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4 Motivation

Traditional State Estimator
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Control methods that leverage traditional state-based
estimation procedures (such as the Kalman filter depicted
on the left) work well in benign environments but can be
easily compromised by sensor errors.

Monitoring properties of filters (e.g., Kalman innovations) can be used to detect some
corruptions but these approaches cannot be used to infer information about faulty sensors
and how to respond to it.



5 Bayesian System Identification
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The Bayesian framework proposed here augments
traditional state estimators with latent variables
corresponding to model and measurement errors as
well as corrupt observations.

The Bayesian framework can handle limited data and
embed additional information through priors.

The posterior distribution of latent variables λ can
be sampled with Markov Chain Monte Carlo
techniques, to produce dynamics consistent with
available information.



6 Bayesian System Identification

Xk = Dk(Xk−1,λD) + δk(Xk, λδ)

Yk = H1(Xk,λ
(1)
H ) +

∑
i>1

Hi(Xk,λ
(i)
H ) + ϵk(Xk, λϵ )

State

Observations

parameter uncertainty model inadequacy

observations under
benign conditions corruption models

measurement error

Estimate λ in a Bayesian Framework

p(λ|D) ∝ p(D|λ)p(λ)

Likelihood p(D|λ) will be constructed using a sequence of innovations via a
Kalman filter approach.



7 Bayesian System Identification - Likelihood Construction
Kalman Filter

Prediction step

Xk+1|k = FkXk

Pk+1|k = FkPkF
T
k +Qk

Update step

Zk+1 = Yk+1 − (Hk+1Xk+1|k +
∑
i>1

H
(i)
k )

Sk+1 = Hk+1Pk+1|kH
T
k+1 +Rk+1

Pk+1 = (I− Pk+1|kH
T
k+1S

−1
k+1Hk+1)Pk+1|k

Xk+1 = Xk+1|k + Pk+1|kH
T
k+1S

−1
k+1Zk+1

F/H: linearized dynamics/observation models; Q/R:
corresponding covariances.

Z is the innovation, and S is the innovation covariance.

Likelihood construction
uses the sequence of innovations scaled
by innovation covariances

p(D|λ) =
nobs∏
k=1

N(Zk|0, Sk)

λ = {λD, λδ, λ
(1)
H , λϵ, λ

(2)
H , . . .}

parameter set used
in this presentation



8 2D Constant Velocity Vehicle
State vector x = [x1, x2, vx1 , vx2 ], observations y = [x1, x2]:

xk+1 = Fkxk + qk

yk+1 = Hkxk+1 + rk+1 + bk+1

with qk ∼ N(0, Q), rk+1 ∼ N(0, R) mutually independent zero mean Gaussian
noise processes and bk+1 sensor corruption model (doi:10.1002/0471221279).

Fk =

[
I2 I2
02 I2

]
, Q = σ2

[
1
3I2

1
2I2

1
2I2 I2

]
, Hk =

[
I2 02

]
, R = λϵ

[
72 32

32 82

]
and

bk+1 =
[
λ
(2)
H λ

(2)
H

]T



9 2D Constant Velocity Vehicle

“True values”: λ
(2)
H = 10 and λϵ = 1; known process scaling factor σ = 0.02

Benign estimator starts to deviate from the true dynamics about half-way
through the trajectory

Trajectory
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10 2D Constant Velocity Vehicle

“True values”: λ
(2)
H = 10 and λϵ = 1; known process scaling factor σ = 0.1

Larger process uncertainties lead to benign estimator results that start to
deviate earlier from the true dynamics while the novel estimator accounts for
signal errors.

Trajectory
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11 2D Constant Velocity Vehicle

“True values”: λ
(2)
H = 10 and λϵ = 0.1; known process scaling factor σ = 0.02

The benign estimator results start to deviate from the true trajectory earlier
as the corruption model now dominate the observation process.

Trajectory
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12 Notional Balloon Model

Assume a horizonthal trajectory and zero-acceleration kinematics (balloon follows
wind velocity)

ϕk+1 = ϕk + vϕ(t, ϕk, λk)∆t (longitude)
λk+1 = λk + vλ(t, ϕk, λk)∆t (latitude)

Observation and corruption models

R = λϵI2, b = [±λ
(2)
H ,±λ

(2)
H ]T



13 Velocity Field (vϕ, vλ)

Velocity field generated via the Horizontal Wind Model version 2014
(doi:10.1002/2014EA000089)

Example snapshots of the wind speed at 80km
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14 Balloon Trajectory - Test Cases

Start from several initial locations.
Same bias (λ(2)

H = 0.03◦) applied to all location measurements and same
observation covariance scaling factor (λϵ = 0.06◦).
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15 Balloon Trajectory - Test Cases - Estimated Paths

Start from several initial locations.
Same bias (λ(2)

H = 0.03◦) applied to all location measurements and same
observation covariance scaling factor (λϵ = 0.06◦).
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16 Balloon Trajectory - Test Cases - Posterior Distributions

Start from several initial locations.
Same bias (λ(2)

H = 0.03◦) applied to all location measurements and same
observation covariance scaling factor (λϵ = 0.06◦).
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17 Summary

We proposed a Bayesian system identification framework that can learn system
dynamics in the presence of sensor errors.

The joint posterior distribution for the model, process, and corruption
parameters are based on a likelihood construction that employs the sequence of
innovations along the trajectory.

Parametric sweeps for 2D test models examined the interplay between process and
observation uncertainties.

Results show the framework is able to learn canonical sensor corruption models.

Future work will increase dynamical model complexity and the range of sensor error
scenarios.
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