertainty model inadequacy
State l i
th _ Dk(Xk—l )\D) + 5k(Xk:: )\6) measurement error

Vi = Hi(X M) + 37 Hi(Xe AD) + en(X, Ao)

Observations 4

benign conditions LOI’FUPHOH models

. i>1
observations undeﬁ

Estimate A\ in a Bayesian Framework

P(A|D) o p(DIA)p(A)

m Likelihood p(D|A) will be constructed using a sequence of innovations via a
Kalman filter approach.




7 | Bayesian System ldentification - Likelihood Construction

Kalman Filter

m Prediction step Likelihood construction
m uses the sequence of innovations scaled
. y Innovation covariances
Pope = FePoFyp +Qk
m Update step Nobs
p(DIN) = [ N(Zx0, Sk)
Ziyr = Yepr — (Hepa Xpqae + ZHIEZ)) b=t
i N S VD W S A
Sk+1 = Hk+1Pk+l\ng+1 + Ri41 VUOTH
Py = (I- Pk+1\ng+IS;4}1Hk+1)Pk+1|k parameter set use(?j |
Xpo1 = Xk+1\k + Pk+1|kaT+151;:1Zk+1 in this presentatio

m F/H: linearized dynamics/observation models; Q/R:
corresponding covariances.

m Z is the innovation, and S is the innovation covariance. |



2D Constant Velocity Vehicle

m State vector © = [x1, T2, Vs, , Us,|, Observations y = [x1, za):

Tpr1 = Frxp +qr

Yer1 = Hpxppr +rpen + b

with gx ~ N(0,Q), rg+1 ~ N(0, R) mutually independent zero mean Gaussian
noise processes and by sensor corruption model (doi:10.1002/0471221279).
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2D Constant Velocity Vehicle

m “True values™ )\(I_?) = 10 and A\ = 1; known process scaling factor o = 0.02

m Benign estimator starts to deviate from the true dynamics about half-way

through the trajectory

Trajectory

Noiseless State 70

¢ Observations S 60
—-=-- Mean — Novel Estimator 7
—— Benign Estimator

Posterior Distribution p()\g), Ae|D)
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2D Constant Velocity Vehicle

m “True values™ )\g) = 10 and A\¢ = 1; known process scaling factor ¢ = 0.1

m Larger process uncertainties lead to benign estimator results that start to
deviate earlier from the true dynamics while the novel estimator accounts for
signal errors.

Trajectory Posterior Distribution p()xg) , Ae|D)

70 .

Noiseless State .

¢ Observations f g 60
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e [y
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11 | 2D Constant Velocity Vehicle

m “True values™ )\(I_?) = 10 and A\ = 0.1; known process scaling factor o = 0.02

m The benign estimator results start to deviate from the true trajectory earlier
as the corruption model now dominate the observation process.

Trajectory Posterior Distribution p()\g), Ae|D)
60 Noiseless State 4. 60
¢ Observations ?

501 —=- Mean — Novel Estimator / 50
—— Benign Estimator,

10.0 105 11.0 11.5
0 10 20 30 40 50 0 10 20 30 40 50 /‘(2)
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12 I Notional Balloon Model

m Assume a horizonthal trajectory and zero-acceleration kinematics (balloon follows
wind velocity)

Ort1 = Ok +ve(t, dr, Ai)Ay (longitude)
A1 = A+ oL, ok, Ap)Ay (latitude)

m Observation and corruption models

R=Aly, b=+ +AP7




13 | Velocity Field (vg, v))

m Velocity field generated via the Horizontal Wind Model version 2014
(doi:10.1002/2014EA000089)

m Example snapshots of the wind speed at 80km
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Balloon Trajectory - Test Cases

m Start from several initial locations.

m Same bias ()\g)

= 0.03°) applied to all location measurements

observation covariance scaling factor (A = 0.06°).
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15 I Balloon Trajectory - Test Cases - Estimated Paths

m Start from several initial locations.

m Same bias (A

(2)

observation covariance scaling factor (A = 0.06°).
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16 I Balloon Trajectory - Test Cases - Posterior Distributions

m Start from several initial locations.

2) _

m Same bias (A}, = 0.03°) applied to all location measurements and same
observation covariance scaling factor (A = 0.06°).

Case 1 Case 2 Case 3 Case 4
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Summary

m We proposed a Bayesian system identification framework that can learn system
dynamics in the presence of sensor errors.

m The joint posterior distribution for the model, process, and corruption
parameters are based on a likelihood construction that employs the sequence of
innovations along the trajectory.

m Parametric sweeps for 2D test models examined the interplay between process and
observation uncertainties.
m Results show the framework is able to learn canonical sensor corruption models.

m Future work will increase dynamical model complexity and the range of sensor error
scenarios.
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