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Motivation and Outline
 Motivation
◦ Developing Plasma simulation capabilities for Sandia mission work
◦ A V&V effort runs concurrently with the develop effort
◦ For verification, we seek to utilize analytic/semi-analytic plasma solutions that have bearing on 

the application space
◦ We also seek ever increasing physical complexity (e.g., elastic collisions)

 Outline
◦ The Multifluid Plasma Models
◦ Energy exchange terms in Five-Moment models
◦ Equations of State
◦ Verification Examples:  1D Planar collisional diodes and floating collisional sheaths
◦ Prototype Plasma Models
◦ Semi-analytic versions of the models
◦ Model differences and mitigation
◦ Mesh refinement studies

◦ Summary and Perspectives
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EMPIRE Five-Moment Multifluid Plasma Model with 
Collisions3

Multi-Fluid (ionization collisions)

B(x) = 0, E is PEC on both walls

 EMPIRE-Fluid
◦ Use Maxwell Molecule collision model (analytic, collision 

rate is independent of relative velocity)
◦ Use simple ionization models
◦ Fluid equations discretized using discontinuous Galerkin 

FE
◦ IMEX:  implicit EM and sources, explicit fluid transport
◦ Solves Maxwell equations for the electromagnetic fields 

using a compatible discretization based on edge-face 
elements 

Maxwell Molecule Collision 
frequency is independent of 
velocity and analytic

Five-Moment Maxwell Fluid Elastic collision frequency model

SNL SAND2019-9621 (Shields et al.)



Surrogate Plasma Models

 We use 1D surrogate models to explore algorithms, 
boundary conditions, source terms, etc.

 Greatly Speeds up discovery

 1D FV Multi-Fluid (MF): Euler-Poisson
◦ Third-order upwind bias, TVD limiter
◦ HLLC flux function

 1D FD (eulerCL): Euler-Poisson
◦ Solves the electron species only
◦ Third-order upwind bias finite-difference

 1D FD (eulerPT): Pressure-Temperature Poisson
◦ Solves the electron species only
◦ Third-order upwind bias

 Explicit RK3 TVD time integration

 Poisson equation solved with Thomas Algorithm

 EoS: Energy, isentropic, isothermal
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 1D1V Internal Energy Model 
(eulerPT)

 1D1V 5-Moment Model (eulerCL, 
MF)



Model Differences:  Energy Exchange  

 Total energy (1D1V2S)
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(Tanenbaum 1967, Freidberg, 2010)

power from electric field to 
fluid

internal energy xc between 
species



Equations of State Approximations
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Isentropic (adiabatic, reversible, diode) Isothermal (sheath)

Five-Moment Energy Transport and EOS



1D Planar Diode Theory and Prototype Models
 Child-Langmuir Law for space charge limit current density (SCL) Child,1911, 
Langmuir, 1913)
◦ The drift velocity v_e=0 and the number density n_e is infinite

 Cold Diode solution (Jaffe, 1944)
◦ Cold electron beam with finite drift and density
◦ Semi-analytic, well suited for Particle-in-Cell kinetic solvers (Smith et al. 2019)

 Warm Diode (Rokhlenko&Lebowitz, Oliver, Hamlin et al., 2022)
◦ Finite temperature, drift velocity and number density
◦ Includes hydrodynamic force due to finite temperature through the pressure gradient 

and Lorentz force
◦ Assumes an isentropic eos

 Mott-Gurney Diode (Akimov & Schamel, 2002)
◦ Cold fluid, includes friction force due to collisions and Lorentz force
◦ Recovers the Mott-Gurney SCL formula

 Warm Mott-Gurney Diode
◦ Includes hydrodynamic, Lorentz and friction forces due to collisions
◦ In the limit of P0, recovers the the Mott-Gurney solution
◦ In the limit as nu0, recovers the warm diode solution
◦ In the limit as P 0 and nu0, recovers the Jaffe solution
◦ Parameterize collisions by Knudsen number
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Semi-Analytic Diode Models 
 Physical Models
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 Transformed Models

Warm Diode (Rokhlenko&Lebowitz, Oliver, Hamlin et al., Hamlin2022) Warm Diode SST

Mott-Gurney Warm Diode (Akimov & Schamel, AK2002) Mott-Gurney Warm Diode SST
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 Details
◦ Obtain a solution for 

electron fluid
◦ Approximately isentropic
◦ Supersonic inflow and 

outflow
◦ No collisions
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Achieve expected order of accuracy
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eos:  energy

eos:  isentropic
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Mott-Gurney Diode:  EMPIRE Energy Equation and Isentropic 
EoS13



Characteristics of the 1D SST Symmetric Planar Sheath 
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Constant ionization rate

Floating potential, phi_w=0 Absorbing walls for electrons and ions Electron and ion velocity

Sheath location defined at the Bohm velocity

pre-sheath sheath

uB=1



Semi-Analytic Sheath models of Alvarez-Laguna et al. and 
Chabert15 AL2020 model (Alvarez-Laguna et al., AL2020) AL2020 Transformed model

Chabert model (Chabert, 2014, Chabert) Chabert Transformed model

Alvarez-Laguna et al., Plasma Sources Sci. and Tech. 29, 2020.
Chabert, Plasma Sources Sci. and Tech. 23, 2014.



Semi-Analytic Solution Comparison: Chabert and AL2020
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• Ionization source is S=nu_iz*n_e(x)
• AL2020 – Mathematica IVP solution to the AL2020 

model (T_i=0)
• Chabert – Mathematica IVP solution to Chabert 

model (T_i=0)
• With no elastic collisions, sheath solution is a 

function of one parameter; q
• Neither model specifies wall BCs
• Flux is non-zero at centerline for symmetric case
• nu_iz=constant
• Obtain solutions for electrons and ions

q=0.013

Chabert, Plasma Sources Sci. and Tech. 23, 2014.
Alvarez-Laguna et al., Plasma Sources Sci. and Tech. 
29, 2020.



Absorbing Wall BCs:  Vacuum and Thermal Wall Flux
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Vacuum BCs Thermal flux BCs (const. Tw)

I gI-1
w

P. Cagas et al., A boundary value "reservoir 
problem" and boundary conditions for multi-
component multi-fluid simulations of 
sheaths, Phys. of Plasmas, 28, 2021.

Alvarez Laguna et al., Plasma-sheath transition in 
multi-fluid models with inertial terms under low 
pressure conditions: comparison with the classical 
kinetic theory. Plasma Src. Sci. and Tech., 29, 2020. 

Finite volume stencil at right wall
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Thermal flux wall BC, energy Thermal flux wall BC, isothermal Vacuum wall BC, energy
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These results are in good qualitative agreement with the semi-
analytic models

thermal flux wall BC

vacuum wall BC



Summary and Perspectives
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0D ODEs for evolution
of source terms



Thank you!
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