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Stripline short-circuit loads on the Z pulsed-power machine can 
produce planar shockless compression of solids to 400+ GPa
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Magnetic drive propagates ramped stress wave into ambient material
Material’s compressibility deduced from velocimetry measurements

• Shockless compression along quasi-isentrope close to isotherm
• Accurate absolute measurement of pressure standards (e.g., for DAC)
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Platinum is a widely used pressure calibrant in DAC work
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New DAC techniques to P > 300 GPa require precise calibration
Extrapolated models differ 5-10%

• recent NIF/Z ramp-compression result with uncertainty 3.5%
• included 3 Z measurements to ~400 GPa (NIF data to ~800 GPa)

Fratanduono et al, 
Science 372, 1063 (2021)

Cochrane et al, Phys. Rev. B 105, 224109 (2022)



High-precision data are available from 11 single-sample 
measurements on Pt to peak stresses in the range 160-580 GPa
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submission to J. Appl. Phys. (2023)



Inverse Lagrangian analysis (ILA) extracts sample material’s 
compressibility from shockless-compression velocimetry
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Inverse mapping = backward integration
• most developed approach uses characteristics net in t-xL
• iterate to self-consistency with Lagrangian analysis of u*(t)

• the inner loop can be computed non-iteratively
• assumes single-valued material response cL(u*), σx(η)



Experimental uncertainties consist of measurement 
uncertainties in velocity, time, and electrode/sample thicknesses
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• typical manual measurements ±3 µm
• dual-confocal measurements down to ±0.3 µm

δt ≈ ±0.2 ns
(waveform shift)

δ = 1-σ uncertainty

1.weighted-average of up to 3 measurements
2.variable-bandwidth smoothing
3.time-dependent LiF refractive-index 

correction converts apparent velocity δua
 true window velocity δuw
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Velocity uncertainty maps to fictive configuration in σx-up plane
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Propagate uncertainty from measured velocity to in-material compression velocity
• compute mapping in stress-velocity plane:  known electrode/window EOS, result sample EOS
• δu transfers to/from δt by velocity-time derivative du/dt:  relative δu/u maps by change in shape



Electrode-thickness uncertainties map to velocity-dependent 
arrival-time uncertainty in sample-input velocity waveform
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for small δX, interface-arrival time discrepancy given by electrode-material’s Lagrangian
sound speed at interface stress

• significantly increases time uncertainty of u*in waveform below ~1.5 km/s
• add δtδX(u*) ∙ (du*/dt) in quadrature to δu*in for input to Lagrangian analysis code
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Take weighted average of 11 cL(u*) & δcL(u*), integrate to σx(η) 
propagating δcL and δρ0 to total δσx(η) = 1% at σx = 450 GPa
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Davis and Brown, “Quantifying uncertainty in analysis of shockless dynamic compression experiments on platinum, Part 1:  Inverse Lagrangian analysis,” 
in preparation for submission to J. Appl. Phys. (2023)
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Standard application of Von Mises yield 
criterion and Mie-Grüneisen EOS

Assume constant cV and β = 0.9

Need functions Y(P), G(P), and Γ(η)
Iterate to self-consistent PQ ↔ Y
Integrate ordinary diff. eqn. to get PT

Yield stress and thermal EOS models allow reduction of long. 
stress to pressures on quasi-isentrope, isentrope, and isotherm
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Simply subtracting deviatoric stress to obtain quasi-isentrope 
pressure can introduce elastic-region errors, limiting accuracy

A straight line in u, ρ, or η from PQ=0 …
• Cannot avoid discontinuity in wave speed above elastic limit
• Does not match known elastic response at ambient

Initial yield stress depends strongly on microstructure
• Isentrope pressure PS should not depend on yield stress
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YIEL=0.29 GPa

YIEL=0.68 GPa

Z2765 & Z2766 used 
different (old) material

isentropic elastic limit YIEL



To avoid these issues, compute quasi-isentrope & isentrope 
reductions in wave speed instead of stress/pressure
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                 velocity material would have under shockless “bulk” 
compression wave (as if for strengthless, inviscid fluid)



Interpolating bulk wave speed between known ambient value 
and plastic region gives smooth pressure curve

13

, ,

,

L Q L S

L S

Q S

c c
c

P P

η =
−

=

− =

at 0.375:

0.33%

2.16 GPa



Monte-Carlo UQ analysis of the reduction procedure requires 
statistical models for 10 input parameters
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     ,  distribution µ, s1/2 units

Y0 p([Y0, A]|D) 0.29, N/A GPa

A p([Y0, A]|D) 72, N/A TPa -1

Γ0 N([µln Γ0
, µq], Σ) 0.971, 0.118

q N([µln Γ0
, µq], Σ) 0.94, 0.411

β B(6.4, 1.6) 0.90; [0.66, 0.93]

ρ0 N(µρ0
, sρ0

) 21.421, 0.043 g/cm3

c0,S N(µc0,S
, sc0,S

) 3.617, 0.055 mm/µs

G0 N(µG0
, sG0

) 63.7, 3.6 GPa

cV N(µcV
, scV

) 130.2, 0.4 J/(kg·K)

T0 N(µT0
, sT0

) 300, 3 K

Brown et al, J. Dynamic Behavior of Materials 7, 196-206 (2021)



Monte-Carlo UQ analysis of the reduction procedure requires 
statistical models for 10 input parameters
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distribution µ, s1/2 units

Y0 p([Y0, A]|D) 0.29, N/A GPa

A p([Y0, A]|D) 72, N/A TPa -1

Γ0 N([µlnΓ0
, µq], Σ) 0.971, 0.118 R=0.882

q N([µlnΓ0
, µq], Σ) 0.94, 0.411

β B(6.4, 1.6) 0.90; [0.66, 0.93]

ρ0 N(µρ0
, sρ0

) 21.421, 0.043 g/cm3

c0,S N(µc0,S
, sc0,S

) 3.617, 0.055 mm/µs

G0 N(µG0
, sG0

) 63.7, 3.6 GPa

cV N(µcV
, scV

) 130.2, 0.4 J/(kg·K)

T0 N(µT0
, sT0

) 300, 3 K Cochrane et al, Phys. Rev. B 105, 224109 (2022)
Matsui et al, J. Appl. Phys. 105, 013505 (2009)
Fei et al, Proc. Nation. Acad. Sci. 104, 9182-9186 (2007)
Holmes et al, J. Appl. Phys. 66, 2962-2967 (1989)

( )
( )0ln ln ln 1q η∆ Γ = ∆ Γ + ∆ −

∆Γ = Γ − ΓMatsui, Fei, or Holmes Cochrane

    mean:  fit to Cochrane et al 
 std. dev:  fit  

2

     where  

022



Monte-Carlo UQ analysis of the reduction procedure requires 
statistical models for 10 input parameters
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distribution µ, s1/2 units

Y0 p([Y0, A]|D) 0.29, N/A GPa

A p([Y0, A]|D) 72, N/A TPa -1

Γ0 N([µln Γ0
, µq], Σ) 0.971, 0.118

q N([µln Γ0
, µq], Σ) 0.94, 0.411

β B(6.4, 1.6) 0.90; [0.66, 0.93]

ρ0 N(µρ0
, sρ0

) 21.421, 0.043 g/cm3

c0,S N(µc0,S
, sc0,S

) 3.617, 0.055 mm/µs

G0 N(µG0
, sG0

) 63.7, 3.6 GPa

cV N(µcV
, scV

) 130.2, 0.4 J/(kg·K)

T0 N(µT0
, sT0

) 300, 3 K

mode = 0.9; 68.3% CI = [0.66, 0.93]
95.4% CI = [0.48, 0.98]

Remaining 5 parameters = independent 
univariate normal distributions



Obtain rough estimate of sensitivities by “screening” for effect 
of one univariate or bivariate parameter distribution at a time
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None of the remaining 4 parameters surpassed 0.1-GPa effect

• Screening Monte Carlo (MC) converged by 100,000 samples
• Non-normal distributions described by average median-centered 68.3% confidence interval (CI)



Uncertainty contributed by reduction procedure quantified by 
500,000-sample Monte Carlo added in quadrature to total δσx
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• Non-normal distributions again described by average median-centered 68.3% confidence interval (CI)
• Two views of reduction corrections and CI: (left) absolute, before adding to total δσx std. dev., and

(right) in units of δσx , after adding to total δσx std. dev.



Determined absolute P(η) isotherm of Pt to unprecedented 
precision of ±1.2% at 444 GPa
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Bayesian model calibration of same data set
• non-parametric isentrope model = 5-knot 

PCHIP spline in Eulerian sound speed cE(η)
• increases δP by ~15% (correctly accounts for 

decreased sensitivity at higher pressures)
• extends result to peak loading of PS ~ 570 GPa

Brown et al, “Quantifying uncertainty in analysis of shockless dynamic compression experiments on 
platinum, Part 2:  Bayesian model calibration,” in preparation for submission to J. Appl. Phys. (2023)
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Conclusions
Rigorous propagation of experimental uncertainties to total δσx(η)

• about 1% at ~450 GPa from weighted averaging of 11 high-precision Z measurements on Pt

Reduction to pressures on quasi-isentrope, isentrope, isotherm computed in wave speeds
• interpolate across elastic-plastic transition from known ambient bulk c0,S to plastic-flow cL,Q

• PQ depends only on yield-stress derivative dY/dP, not initial yield stress YIEL

• PS depends also on absolute Y(P) but with nearly inconsequential sensitivity

Monte Carlo analysis quantifies reduction procedure contribution to uncertainty
• Reduction to isotherm PT is correction of ~3 δσx at ~450 GPa, resulting in δPT just under 1.2%

UQ does not yet include uncertainty in Cu and LiF material models used in ILA

Bayesian model calibration (BMC) suggests decreased sensitivity at highest pressures inflates 
uncertainty there (1.14% from ILA but 1.32% from BMC) 
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Important differences between ILA and BMC
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Locally elastic response Sensitivity to high σx


