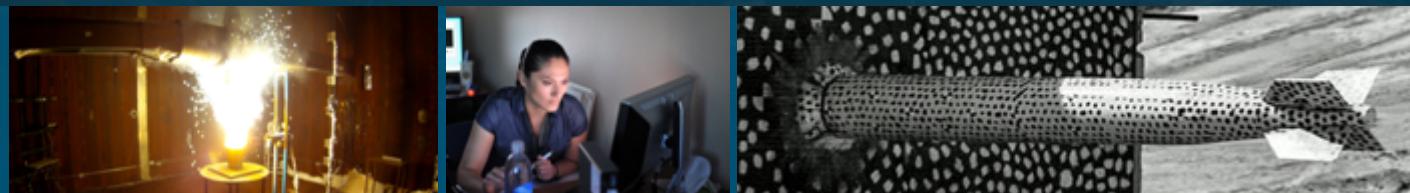


Sandia
National
Laboratories

Diodes and Sheaths: A Five-Moment Plasma Model Perspective



Thomas. M. Smith, John N. Shadid and Bryan W. Reuter

Sandia National Laboratories, Albuquerque, NM

17th U.S. National Congress on Computational Mechanics, July 23, 2023,
Albuquerque, NM

Motivation

- Developing Plasma simulation capabilities for Sandia mission work
- A V&V effort runs concurrently with the develop effort
- For verification, we seek to utilize analytic/semi-analytic plasma solutions that have bearing on the application space
- We also seek ever increasing physical complexity (e.g., elastic collisions)

Outline

- The Multifluid Plasma Models
- Energy exchange terms in Five-Moment models
- Equations of State
- Verification Examples: 1D Planar collisional **diodes** and floating collisional **sheaths**
 - Prototype Plasma Models
 - Semi-analytic versions of the models
 - Model differences and mitigation
 - Mesh refinement studies
- Summary and Perspectives

EMPIRE Five-Moment Multifluid Plasma Model with Collisions

EMPIRE-Fluid

- Use Maxwell Molecule collision model (analytic, collision rate is independent of relative velocity)
- Use simple ionization models
- Fluid equations discretized using discontinuous Galerkin FE
- IMEX: implicit EM and sources, explicit fluid transport
- Solves Maxwell equations for the electromagnetic fields using a compatible discretization based on edge-face elements

$$\frac{\partial \rho_\alpha \mathbf{u}_\alpha}{\partial t} + \nabla \cdot [\rho_\alpha \mathbf{u}_\alpha] = \mathbf{S}_{\rho \mathbf{u}_{\alpha\beta}}^{\mathcal{I}}$$

$$\frac{\partial \rho_\alpha \mathbf{u}_\alpha}{\partial t} + \nabla \cdot [\rho_\alpha \mathbf{u}_\alpha \otimes \mathbf{u}_\alpha + P_\alpha \mathbf{I}] = \frac{q_\alpha \rho_\alpha}{m_\alpha} (\mathbf{E} + \mathbf{u}_\alpha \times \mathbf{B}) + \mathbf{R}_{\alpha\beta} + \mathbf{S}_{\rho \mathbf{u}_{\alpha\beta}}^{\mathcal{I}}$$

$$\frac{\partial \mathcal{E}_\alpha}{\partial t} + \nabla \cdot [(\mathcal{E}_\alpha + P_\alpha) \mathbf{u}_\alpha] = \frac{q_\alpha \rho_\alpha}{m_\alpha} \mathbf{u}_\alpha \cdot \mathbf{E} + Q_{\alpha\beta} + \mathbf{u}_\alpha \cdot \mathbf{R}_{\alpha\beta} + \mathbf{S}_{\mathcal{E}_{\alpha\beta}}^{\mathcal{I}}$$

$$P_\alpha = n_\alpha k_B T_\alpha \quad \mathcal{E}_\alpha = \frac{P_\alpha}{\Gamma_\alpha - 1} + \frac{1}{2} \rho_\alpha \|\mathbf{u}_\alpha\|^2$$

$B(x) = 0$, E is PEC on both walls

Multi-Fluid (ionization collisions)

$$<\sigma_{ion} v_e>_{const} = \nu^{iz} = \text{constant}$$

$$\nu_{ion} = \frac{n_{e0}}{n_{n0}} <\sigma_{ion} v_e>_{const} = K^{iz} n_{e0}$$

$$\nu_{ion} = \frac{n_e}{n_{n0}} <\sigma_{ion} v_e>_{const} = K^{iz} n_e$$

$$S_{\rho_e}^{\mathcal{I}} = \nu_{ion} \frac{m_e}{m_n} \rho_{n0}$$

$$S_{\rho_i}^{\mathcal{I}} = \nu_{ion} \frac{m_i}{m_n} \rho_{n0}$$

$$S_{\mathcal{E}_e}^{\mathcal{I}} = \nu_{ion} \frac{m_e}{m_n} \rho_{n0} P_{e0} / (\Gamma_e - 1)$$

$$S_{\mathcal{E}_i}^{\mathcal{I}} = \nu_{ion} \frac{m_i}{m_n} \rho_{n0} P_{i0} / (\Gamma_i - 1)$$

Five-Moment Maxwell Fluid Elastic collision frequency model

$$\sigma^{tr} \equiv \sigma_0/g$$

$$\nu_{\alpha\beta}^M = n_\beta \sigma_0$$

$$\nu_{\beta\alpha}^M = n_\alpha \sigma_0$$

$$\nu_{\alpha\beta}^E = \frac{m_{\alpha\beta}}{m_\alpha + m_\beta} n_\beta \sigma_0 \left[3 + \left(\frac{U_{\alpha\beta}}{v_{\alpha\beta}} \right)^2 \right]$$

$$\nu_{\beta\alpha}^E = \frac{m_{\beta\alpha}}{m_\beta + m_\alpha} n_\alpha \sigma_0 \left[3 + \left(\frac{U_{\beta\alpha}}{v_{\beta\alpha}} \right)^2 \right]$$

$$\mathbf{U}_{\alpha\beta} = (\mathbf{u}_\alpha - \mathbf{u}_\beta)$$

$$v_{\alpha\beta} = \left(\frac{k_B T_\alpha}{m_\alpha} + \frac{k_B T_\beta}{m_\beta} \right)^{1/2} \quad m_{\alpha\beta} = \frac{m_\alpha m_\beta}{m_\alpha + m_\beta}$$

$$\mathbf{R}_{\alpha\beta} = -\nu_{\alpha\beta}^M m_{\alpha\beta} n_\alpha (\mathbf{u}_\alpha - \mathbf{u}_\beta)$$

$$\mathbf{R}_{\beta\alpha} = -\nu_{\beta\alpha}^M m_{\beta\alpha} n_\beta (\mathbf{u}_\beta - \mathbf{u}_\alpha)$$

$$Q_{\alpha\beta} = n_\alpha \left[-\nu_{\alpha\beta}^E k_B (T_\alpha - T_\beta) + \frac{m_\beta}{T_\beta} \left(\frac{m_\alpha}{T_\alpha} + \frac{m_\beta}{T_\beta} \right)^{-1} \nu_{\alpha\beta}^M m_{\alpha\beta} (\mathbf{u}_\alpha - \mathbf{u}_\beta)^2 \right]$$

$$Q_{\beta\alpha} = n_\beta \left[-\nu_{\beta\alpha}^E k_B (T_\beta - T_\alpha) + \frac{m_\alpha}{T_\alpha} \left(\frac{m_\beta}{T_\beta} + \frac{m_\alpha}{T_\alpha} \right)^{-1} \nu_{\beta\alpha}^M m_{\beta\alpha} (\mathbf{u}_\beta - \mathbf{u}_\alpha)^2 \right]$$

$$\mathbf{R}_{\beta\alpha} = -\mathbf{R}_{\alpha\beta}$$

$$Q_{\beta\alpha} + \mathbf{u}_\beta \cdot \mathbf{R}_{\beta\alpha} = -(Q_{\alpha\beta} + \mathbf{u}_\alpha \cdot \mathbf{R}_{\alpha\beta})$$

Surrogate Plasma Models

4

We use 1D surrogate models to explore algorithms, boundary conditions, source terms, etc.

Greatly Speeds up discovery

1D FV Multi-Fluid (**MF**): Euler-Poisson

- Third-order upwind bias, TVD limiter
- HLLC flux function

1D FD (**eulerCL**): Euler-Poisson

- Solves the electron species only
- Third-order upwind bias finite-difference

1D FD (**eulerPT**): Pressure-Temperature Poisson

- Solves the electron species only
- Third-order upwind bias

Explicit RK3 TVD time integration

Poisson equation solved with Thomas Algorithm

EoS: Energy, isentropic, isothermal

1D1V 5-Moment Model (**eulerCL, MF**)

$$\begin{aligned}\frac{\partial \rho_e}{\partial t} + \frac{\partial}{\partial x} [\rho_e u_e] &= 0 \\ \frac{\partial \rho_e u_e}{\partial t} + \frac{\partial}{\partial x} [\rho_e u_e u_e + P_e] &= \frac{q_e \rho_e}{m_e} \mathbf{E} + R_{en} \\ \frac{\partial \mathcal{E}_e}{\partial t} + \frac{\partial}{\partial x} [(\mathcal{E}_e + P_e) u_e] &= \frac{q_e \rho_e}{m_e} u_e \mathbf{E} + u_e R_{en} + Q_{en} \\ \mathcal{E}_e &= \frac{P_e}{(\Gamma_e - 1)} + \frac{1}{2} \rho_e u_e^2 \\ P_e &= n_e k_B T_e \\ \frac{\partial^2 \phi}{\partial x^2} &= \frac{n_e e}{\epsilon_0}\end{aligned}$$

1D1V Internal Energy Model (**eulerPT**)

$$\begin{aligned}\frac{\partial n_e}{\partial t} + \frac{\partial (n_e v_e)}{\partial x} &= 0 \\ \frac{\partial v_e}{\partial t} + v_e \frac{\partial v_e}{\partial x} &= - \left(\frac{1}{m_e n_e} \right) \frac{\partial P_e}{\partial x} + \frac{q_e}{m_e} E + R_{en} \\ \frac{\partial T_e}{\partial t} + v_e \frac{\partial T_e}{\partial x} &= - \frac{\Gamma_e - 1}{n_e k_B} P_e \frac{\partial v_e}{\partial x} + \frac{\Gamma_e - 1}{n_e k_B} Q_{en} \\ P_e &= n_e k_B T_e \\ \frac{\partial^2 \phi}{\partial x^2} &= - \frac{n_e q_e}{\epsilon_0}\end{aligned}$$

Model Differences: Energy Exchange

Total energy (1D1V2S)

Langevin Equation: constant: E ,
 $v, u_n \approx 0, m_e \ll m_n$

Steady solution for velocity

Power per unit volume from
 electric field to the fluid

Power per unit volume converted
 to heat

Energy equation (1D) power
 sources due to E

Energy exchange between species

$$\frac{\partial \mathcal{E}_e}{\partial t} + \frac{\partial}{\partial x} [(\mathcal{E}_e + P_e) u_e] = \frac{q_e \rho_e}{m_e} u_e \mathbf{E} + u_e R_{en} + Q_{en}$$

$$n_e m_e \dot{u} = -e E n_e - m_e n_e \nu (u_e - u_n)$$

$$u_e = -\frac{eE}{m_e \nu}$$

$$u_e (-eE) n_e = u_e (u_e m_e \nu) n_e$$

$$\mathcal{P}_e = \eta J_e^2 \quad \eta = \frac{m_e \nu}{e^2 n_e} \quad J_e = -e n_e u_e$$

$$-e n_e u_e E, \quad u_e R_{en}$$

$$Q_{en} \approx n_e \nu [-k_B (T_e - T_n) + m_e (u_e - u_n)^2]$$

power from electric field to
 fluid

internal energy xc between
 species

Equations of State Approximations

6

Five-Moment model solves total energy equation

Classic models typically reduce complexity by choosing a simplified EOS

- Isentropic, pressure proportional to density raised to gamma
- Isothermal, T=constant

Compressibility is reduced by choosing $\Gamma = 1 + \varepsilon$

Five-Moment Energy Transport and EOS

$$\begin{aligned}\frac{\partial \mathcal{E}_\alpha}{\partial t} + \nabla \cdot [(\mathcal{E}_\alpha + P_\alpha) \mathbf{u}_\alpha] &= \frac{q_\alpha \rho_\alpha}{m_\alpha} \mathbf{u}_\alpha \cdot \mathbf{E} + Q_{\alpha\beta} + \mathbf{u}_\alpha \cdot \mathbf{R}_{\alpha\beta} \\ P_\alpha &= (\Gamma_\alpha - 1)(\mathcal{E}_\alpha - \frac{1}{2} \rho_\alpha \|\mathbf{u}_\alpha\|^2) \\ T_\alpha &= \frac{P_\alpha}{n_\alpha k_B} \\ a_\alpha^2 &= \Gamma_\alpha \frac{P_\alpha}{\rho_\alpha}\end{aligned}$$

Isentropic (adiabatic, reversible, diode)

$$\frac{P}{P_0} = \left(\frac{\rho}{\rho_0}\right)^\Gamma = \left(\frac{n}{n_0}\right)^\Gamma$$

$$A_0 = \frac{n_0 k_B T_0}{(m n_0)^\Gamma}$$

$$P = A_0 \rho^\Gamma$$

$$T = \frac{P}{n k_B}$$

$$a^2 = \Gamma \frac{P}{\rho}$$

Isothermal (sheath)

$$T = T_0 = \text{constant}$$

$$P = n k_B T$$

$$a^2 = \frac{P}{\rho}$$

Γ and Compressibility

$$T = T_0 \left(\frac{\rho}{\rho_0}\right)^{\Gamma-1}$$

$$P = n k_B T$$

$$a^2 = \Gamma \frac{P}{\rho}$$

1D Planar Diode Theory and Prototype Models

7 Child-Langmuir Law for space charge limit current density (SCL) Child, 1911, Langmuir, 1913)

- The drift velocity $v_e=0$ and the number density n_e is infinite

Cold Diode solution (Jaffe, 1944)

- Cold electron beam with finite drift and density
- Semi-analytic, well suited for Particle-in-Cell kinetic solvers (Smith et al. 2019)

Warm Diode (Rokhlenko&Lebowitz, Oliver, Hamlin et al., 2022)

- Finite temperature, drift velocity and number density
- Includes hydrodynamic force due to finite temperature through the pressure gradient and Lorentz force
- Assumes an isentropic eos

Mott-Gurney Diode (Akimov & Schamel, 2002)

- Cold fluid, includes friction force due to collisions and Lorentz force
- Recovers the Mott-Gurney SCL formula

Warm Mott-Gurney Diode

- Includes **hydrodynamic**, **Lorentz** and **friction** forces due to collisions
- In the limit of $P \rightarrow 0$, recovers the the Mott-Gurney solution
- In the limit as $\nu \rightarrow 0$, recovers the warm diode solution
- In the limit as $P \rightarrow 0$ and $\nu \rightarrow 0$, recovers the Jaffe solution
- Parameterize collisions by Knudsen number

$$J^{CL} = \frac{4}{9} \epsilon_0 \left(\frac{2|q|}{m_e} \right)^{1/2} \frac{|V|^{3/2}}{d^2} \quad \text{H}$$

$$J_0 = \frac{16}{9} \epsilon_0 \left(\frac{2|q|}{m_e} \right)^{1/2} \frac{|W/q|^{3/2}}{d^2}$$

$$J^J = \frac{J_0}{4} \left[1 + \left(1 - \frac{qV}{W} \right)^{1/2} \right]^3$$

$$J^{MG} = \frac{9}{8} \epsilon_0 \left(\frac{|q|}{m_e \nu} \right) \frac{|V|^2}{d^3}$$

$$K_n = \frac{\lambda m f p}{d} = \frac{v_{e0}}{\nu d}$$

Semi-Analytic Diode Models

Physical Models

Transformed Models

Warm Diode (Rokhlenko&Lebowitz, Oliver, Hamlin et al., Hamlin2022) Warm Diode SST

$$\begin{aligned}
 \frac{\partial n_e}{\partial t} + \frac{\partial(n_e v_e)}{\partial x} &= 0 \\
 \frac{\partial v_e}{\partial t} + v_e \frac{\partial v_e}{\partial x} &= -\frac{e}{m_e} E - \frac{1}{m_e n_e} \frac{\partial P_e}{\partial x} \\
 \frac{\partial^2 \phi}{\partial x^2} &= \frac{e}{\epsilon_0} n_e \\
 P_e &= A n_e^\Gamma \\
 E &= -\frac{\partial \phi}{\partial x}
 \end{aligned}$$

$$\begin{aligned}
 J_{e0} &= n_e e v_e = \text{constant} \\
 v_e \frac{\partial v_e}{\partial x} &= -\frac{e}{m_e} E - \frac{1}{m_e n_e} \frac{\partial P_e}{\partial x} \\
 \frac{\partial E}{\partial x} &= -\frac{e}{\epsilon_0} n_e \\
 P_e &= A n_e^\Gamma
 \end{aligned}$$

Mott-Gurney Warm Diode (Akimov & Schamel, AK2002)

$$\begin{aligned}
 \frac{\partial n_e}{\partial t} + \frac{\partial(n_e v_e)}{\partial x} &= 0 \\
 \frac{\partial v_e}{\partial t} + v_e \frac{\partial v_e}{\partial x} &= -\frac{e}{m_e} E - \frac{1}{m_e n_e} \frac{\partial P_e}{\partial x} - \nu v_e \\
 \frac{\partial^2 \phi}{\partial x^2} &= \frac{e}{\epsilon_0} n_e \\
 P_e &= A n_e^\Gamma \\
 E &= -\frac{\partial \phi}{\partial x}
 \end{aligned}$$

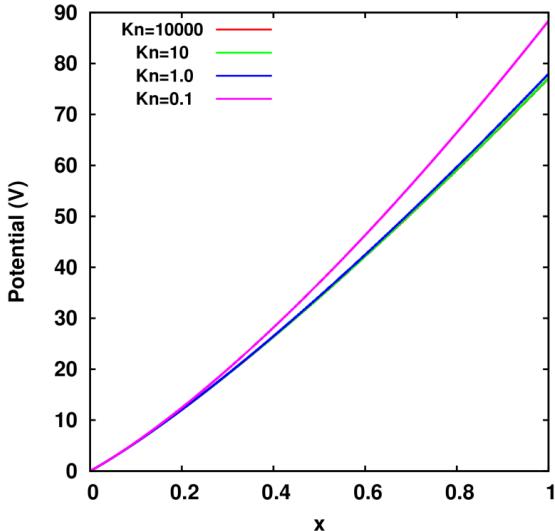
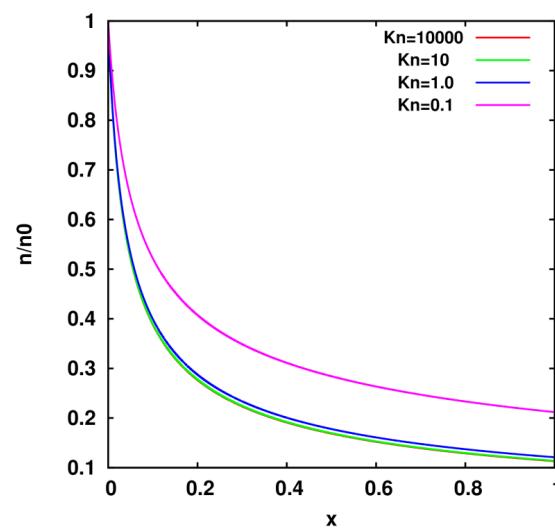
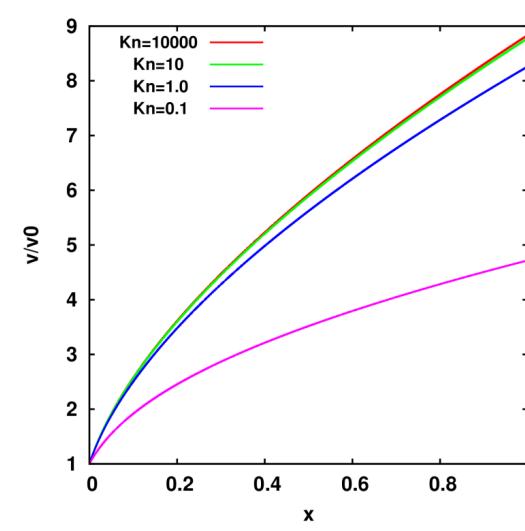
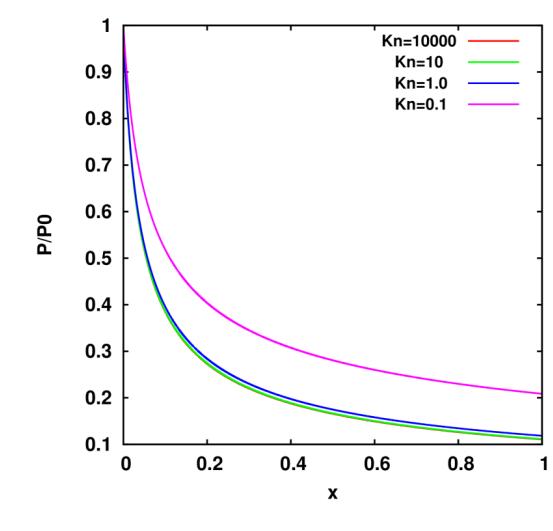
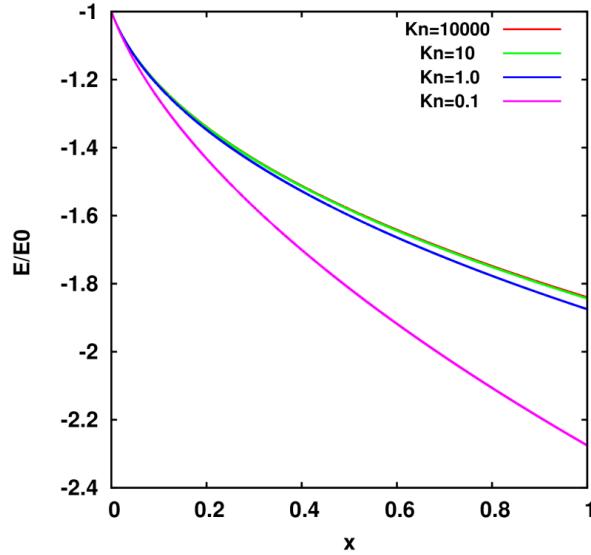
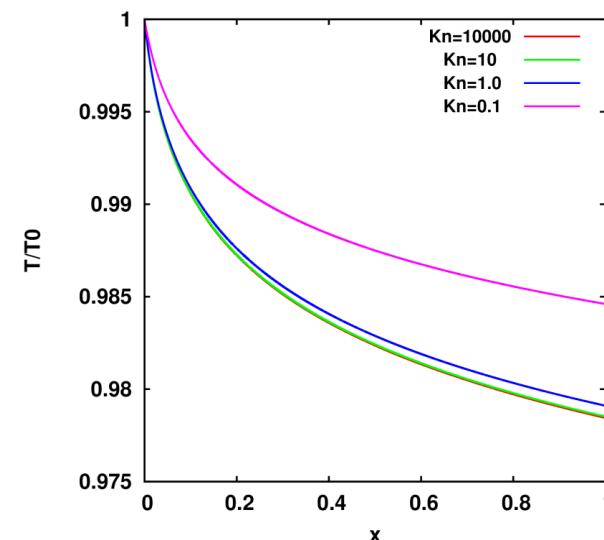
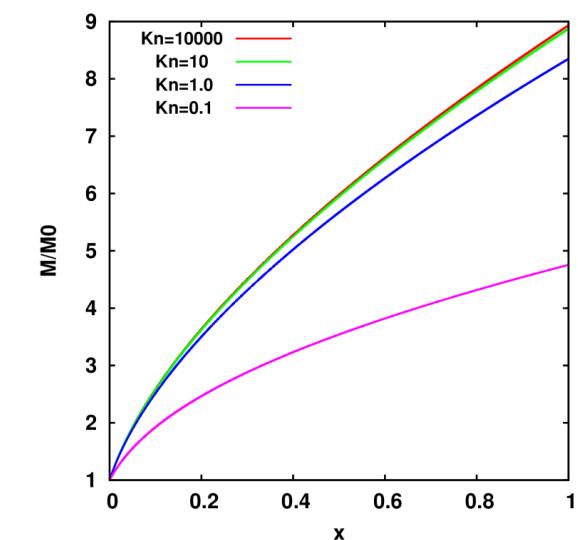
Mott-Gurney Warm Diode SST

$$\begin{aligned}
 J_{e0} &= n_e e v_e = \text{constant} \\
 v_e \frac{\partial v_e}{\partial x} &= -\frac{e}{m_e} E - \frac{1}{m_e n_e} \frac{\partial P_e}{\partial x} - \nu v_e \\
 \frac{\partial E}{\partial x} &= -\frac{e}{\epsilon_0} n_e \\
 P_e &= A n_e^\Gamma
 \end{aligned}$$

Warm Mott-Gurney Diode: Knudsen Number Sweep

9

($\Gamma=1.01$, $W=1\text{eV}$, $T_e=0.01\text{eV}$, $d=0.01\text{m}$, $I_0=10\text{A}$, $E_0=-5000\text{V/m}$)

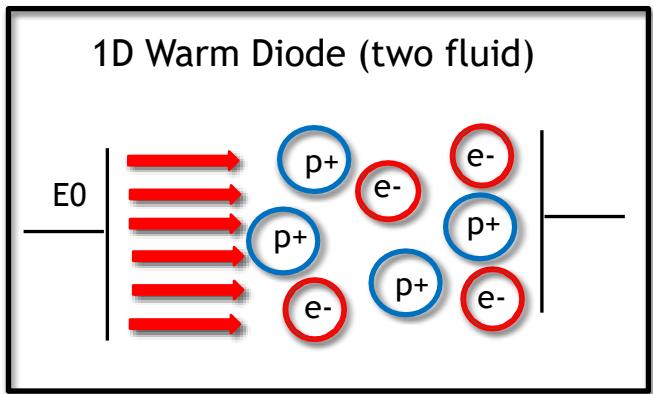


Warm Diode: EMPIRE Mesh Refinement Study

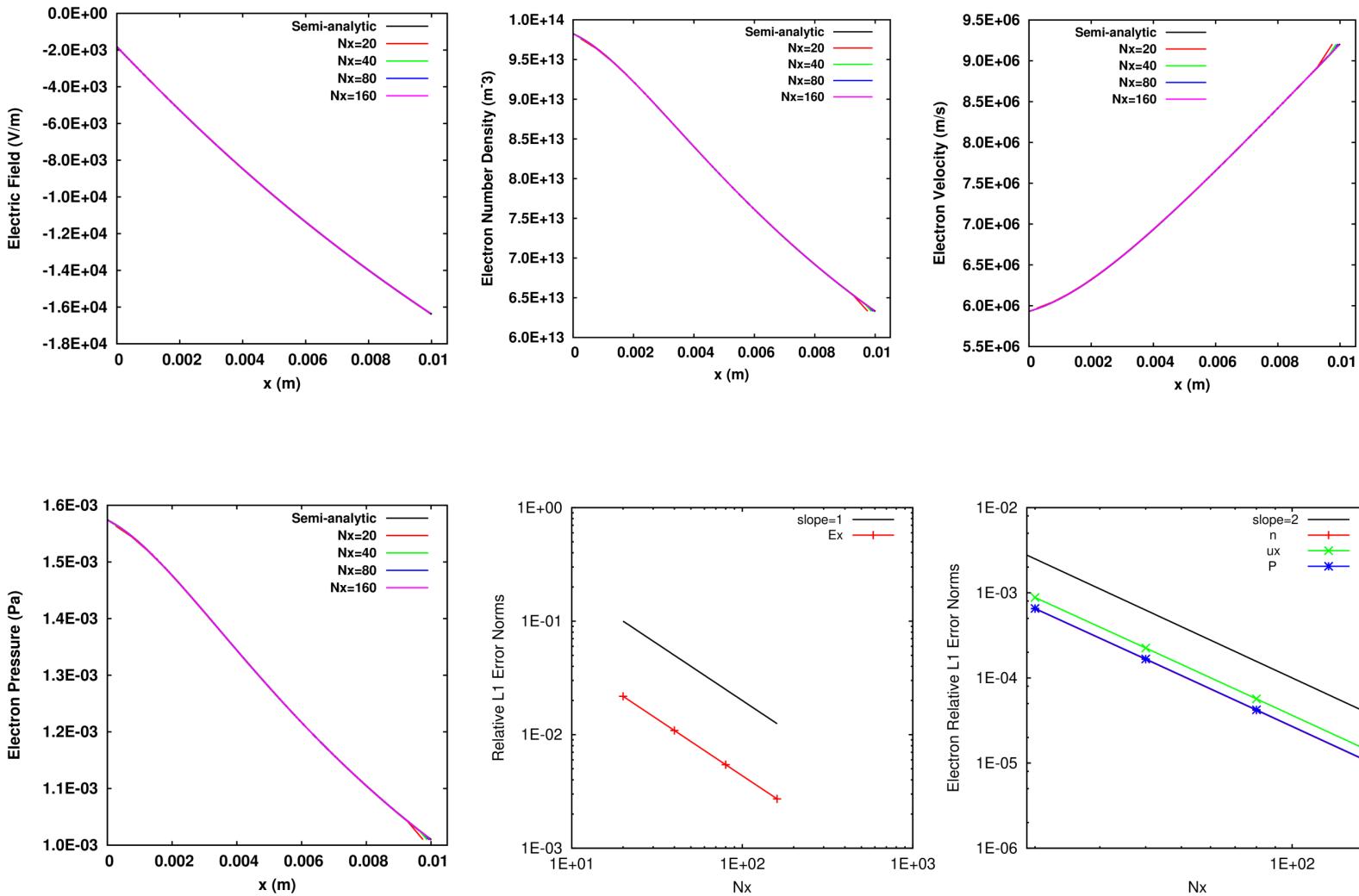
($\Gamma=1.01$, $T_e=100\text{eV}$, $W=100\text{eV}$, $J_0=93.35\text{A}$, $E_0=-1821$)

Details

- Obtain a solution for electron fluid
- Approximately isentropic
- Supersonic inflow and outflow
- No collisions

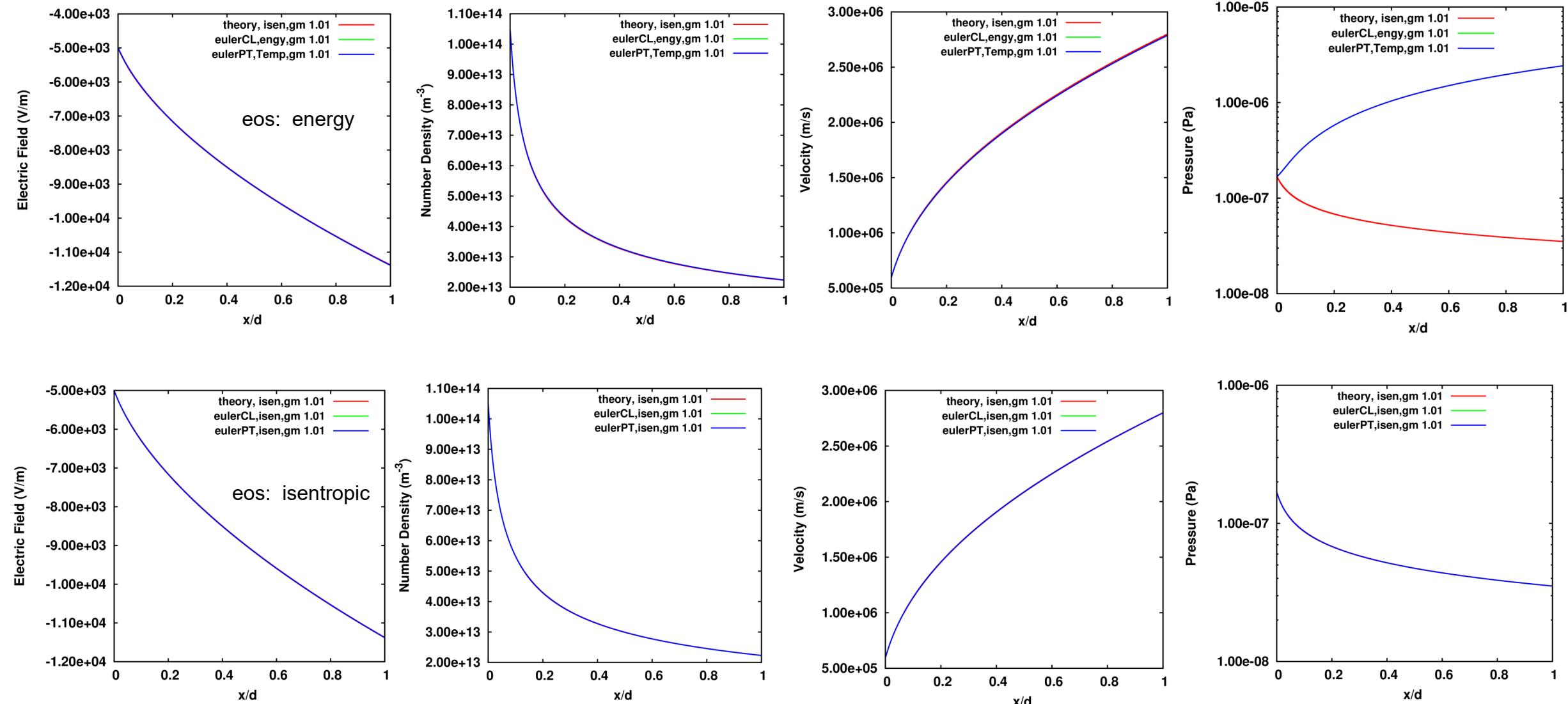


Achieve expected order of accuracy



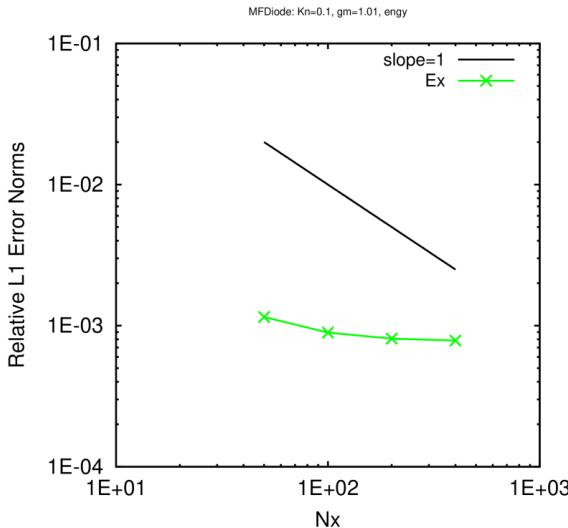
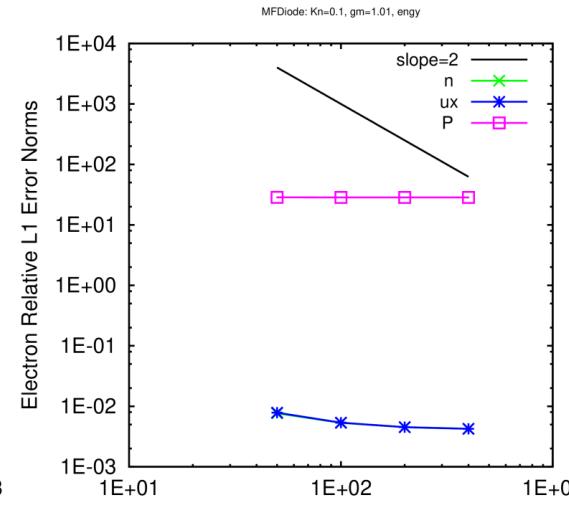
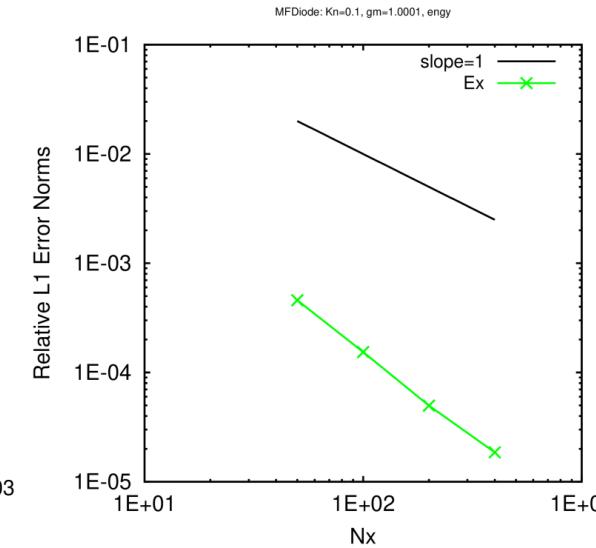
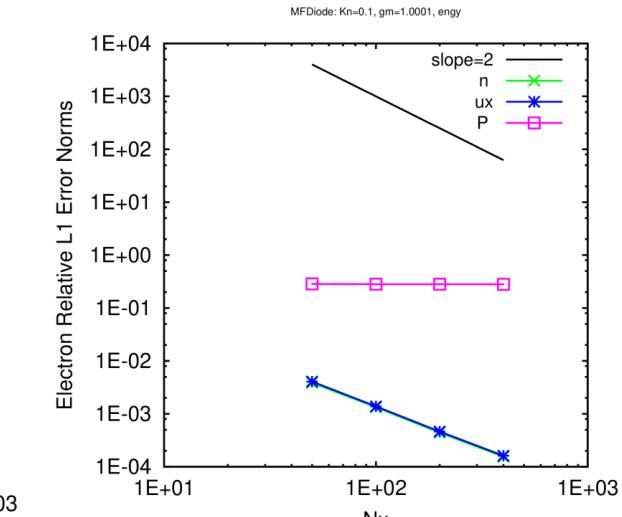
Mott-Gurney Warm Diode: eulerCL, eulerPT

11



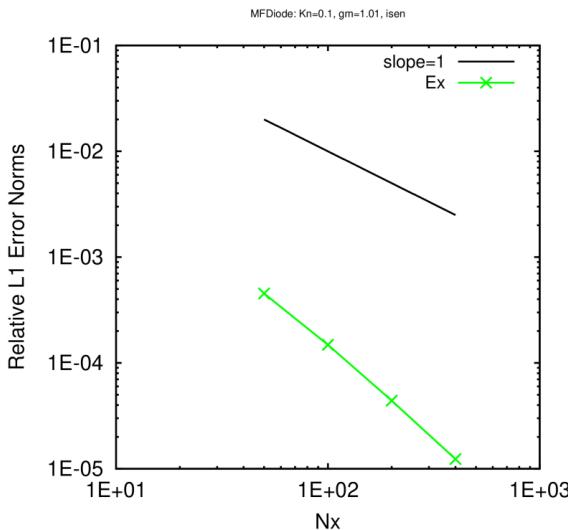
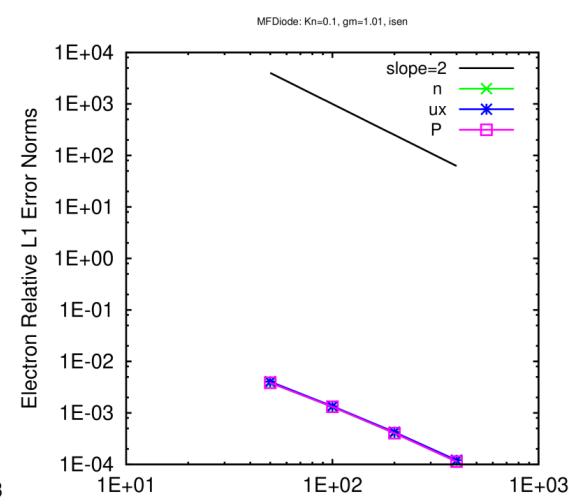
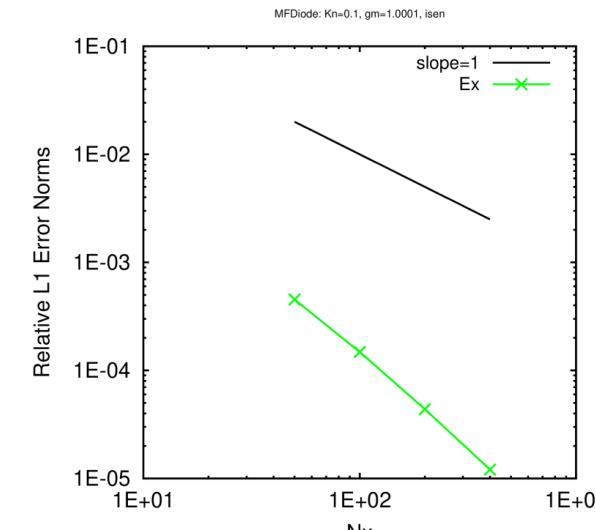
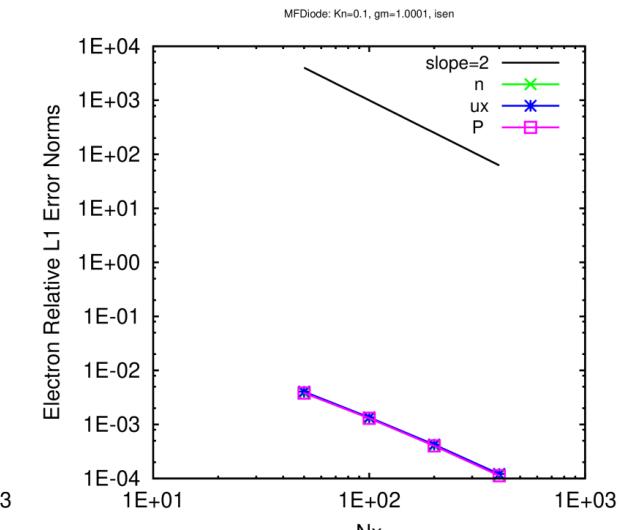
Mott-Gurney Diode MF: (Kn=0.1, EoS Sensitivity to Γ)

12



$\Gamma=1.01$, energy eos

$\Gamma=1.0001$, energy eos

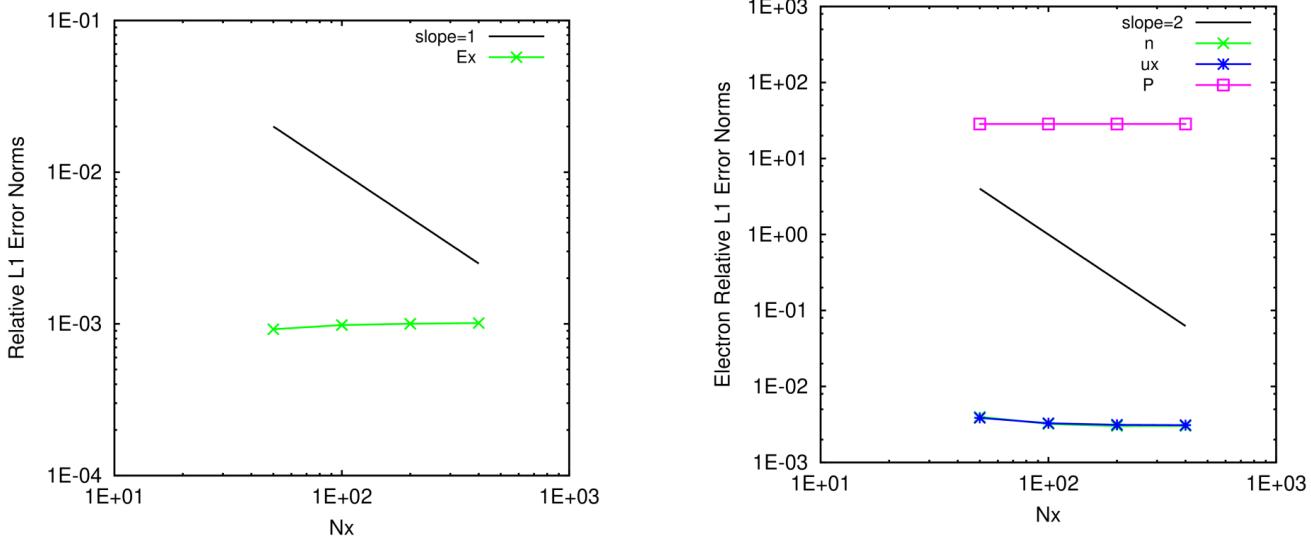


$\Gamma=1.01$, isentropic eos

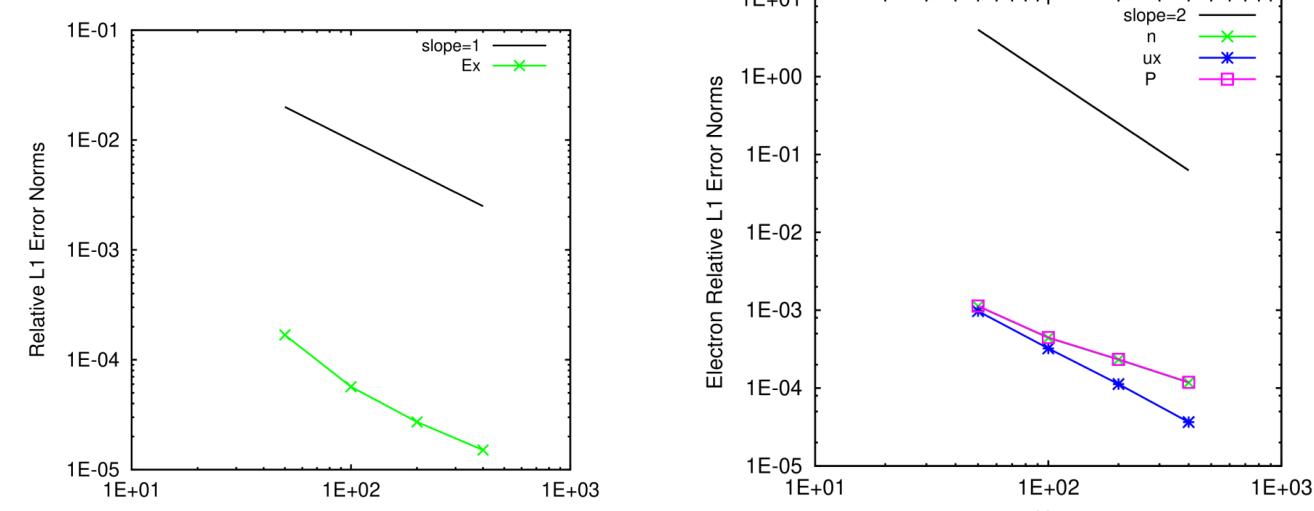
$\Gamma=1.0001$, isentropic eos

Mott-Gurney Diode: EMPIRE Energy Equation and Isentropic EoS

13



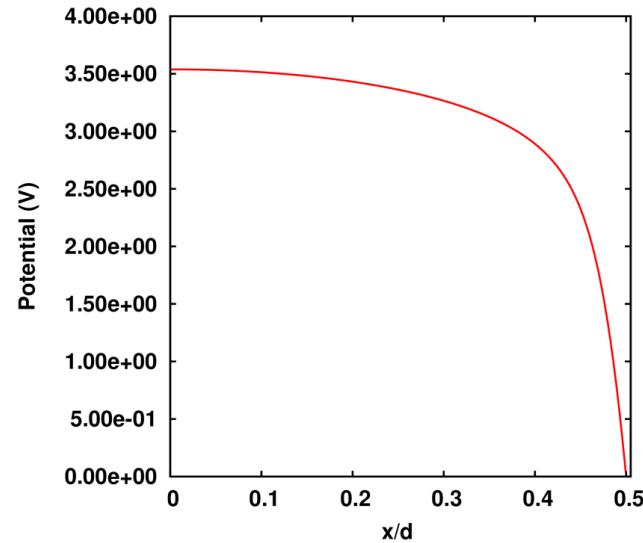
Energy, $Kn=0.1, \Gamma=1.01$



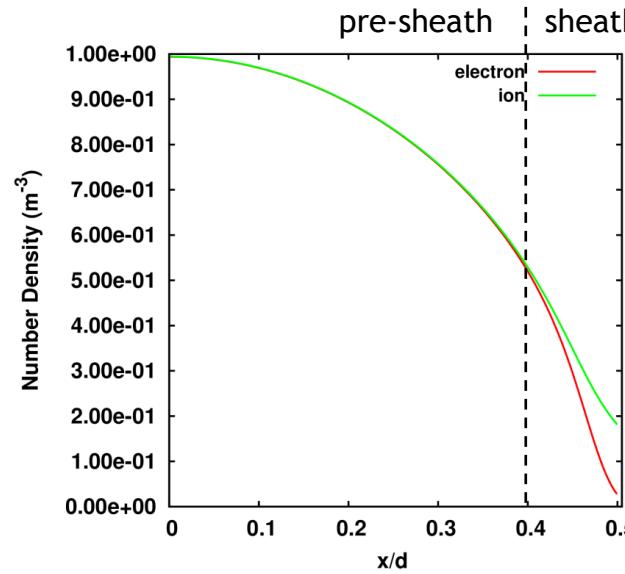
Isentropic, $Kn=0.1, \Gamma=1.01$

Characteristics of the 1D SST Symmetric Planar Sheath

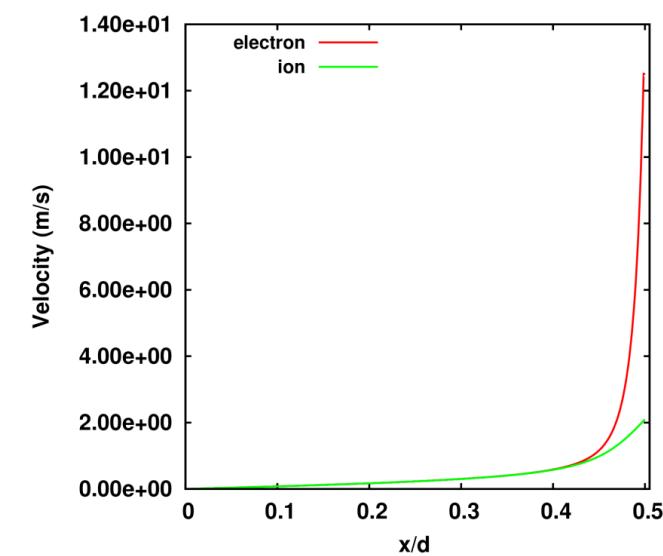
14



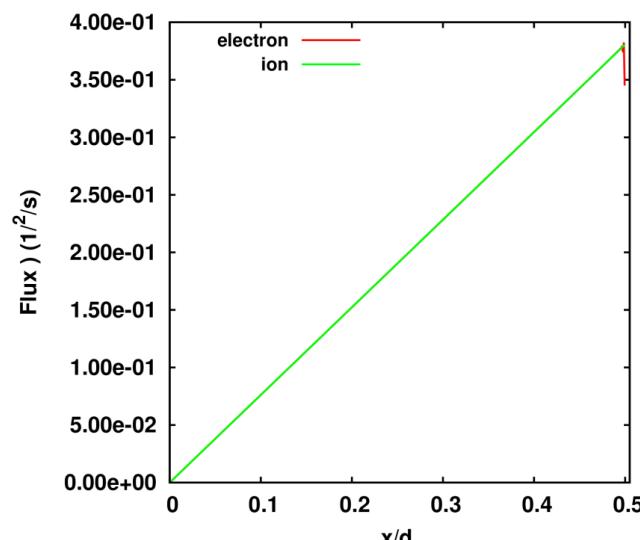
Floating potential, $\phi_w=0$



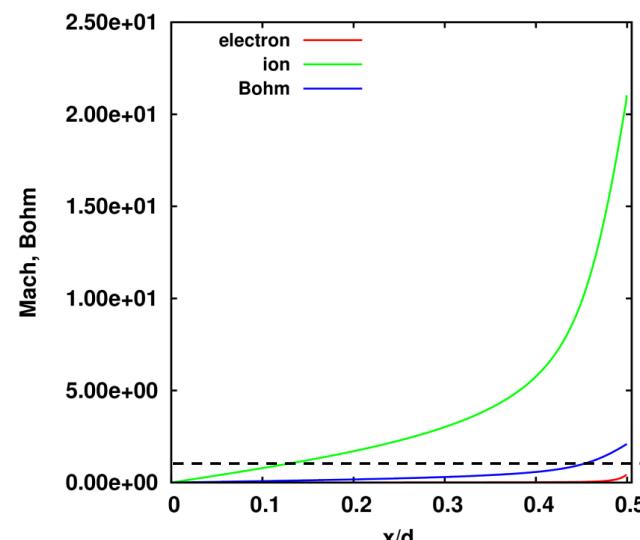
Absorbing walls for electrons and ions



Electron and ion velocity



Constant ionization rate



Sheath location defined at the Bohm velocity

$$u_B = \sqrt{k_B T_e / m_i}$$

$$u_B = 1$$

Semi-Analytic Sheath models of Alvarez-Laguna et al. and Chabert

AL2020 model (Alvarez-Laguna et al., AL2020)

$$\begin{aligned}
 \frac{\partial n_e}{\partial t} + \frac{\partial}{\partial x}(n_e u_e) &= n_e \nu^{iz} \\
 \frac{\partial n_i}{\partial t} + \frac{\partial}{\partial x}(n_i u_i) &= n_e \nu^{iz} \\
 m_e \frac{\partial n_e u_e}{\partial t} + \frac{\partial}{\partial x}(m_e n_e u_e^2 + P_e) &= n_e e \frac{\partial \phi}{\partial x} - m_e u_e n_e \nu_{en} \\
 m_i \frac{\partial n_i u_i}{\partial t} + \frac{\partial}{\partial x}(m_i n_i u_i^2 + P_i) &= -n_i e \frac{\partial \phi}{\partial x} - m_i u_i n_i \nu_{in} \\
 \frac{\partial^2 \phi}{\partial x^2} &= \frac{(n_e - n_i)}{\epsilon_0} e \\
 P_e &= n_e k_B T_e \quad P_i = n_i k_B T_i
 \end{aligned}$$

AL2020 Transformed model

$$\begin{aligned}
 \frac{\partial \bar{n}_e \bar{u}_e}{\partial \bar{x}} &= \frac{\partial \bar{n}_i \bar{u}_i}{\partial \bar{x}} = \bar{K}^{iz} \\
 \left[\frac{\bar{n}_e^2}{\epsilon} - (\bar{n}_e \bar{u}_e)^2 \right] \frac{\partial \bar{n}_e}{\partial \bar{x}} &= -2\bar{K}^{iz} \bar{u}_e \bar{n}_e^2 - \bar{\nu}_{en} \bar{u}_e \bar{n}_e^3 + \frac{\bar{n}_e^3}{\epsilon} \frac{\partial \bar{\phi}}{\partial \bar{x}} \\
 [\kappa \bar{n}_i^2 - (\bar{n}_i \bar{u}_i)^2] \frac{\partial \bar{n}_i}{\partial \bar{x}} &= -2\bar{K}^{iz} \bar{u}_i \bar{n}_i^2 - \bar{\nu}_{in} \bar{u}_i \bar{n}_i^3 - \bar{n}_i^3 \frac{\partial \bar{\phi}}{\partial \bar{x}} \\
 \frac{\partial^2 \bar{\phi}}{\partial \bar{x}^2} &= \frac{\bar{n}_e - \bar{n}_i}{\bar{\lambda}^2}
 \end{aligned}$$

$$n_0 = n_e = n_i, \quad \epsilon = m_e/m_i, \quad \kappa = T_i/T_e = 0, \quad \phi_0 = k_B T_e/e, \quad T_e = \text{constant}$$

$$u_0 = u_B = \sqrt{k_B T_e/m_i}, \quad t_0 = L_0/u_0, \quad \lambda_{D0} = (\epsilon_0 k_B T_e/e^2 n_0)^{1/2}$$

$$\bar{\nu}^{iz} = t_0 \nu^{iz}, \quad \bar{\nu}_{en} = t_0 \nu_{en}, \quad \bar{\nu}_{in} = t_0 \nu_{in}, \quad \bar{\lambda} = \lambda_{D0}/L_0$$

$$\bar{K}^{iz} = \text{constant} = \bar{\nu}^{iz}$$

$$\bar{K}^{iz} = \bar{n}_e \text{constant} = \bar{n}_e \bar{\nu}^{iz}$$

Chabert model (Chabert, 2014, Chabert)

$$\begin{aligned}
 \frac{d}{dx}(n_i u_i) &= \nu_I n_e \\
 n_i m_i u_i \frac{du_i}{dx} &= n_i e E - m_i u_i (\nu_I n_e + \nu_{mom} n_i) \\
 n_e &= n_{e0} \exp\left(\frac{e\phi}{k_B T_e}\right) \\
 \frac{dE}{dx} &= \frac{e}{\epsilon_0} (n_i - n_e)
 \end{aligned}$$

$$T_e = \text{constant}, \quad T_i = 0, \quad m_e = 0, \quad \nu_I = \text{constant}$$

Chabert Transformed model

$$\begin{aligned}
 (nu)' &= e^\eta & \xi &= x/\lambda_I & q &= \frac{\lambda_D}{\lambda_I} \\
 (nuu)' &= n\epsilon - \beta nu & n &= n_i/n_0 & & \\
 q^2 \epsilon' &= n - e^\eta & u &= u_i/u_B & \lambda_I &= \frac{u_B}{\nu_I} \\
 \eta' &= -\epsilon & \eta &= e\phi/k_B T_e & & \\
 & & \epsilon &= eE\lambda_I/k_B T_e & \beta &= \nu_M/\nu_I
 \end{aligned}$$

Semi-Analytic Solution Comparison: Chabert and AL2020

16

Chabert, Plasma Sources Sci. and Tech. 23, 2014.
 Alvarez-Laguna et al., Plasma Sources Sci. and Tech.
 29, 2020.

- Ionization source is $S = \nu_{iz} n_e(x)$
- **AL2020** – Mathematica IVP solution to the AL2020 model ($T_i=0$)
- **Chabert** – Mathematica IVP solution to Chabert model ($T_i=0$)
- With no elastic collisions, sheath solution is a function of one parameter; q
- Neither model specifies wall BCs
- Flux is non-zero at centerline for symmetric case
- $\nu_{iz} = \text{constant}$
- Obtain solutions for electrons and ions

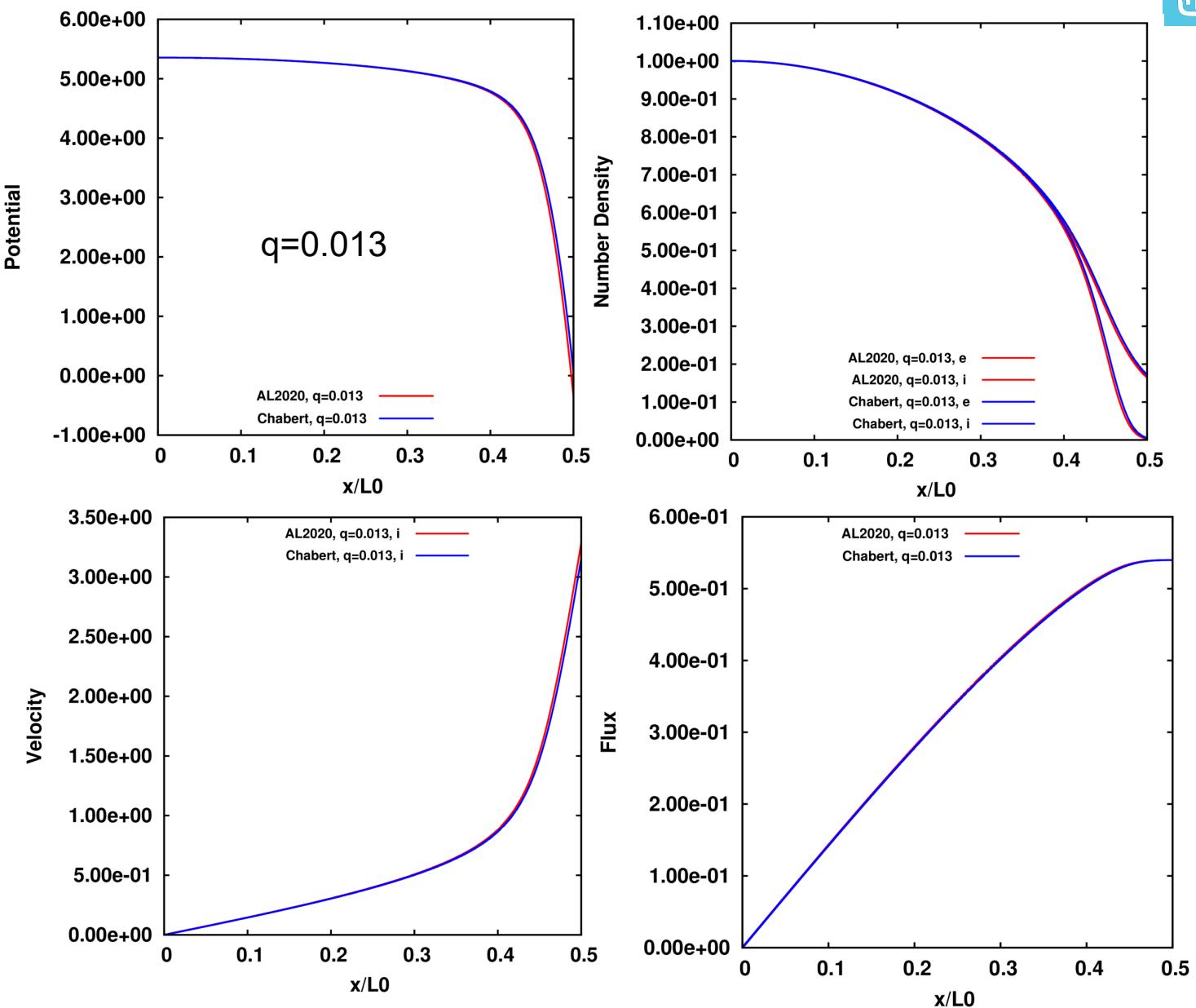
$$q = \frac{\lambda_D}{\lambda_I} = \frac{\lambda_D \nu_I}{u_B}$$

$$\lambda_D = (\epsilon_0 k_B T_e / e^2 n_0)^{1/2}$$

$$u_B = \sqrt{k_B T_e / m_i}$$

$$\beta = \nu_M / \nu_I$$

K_n	$=$	$\frac{\lambda_{mfp}}{L_0} = \frac{u_B}{L_0 \nu} = \frac{u_B}{\sigma_0 n_n L_0}$
λ_{mfp}	$=$	$\frac{u_B}{\nu}$
ν	$=$	$\sigma_0 n_n$



Absorbing Wall BCs: Vacuum and Thermal Wall Flux

17

Vacuum BCs

$$\mathcal{F}_{ew}^{HLLC}(\mathbf{U}_e^I, \mathbf{U}_{vac}^g)$$

$$\mathbf{U}_{vac}^g = \left\{ \begin{array}{lcl} \rho_{vac} & = & \text{const.} \\ u_{vac} & = & \text{const.} \\ P_{vac} & = & \text{const.} \end{array} \right\}$$

Thermal flux BCs (const. T_w)

$$\mathcal{F}_{ew}^{HLLC}(\mathbf{U}_e^I, \mathbf{U}_{th}^g)$$

$$\mathbf{U}_{th}^g = \left\{ \begin{array}{l} \rho_e^g \\ u_e^g \\ P_e^g \end{array} \right\}$$

given: T_{ew}

$$u_{ew} = \sqrt{\frac{k_B T_{ew}}{2\pi m_e}}$$

$$\Gamma_e^g = 2\Gamma_e|_I - \Gamma_e|_{I-1}$$

or

$$\Gamma_e^g = \Gamma_e|_I$$

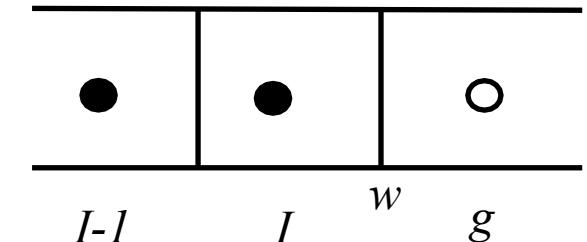
$$u_e^g = 2u_{ew} - u_e|_I$$

$$\rho_e^g = \Gamma_e^g / u_e^g$$

$$T_e^g = 2T_{ew} - T_e|_I$$

$$P_e^g = \rho_e^g k_B T_e^g / m_e$$

Finite volume stencil at right wall

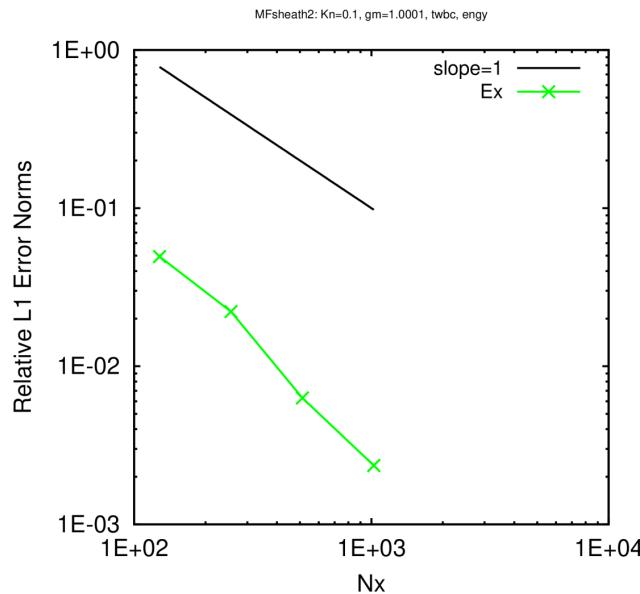
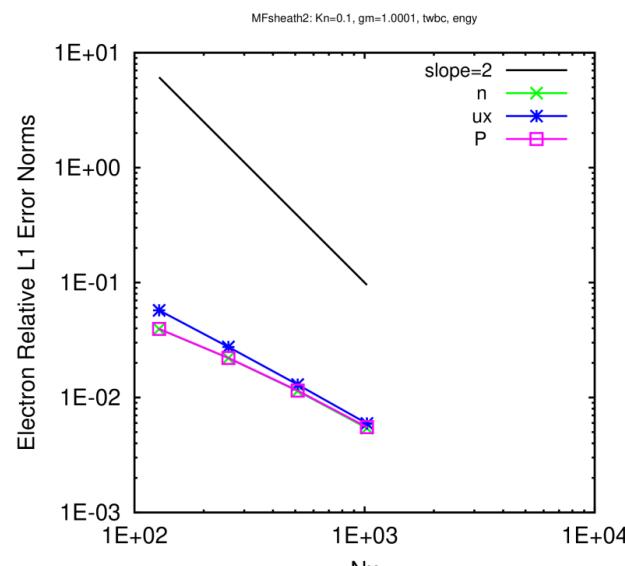


P. Cagas et al., A boundary value "reservoir problem" and boundary conditions for multi-component multi-fluid simulations of sheaths, Phys. of Plasmas, 28, 2021.

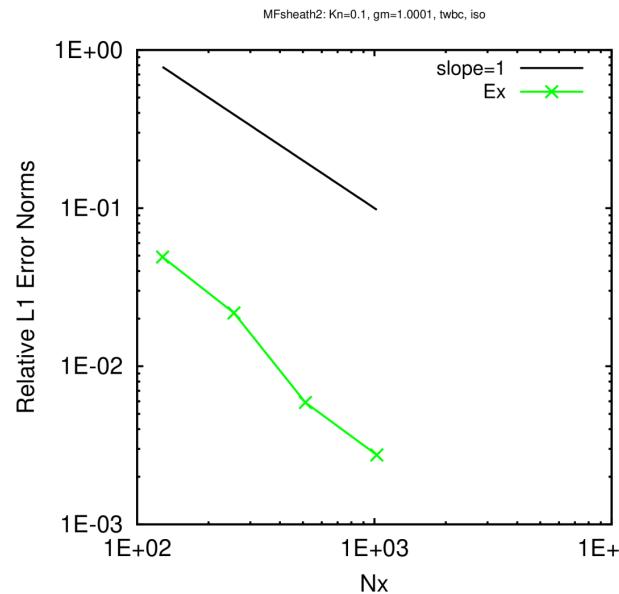
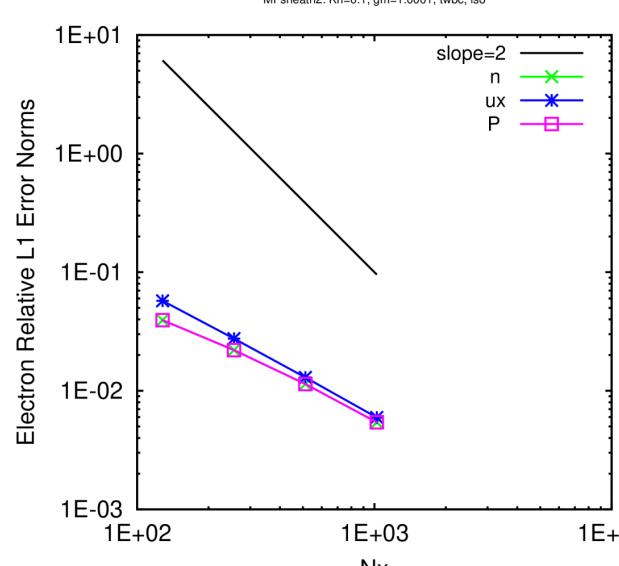
Alvarez Laguna et al., Plasma-sheath transition in multi-fluid models with inertial terms under low pressure conditions: comparison with the classical kinetic theory. Plasma Src. Sci. and Tech., 29, 2020.

Planar Sheath Example: AL2020, MF ($\Gamma=1.0001$, $Kn=0.1$)

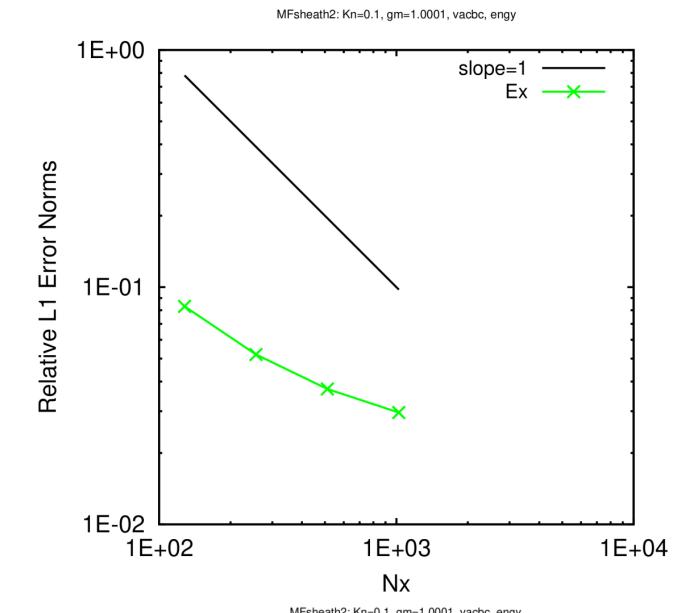
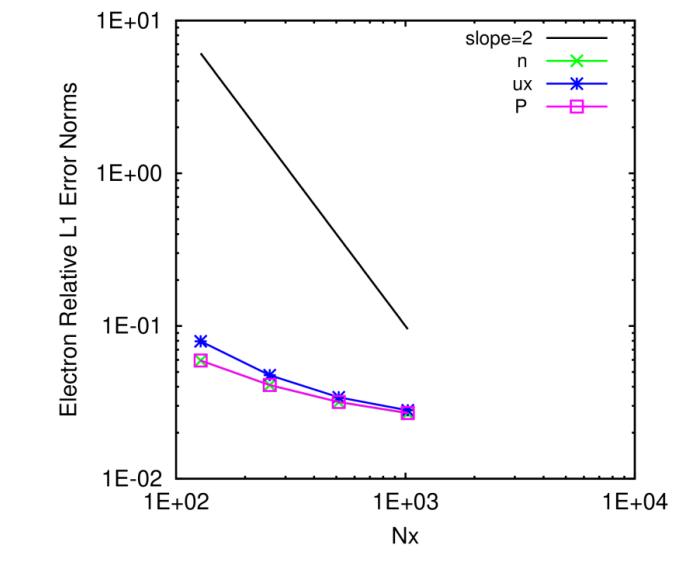
18



Thermal flux wall BC, energy



Thermal flux wall BC, isothermal

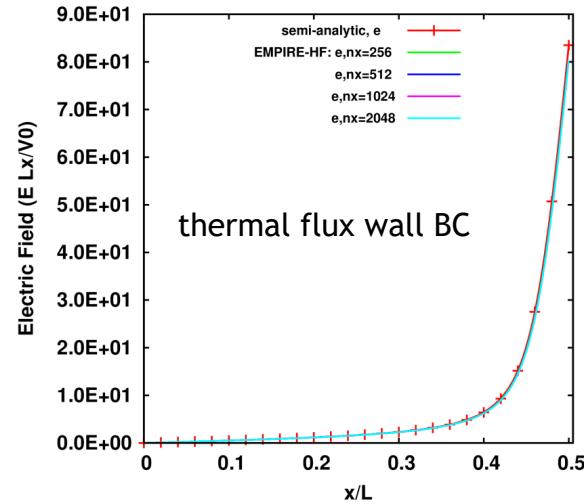
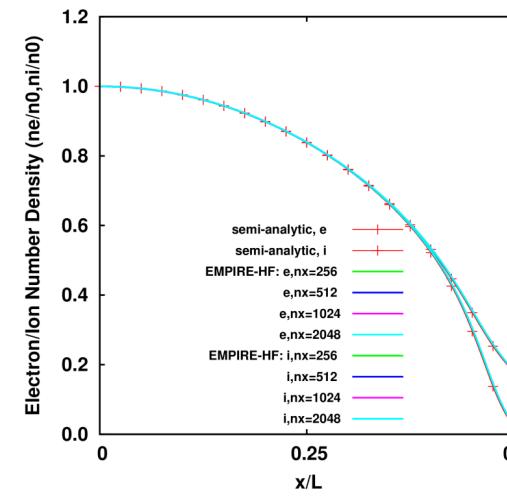
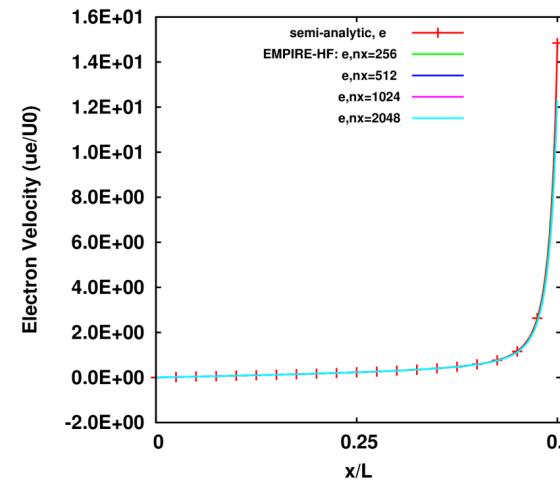
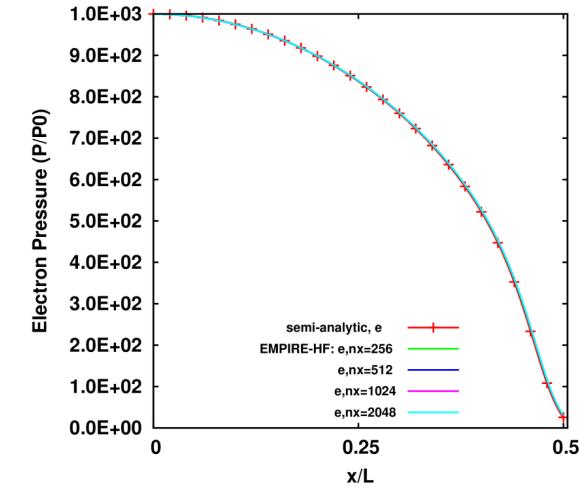
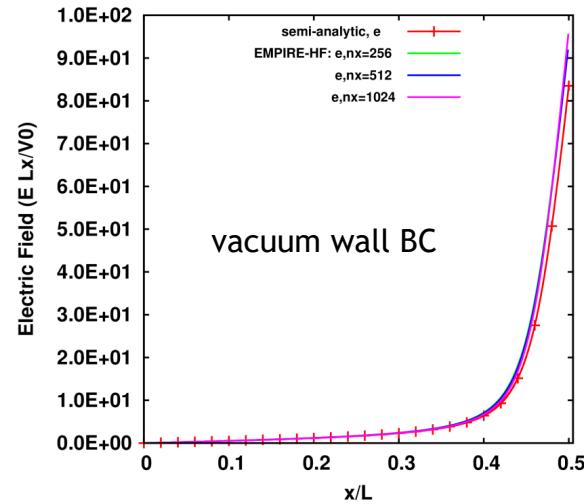
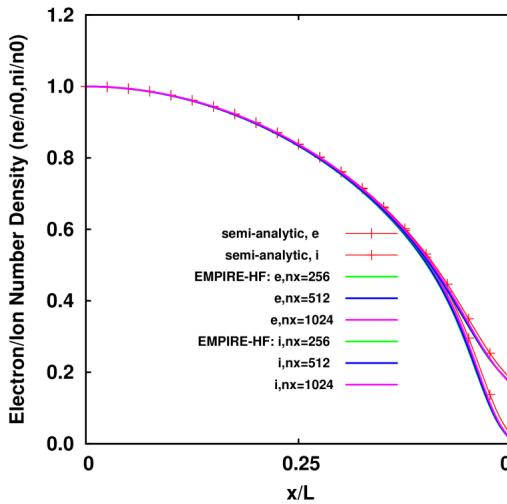
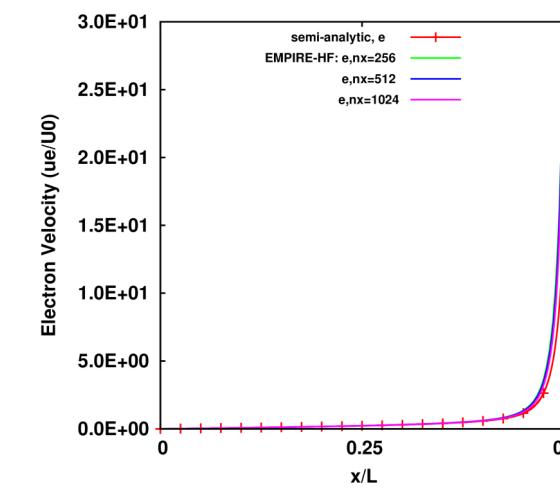
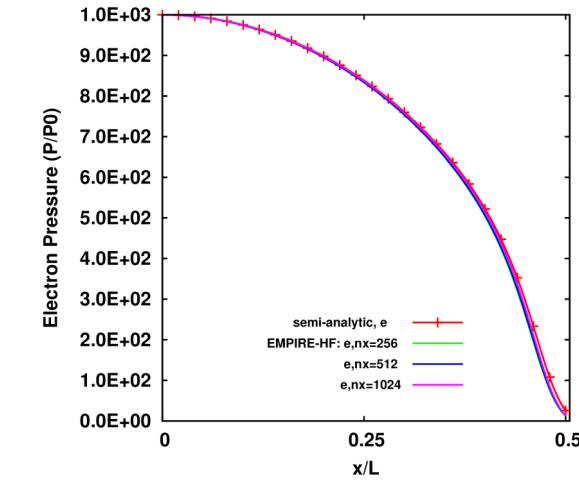


Vacuum wall BC, energy

Planar Sheath Results: EMPIRE ($\Gamma=1.0001$, $Kn=0.1$, Energy Eqn.)

19

These results are in *good qualitative agreement* with the semi-analytic models



Summary and Perspectives

We discussed difficulties associated with using classic plasma models for verification

- Energy exchange terms in the 5-moment model are important when collisions are present
- Zero ion temperature in Chabert and AL2020 sheath models can only be approximated

Despite these difficulties, partial verification of the 5-moment model has been achieved:

- Warm diode: hydrodynamic and Lorentz force coupling using energy eos
- Warm Mott-Gurney diode: hydrodynamic, Lorentz and friction force coupling using isentropic eos
- EMPIRE Sheath: shows good qualitative agreement using energy eos and small ε
- MF Sheath: hydrodynamic, Lorentz and friction forces with charge separation using energy and isothermal eos and small ε

Mitigation strategies

- Reducing $\Gamma = 1 + \varepsilon$ can reduce the magnitude of the energy exchange differences
- Using isentropic eos instead of total energy to reduce model differences
- 0D thermalization tests can be used to verify collision source terms
- Use of high resolution reference solutions instead of semi-analytic solutions

Absorbing wall BCs

- Thermal and vacuum wall BCs give comparable accuracy
- Vacuum BCs tend to be more robust for non-isothermal cases

$$\begin{aligned}\frac{\partial \rho_\alpha \mathbf{u}_\alpha}{\partial t} &= \mathbf{R}_{\alpha\beta} \\ \frac{\partial \mathcal{E}_\alpha}{\partial t} &= Q_{\alpha\beta} + \mathbf{u}_\alpha \cdot \mathbf{R}_{\alpha\beta}\end{aligned}$$

0D ODEs for evolution of source terms

Thank you!

