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1A A
Motivation and Outline C|VI E

Motivation
> Developing Plasma simulation capabilities for Sandia mission work
o AV&V effort runs concurrently with the develop effort

o For verification, we seek to utilize analytic/semi-analytic plasma solutions that have bearing on
the application space

> We also seek ever increasing physical complexity (e.g., elastic collisions)

Outline
o The Multifluid Plasma Models
o Energy exchange terms in Five-Moment models
o Equations of State
> Verification Examples: 1D Planar collisional diodes and floating collisional sheaths
> Prototype Plasma Models
o Semi-analytic versions of the models

> Model differences and mitigation
> Mesh refinement studies

o Summary and Perspectives
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EMPIRE Five-Moment Multifluid Plasma Model with

s | Rl 203

o Use Maxwell Molecule collision model (analytic, collision
rate is independent of relative velocity)

o Use simple ionization models
o EléJid equations discretized using discontinuous Galerkin

o IMEX: implicit EM and sources, explicit fluid transport
o Solves Maxwell equations for the electromagnetic fields

usiﬂgea compatible discretization based on edge-face
ele mt§v.[ u,] = §7
ot Poflad = Spap
dpau q
pgt L4V [palla ®ug + PRI = ;‘;" (E + u, x B)+Raﬁ+sfua6
0Eq qaPa T
— 4+ V- [(Ea+ Pa)us] = Uy -E+ Qup +us - Rog + Sg
8t Mg ap
P, 1
Pa = nakBTa ga:Fa_1+§pa||ua||2
B(x) = 0, E is PEC on both walls
Multi-Fluid (ionization collisions)
< TionVe >const — Viz = constant
Vion = e0 < TionVe > const= Kizneo
Mno
Vion — fle < TionVe > const= Kizne
Mno
Me
SZE = Vion_npnO
my;
SPIZ - Vionm_npnO
Me
Sge = Vion m_npnOPeO/(Fe - 1)
m;
SﬁI‘z = Vionm—npnOPiO/(Fi - 1)

el W
civiriRgc

Five-Moment Maxwell Fluid Elastic collision frequency model

o' = oao/yg Maxwell Molecule Collision
V(% = ngoo frequgncy is indepgndent of
Y velocity and analytic
I/Ba - Na0oo
_ o
Mo + Mg Vap I
o [ (Usa\’]
I/,BEa = iz Naoo |3+ <i>
mg + Mq Vg
- - i
Uz = (ug—u
CT e e e o mams
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mey mpg
_ M
Rosg = —VasMapha(ua —ug)
Rﬂa = —Vévémﬁanﬁ (u/3 — ua)
[ mg [ m mg -1 |
_ E a
Qop = nNa |—Vysks (T —T3) + T, (Ta + T VogMaf (uq — ug)
| Mo (Mg m ! 1k
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Qs ng | —vgaks (1 )+ 7. \ T, T VgaMpa (Ug — Uq) |
Qpatug-Rga = —(Qap+ua-Rap)

SNL SAND2019-9621 (Shields et 4|.)




Surrogate Plasma Models

We use 1D surrogate models to explore algorithms,
boundary conditions, source terms, etc.

Greatly Speeds up discovery

1D FV Multi-Fluid (MF): Euler-Poisson
o Third-order upwind bias, TVD limiter

o HLLC flux function

1D FD (eulerCL): Euler-Poisson
o Solves the electron species only

o Third-order upwind bias finite-difference

1D FD (eulerPT): Pressure-Temperature Poisson
o Solves the electron species only
o Third-order upwind bias

Explicit RK3 TVD time integration
Poisson equation solved with Thomas Algorithm

EoS: Energy, isentropic, isothermal

1D1V 5-Moment Model (eulerCL,

MF)
Ape 0
ot gy Peuel
OPelle 0
8t + 8_.77 [peueue + Pe]
o0&, 0
a_ e Pe e
5 +8x[(5 + P.) u]
Ee
P
0%
Ox?

0

GePe
Me

qepe ueE + ueRen + Qen
e

T, —1) 2P
nekBTe

Ne€

E + Rey,

€0

1D1V Internal Energy Model

(eulerPT)
One  O(neve)
ot
OV, v, B 1 oP, Qe
ot + Ue% N (mene) ox + meE  fen
o7, oT. r.—1_o0v. TI.—-1
ot _H)e% - n.kp Fe ox + nekp Qen
Pe = nekBTe
ﬁ . Nele
8372 - €0
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Model Differences:

Total energy (1D1V2S)
Langevin Equation: constant: E,
v,u, = 0,m, <Km,

Steady solution for velocity

Power per unit volume from

electric field to the fluid

Power per unit volume converted
to heat

Energy equation (1D) power
sources due to E

Energy exchange between species

Energy Exchange

0. 0 e Pe
a e Pe e -
ot ox [(Ee + Fe) ue] Me
NeMeth = —eBn, — MeneV(Ue
el
'U:B =
MV

Ue(—€E)Ne = Ue(UeMeV )N

MV
en,

P, =nd2 n =

—ENeUe E:r ueRen

_ un)

Je

power from electric field to

/ fluid
UeE 4 Ue Ren, + Qen

internal energy xc between
species

Qen ~ nev[_kB(Te — Tn) + me(ue — un)z]

(Tanenbaum 1967, Freidberg,
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Equations of State Approximations

Five-Moment model solves total energy equation
Five-Moment Energy Transport and EOS

Classic models typically reduce complexity by

choosing a simplified EOS DE,, P
_ _ ) ) — + V- [(Ea+ Pa)us] = Uy E+ Qup+us - Rap
° Isentropic, pressure proportional to density raised to ot Ma,
1
gamma Po = (Ta=1(€ = 5palluall)
° Isothermal, T=constant s P
“ nakB
Compiressibility is reduced by choosing I' =1 + € 2 — p, 1o
Pa
Isentropic (adiabatic, reversible, diode) Isothermal (sheath) [ and Compressibility
-1
P ) o r= n r T = Ty = constant T = T, (ﬁ)
Fo Po ng P = nkgT Po
A . nOkBTO a2 _ B P = nl;DBT
D (o)t p 2 — L
P = Ao P
P
T = %
a2 = FE

p



1D Planar Diode Theory and Prototype Models

1/2
7 1 Child-Langmuir Law for space charge limit current density (SCL) Child,1911, JOL EGO (M) Ve

Langmuir, 1913) 97 \me d?

o The drift velocity v_e=0 and the number density n_e is infinite

1/2 3/2
Cold Diode solution (Jaffe, 1944) Jh = EEO (%) W/l I
i

9 o d?
> Cold electron beam with finite drift and density

152
o Semi-analytic, well suited for Particle-in-Cell kinetic solvers (Smith et al. 2019) JJ = @ 1+ (1 _ ﬂ) ¢
4 %4

3

Warm Diode (Rokhlenko&Lebowitz, Oliver, Hamlin et al., 2022)
° Finite temperature, drift velocity and number density

° Includes hydrodynamic force due to finite temperature through the pressure gradient
and Lorentz force

o Assumes an isentropic eos

o Cold fluid, includes friction force due to collisions and Lorentz force a3
> Recovers the Mott-Gurney SCL formula

Mott-Gurney Diode (Akimov & Schamel, 2002) v _ 9 ( q| ) V]2
0
Ml

Warm Mott-Gurney Diode
° Includes hydrodynamic, Lorentz and friction forces due to collisions

In the limit of P->0, recovers the the Mott-Gurney solution

In the limit as nu=>0, recovers the warm diode solution K, — Amfp Veo
In the limit as P =0 and nu=>0, recovers the Jaffe solution d vd
Parameterize collisions by Knudsen number

o

o

(e}

o



‘Semi-AnaIytiC Diode Models
8

Physical Models Transformed Models

Warm Diode (Rokhlenko&Lebowitz. Oliver. Hamlin et al.. Hamlin2022) Warm Diode SST
One  A(neve)

ot Ox =Y Joo = neev, = constant
ave 8”6 e 1 ape ov e 1 oOP
e s ——F — v € = ——F — ¢
ot ox Me MeNe OX ¢ or Me MeNe OT
6 _ e OF g
axQ €0 ¢ % B _ane
_ r
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N ox

Mott-Gurney Warm Diode (Akimov & Schamel, AK2002) Mott-Gurney Warm Diode SST

One N A(neve) 0 Jeo = mneev. = constant
ot Ox B OV, e 1 0P,
Ov, v, e 1 OP. Ve = — E —
+ v = ——F— — v, ox Me MeNe OT
ot ox Me MeNe OX E .
82¢ & _ = —— Ne
92 e Ox €0
P = Anf P, = Ang
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E = ——
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Warm Mott-Gurney Diode: Knudsen Number Sweep
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Warm Diode: EMPIRE Mesh Refinement Study

10

Details

> Obtain a solution for
electron fluid

o Approximately isentropic

> Supersonic inflow and
outflow

> No collisions

1D Warm Diode (two fluid)

.Q
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— - ‘”
— /

Achieve expected order of accuracy
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Electric Field (V/m)

Electric Field (V/m)

Mott-Gurney Warm Diode: eulerCL, eulerPT
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MFDiode: Kn=0.1, gm=1.01, engy MFDiode: Kn=0.1, gm=1.01, engy
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Mott-Gurney Diode: EMPIRE Energy Equation and Isentropic

EoS
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Potential (V)

Characteristics of the 1D SST Symmetric Planar Sheath
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Semi-Analytic Sheath models of Alvarez-Laguna et al. and

s | Ghakers
L %g el (Alvarez-Laguna et al., AL2020) AL 2020 Transformed model
on. 0 B iz ONele oty —y,
BN + %(neue) = NV . = T %
ari + %(niui) = NV [% — (ﬁeﬂe)zl %% = —2K"U.n? — Uepiieny + %%
ONele 0 5 = . y
Mme 8t %(meneue + Pe) = nee% — MeUeNelVen [liﬁ? . (ﬁzaz)z} 8822 _ —ZKZZQ_M’FL? . Dinﬂiﬁg) . ﬁ?%
m; anzuz —+ i(mmluf + Pz) = —Nse— — MiUiN;Vin 82(% _ Ne — Ny
ot ox ox b 32
0% (ne —ny)
Fy = ———¢€ ng =mne=mn; €e=me/m;, k=T1;/T.=0, ¢o=kpTlc/e, T.= constant
Ox €0
uo =up = VkgT./mi, to=Lo/uo, Apo= (eokpT./e*ng)"/?
Pe == nekBTe P’L == 'I’LZk’BTZ Eiz - tOViza Ven = toVen, Vin = toVin, 5‘ - )\DO/LO
K% = constant = 7
K% = f. constant = n 7"
a(nzuz) = VN (nu) = e E = x/)Ap \p
du; = ' 9 = =<
n,mzuz% = n;eE —miu;(Vine + VimomMi) (nuu)’ = ne— fnu " ni /Mo A1
’ 21 _ n u = u;j/up — up
ep qge = n-—e I = —
Ne = MNeo€XP n = ep/kpT. vy
kpTe 77/ = —€ o
dE e ¢ = eBEN/kgT, B = vm/vi
— = —(ni—ne)
dx €0

Te = constant, T;=0, m=0, v;= constant Alvarez-Laguna et al., Plasma Sources Sci. and Tech. 29, 2020.

Chabert, Plasma Sources Sci. and Tech. 23, 2014.



Semi-Analytic Solution Comparison: Chabert and AL2020

16 Chabert, Plasma Sources Sci. and Tech. 23, 2014.
Alvarez-Laguna et al., Plasma Sources Sci. and Tech.
29, 2020.

* lonization source is S=nu_iz*n_e(x)
e AL2020 — Mathematica IVP solution to the AL2020

model (T_i=0)
e Chabert — Mathematica IVP solution to Chabert
model (T_i=0)

* With no elastic collisions, sheath solution is a
function of one parameter; q

* Neither model specifies wall BCs

* Flux is non-zero at centerline for symmetric case

* nu_iz=constant

* Obtain solutions for electrons and ions
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‘Absorbing Wall BCs: Vacuum and Thermal Wall Flux
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Vacuum BCs

Few *C(Ug, U)

vac
Pvac = const.
U?..=14{ Uyee = const.
P,,. = -const.

P. Cagas et al., A boundary value "reservoir
problem" and boundary conditions for multi-
component multi-fluid simulations of
sheaths, Phys. of Plasmas, 28, 2021.

Thermal flux BCs (const. Tw)

HLLC 1 g
Few (U€7 Uth

p?
Ug, =q ul
P
given: Teq
kBT ew
Hew B 2TM,
I'? = 20| —Te|r-1
or
I’ = Lelr
ud = 2Uew — UelT
pe = I?/uf
Teg — 2T 0y — Te’[
P? -~ pekpT¢ /me

Alvarez Laguna et al., Plasma-sheath transition in
multi-fluid models with inertial terms under low
pressure conditions: comparison with the classical
kinetic theory. Plasma Src. Sci. and Tech., 29, 2020.

Finite volume stencil at right wall
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Planar Sheath Example: AL2020, MF (I'=1.0001, Kn=0.1)

MFsheath2: Kn=0.1, gm=1.0001, vacbc, engy
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Planar Sheath Results: EMPIRE (I'=1.0001, Kn=0.1, Energy Eqgn.)
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These results are in good qualitative agreement with the semi-
analytic models
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Summary and Perspectives
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We discussed difficulties associated with using classic plasma models for verification

> Energy exchange terms in the 5-moment model are important when collisions are present

° Zero ion temperature in Chabert and AL2020 sheath models can only be approximated

Despite these difficulties, partial verification of the 5-moment model has be achieved:
° Warm diode: hydrodynamic and Lorentz force coupling using energy eos
o Warm Mott-Gurney diode: hydrodynamic, Lorentz and friction force coupling using isentropic eos
o EMPIRE Sheath: shows good qualitative agreement using energy eos and small &

° MF Sheath: hydrodynamic, Lorentz and friction forces with charge separation using energy and isothermal eos and
small &

Mitigation strategies
Reducing I' = 1 + € can reduce the magnitude of the energy exchange differences

o

> Using isentropic eos instead of total energy to reduce model differences Opaa Ros
. . . ot
° 0D thermalization tests can be used to verify collision source terms o€
. . . . . . . - = Qa +u, - R,
° Use of high resolution reference solutions instead of semi-analytic solutions Ot i ’
. OD ODEs for evolution
Absorbing wall BCs

of source terms
° Thermal and vacuum wall BCs give comparable accuracy

o Vacuum BCs tend to be more robust for non-isothermal cases







