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Stripline short-circuit loads on the Z pulsed-power machine can \

produce planar shockless compression of solids to 400+ GPa X
| \

Magnetic drive propagates ramped stress wave into ambient material

Material's compressibility deduced from velocimetry measurements
+ Shockless compression along quasi-isentrope close to isotherm
 Accurate absolute measurement of pressure standards (e.g., for DAC)
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Platinum is a widely used pressure calibrant in DAC work N
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New DAC techniques to P > 300 GPa require precise calibration \‘

Extrapolated models differ 5-10%
* recent NIF/Z ramp-compression result with uncertainty 3.5%
* included 3 Z measurements to ~400 GPa (NIF data to ~800 GPa)

5007

pressure on principal isentrope (GPa)

Sesame 3730 (Barnes 1984)
MG US-UP (Steinberg 1996)
Fratanduono (2021)

Sesame 3732 (Cochrane 2022)

- =
——
-

-
....
-
....f’
*_..-.-
-
-

- —
-
-

Cochrane et al, Phys. Rev. B 105, 224109 (2022)

22

:2:4I

26 28 30 32 34
density (g/cc)

k-

&
a
S

770.05
10.04
10.03
10.02

lo.01

0.00




High-precision data are available from 11 single-sample
measurements on Pt to peak stresses in the range 160-580 GPa
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Inverse Lagrangian analysis (ILA) extracts sample material’s

compressibility from shockless-compression velocimetry

inner-loop iteration
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Inverse mapping = backward integration
most developed approach uses characteristics net in ¢-x;
iterate to self-consistency with Lagrangian analysis of u*(¢)
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Experimental uncertainties consist of measurement \
uncertainties in velocity, time, and electrode/sample thicknesses "
>

6l — 7306452703 _...-—-—\ N
—— Z306452T04 \
— 272306452732
5- .
@ el é = 1-0 uncertainty
&
~
>4 7  F XN :
> i
> 5Xgl:v 5XélTp 5Xpt 1.we|.ghted average of up to 3 measurements
‘S . 2.variable-bandwidth smoothing
S e typical manual measurements £3 um 9/ P
T 3 Q 3.time-dependent LiF refractive-index
S * dual-confocal measurements down to +0.3 um £ , _
o = correction converts apparent velocity ou,
o 3 g| = true window velocity du,,
bt 2
a 2 5
a 0t = +0.2 ns g
(waveform shift) 5 7
6.
O — —SSEEE - .
2.9 3.0 3.1 3.2 3.3 >0 1 3 3 A 5

timet (us) true window velocity u,, (km/s)




Velocity uncertainty maps to fictive configuration in o,-u, plane

Propagate uncertainty from measured velocity to in-material compression velocity :
« compute mapping in stress-velocity plane: known electrode/window EOS, result sample EOS \
* outransfers to/from ot by velocity-time derivative du/dt. relative éu/u maps by change in shape
ou*
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Electrode-thickness uncertainties map to velocity-dependent
arrival-time uncertainty in sample-input velocity waveform

for small o, interface-arrival time discrepancy given by electrode-material’'s Lagrangian

sound speed at interface stress

N

A

« significantly increases time uncertainty of u*, waveform below ~1.5 km/s
« add ot (u™) - (du™/dt) in quadrature to ou™, for input to Lagrangian analysis code
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Take welghted average of 11 ¢ (u*) & oéc,(u*), mtegrate to o,(n) \
propagating 6c, and 6p, to total 6o,(n) = 1% at o, = 450 GPa :
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Yield stress and thermal EOS models allow reduction of long.
stress to pressures on quasi-isentrope, isentrope, and isotherm

Standard application of Von Mises yield  quasi-isentrope P —o —0'=0. -2Y

criterion and Mie-Gruneisen EOS

Mie-Gruneisen EOS
por(E_Eref)
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power-law Gruneisen parameter
I'=T, (1 _77)q

P=P_ +
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Integrate ordinary diff. eqn. to get P
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Simply subtracting deviatoric stress to obtain quasi-isentrope \
pressure can introduce elastic-region errors, limiting accuracy

A straight line in w, p, or n from P,=0 ...

- Cannot avoid discontinuity in wave speed above elastic limit

« Does not match known elastic response at ambient

Initial yield stress depends strongly on microstructure
* Isentrope pressure Py should not depend on yield stress
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To avoid these issues, compute quasi-isentrope & isentrope
reductions in wave speed instead of stress/pressure

I
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Interpolating bulk wave speed between known ambient value \
and plastic region gives smooth pressure curve
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Monte-Carlo UQ analysis of the reduction procedure requires \
statistical models for 10 input parameters "

simplified Steinberg-Guinan yield k.

Y
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Brown et al, J. Dynamic Behavior of Materials 7, 196-206 (2021) :



Monte-Carlo UQ analysis of the reduction procedure requires \
statistical models for 10 input parameters "

mean: fit to Cochrane et al (2022)

- SR std. dev: fit AlnI'=AInT) +AgIn(1-7) \

Y p([Y09 A]|D) 0. 29 N/A Where Al = FMatsui, Fei, or Holmes 1_‘Cochrane
A p([Y09 A]|D) 72, N/A TPa - 3'0._ S — Clocliwalne I(ZOIZZI) __
' F=To(1l—n)9 —— Matsui (2009)
Ly N(wpr,#l,x) 0.971,0.118 R=0.882 f —— Fei (2007) _
¢ Nron),T)  0.94,0.411 2.5 Holmes (1989) -
S B(6.4,1.6) 0.90; [0.66, 0.93] - _
Po NCupO S, ) 21.421,0.043 g/cm?3 2.0_‘
CO,S Cos’ CO) 3.617,0.055 mm/HS [ [ fit to Cochrane
© NQu s ) 63.7. 3.6 GP3 1 5' std. dev. of bivariate distribution
0 Gy SG,
¢y Nu,,s,) 130.2, 0.4 J/(ke-K) 0.0 0.1 ,(7’-2 0.3
Ty N(ur,sr) 300, 3 K Cochrane et al, Phys. Rev. B 105, 224109 (2022)

Matsui et al, J. Appl. Phys. 105, 013505 (2009)
Fei et al, Proc. Nation. Acad. Sci. 104, 9182-9186 (2007)
Holmes et al, J. Appl. Phys. 66, 2962-2967 (1989) s



Monte-Carlo UQ analysis of the reduction procedure requires \
statistical models for 10 input parameters "

N
mode = 0.9; 68.3% Cl = [0.66, 0.93] \

Yy p([Yy, A1ID) 0.23, N/A >3t

A p([Y,, A]|D) 72, N/A TPa -! % |

Ty N([pyr» 4,),2)  0.971,0.118 ;2}

q Nuwnr, 4,1, %) 0.94, 0.411 E j

S B(6.4,1.6) 0.90; [0.66, 0.93] S1f

Dy gupo 5,) 21.421,0.043 g/cm3 = |

Cos Nue,y Sc,) 3.617,0.055 mm/ps 80 05

Gy Mg, Sc) 63.7,3.6 GPa

¢y N, s.) 130.2, 0.4 J/(keg-K)

Ty Mug,sz) 300, 3 K Remaining 5 parameters = independent

univariate normal distributions
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Obtain rough estimate of sensitivities by “screening” for effect \

of one univariate or bivariate parameter distribution at a time "

>
 Screening Monte Carlo (MC) converged by 100,000 samples
- Non-normal distributions described by average median-centered 68.3% confidence interval (Cl) \
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None of the remaining 4 parameters surpassed 0.1-GPa effect
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AP (GPa)

Uncertainty contributed by reduction procedure quantified by \\
500,000-sample Monte Carlo added in quadrature to total 60, X

“

« Non-normal distributions again described by average median-centered 68.3% confidence interval (Cl)

 Two views of reduction corrections and Cl: (left) absolute, before adding to total oo, std. dev., and \
(right) in units of oo, , after adding to total oo, std. dev.
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Determined absolute P(n) isotherm of Pt to unprecedented \
precision of £+1.2% at 444 GPa

pa— A O L Bayesian model calibration of same data set \,
15 Frantanduono data std. dev. ] . HPRE —
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Conclusions

Rigorous propagation of experimental uncertainties to total oo (#)
- about 1% at ~450 GPa from weighted averaging of 11 high-precision Z measurements on Pt

Reduction to pressures on quasi-isentrope, isentrope, isotherm computed in wave speeds
* interpolate across elastic-plastic transition from known ambient bulk ¢, ¢ to plastic-flow ¢, ,

* P, depends only on yield-stress derivative dY/dP, not initial yield stress ¥,
* Pgdepends also on absolute Y(P) but with nearly inconsequential sensitivity

Monte Carlo analysis quantifies reduction procedure contribution to uncertainty
« Reduction to isotherm P, is correction of ~3 oo, at ~450 GPa, resulting in 0P, just under 1.2%

UQ does not yet include uncertainty in Cu and LiF material models used in ILA

Bayesian model calibration (BMC) suggests decreased sensitivity at highest pressures inflates
uncertainty there (1.14% from ILA but 1.32% from BMC)
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Important differences between ILA and BMC
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