
Except ional serv ice in the nat ional in terest

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department

of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Performance of Modal Random Vibration
Calculations for Structural Dynamics on
Heterogeneous Computing Architectures

Julia Plews and Nathan Crane
Computational Solid Mechanics & Structural Dynamics
Sandia National Laboratories

USNCCM17, Albuquerque, NM, USA

July 24-27, 2023

SAND2023-06919CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do
not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract
DE-NA0003525.

What is Modal Random Vibration?

2

Modal random vibration is a means to evaluate the statistical behavior of a structure in a
steady-state vibration environment

Natural frequency
mode shapes

Statistical dynamic system
behavior
• Acceleration
• Displacement
• Stress

Statistical description of
input loads
• Power spectra in

frequency domain
• Correlation between

input loads

Frequency

Ac
ce

l.
Sp

ec
tra

Image: https://en.wikipedia.org/wiki/Spectral_density

https://en.wikipedia.org/wiki/Spectral_density

What is Modal Random Vibration?

3

An efficient alternative to performing large ensembles of transient structural analyses to
understand response of structures under random excitation in environments such as

Typical probabilistic quantities of interest include
• margin to material yield,
• acceleration spectra near or inside a structural component,
• fatigue crack initiation and growth, etc.

Transportation Test fixtures and experimental
configurations

Flight and atmospheric
reentry

Modal Random Vibration mathematics

4

S(ω) = Z(ω)modes x loads E(ω)loads x loads ZT(ω)loads x modes

A(ω) = H*(ω)modes S(ω)modes x modes H(ω)modes

ω = response frequency
A(ω) = response output (maybe complex-valued)
H(ω) = transfer function (complex-valued)
S(ω) = modal input power spectrum (complex-valued)
Z(ω) = modal excitation for load (real-valued)
E(ω) = input load magnitudes and correlations (complex-valued, input)

Typically engineers deal with up to thousands each of modes, loads, frequencies, and output
locations, yielding possibly trillions of computations for a single simulation

An opportunity to utilize novel high-performance computing platforms to drastically
reduce simulation turnaround times

Sierra Structural Dynamics simulations at Sandia

Sierra/SD (Structural Dynamics):
massively parallel C++ finite element
analysis code in the Sierra suite of tools

• In development for 25+ years
• Designed to run on the fastest

supercomputers in the world featuring
CPU and GPU acceleration

• Support national security missions
SD simulations are used to predict the
behavior of a wide variety of systems,
components, and experimental
configurations

5

Computational science and engineering research for success in large
SD simulations

Computational Science Tools

Engineering Analysis Tool
Development

Analytical and Experimental Structural
Dynamics

Engineering Sciences

Computing Research

Porting Sierra/SD to GPUs: Kokkos performance portability library

7

Sandia-developed C++ Performance Portability Programming EcoSystem1

• Write algorithms just once, execute on any architecture

Kokkos::View<double*, Kokkos::CudaSpace>
 v("myData", 1024);
auto vHost = Kokkos::create_mirror(v);
... // do work on vHost
Kokkos::deep_copy(v, vHost);

struct MyKernel
{
 void operator()(const size_t i) const {
 printf("Hello, world!\n");
 myGpuData(i) = 2 * i;
 }

 Kokkos::View<double*> myGpuData;
};

Kokkos::parallel_for(1024, MyKernel());

• Automatically move data between
memory spaces (e.g., CUDA to host and
back)

• Execute kernels in parallel through a
tailored template interface

KokkosBlas::gemm(Sal::ExecSpace(), "N", "N", 1.0, Z, Eij,
 0.0, Z_times_E);
KokkosBlas::gemm(Sal::ExecSpace(), "N", "C", 1.0, ZtimesE,
 Z, 0.0, Sij);

Kokkos on Github:
https://github.com/kokkos

• Provide an agnostic interface to vendor-supplied linear algebra
operations (e.g., cuBlas)

1. Kokkos: Enabling manycore performance portability through polymorphic memory access patterns
H. C. Edwards , C. R. Trott , D. Sunderland, Kokkos, J. Parallel and Distributed Computing, v.74 n.12, p.3202-3216, Dec.
2014

https://github.com/kokkos
https://www.osti.gov/servlets/purl/1106586

Historical performance of Modal Random Vibration in Sierra/SD
• Exemplar model performance:

Medium-fidelity simulation of vibration of a
system in atmospheric reentry environment

• 2015: Historical performance, CPU only

• 2019: Initial Kokkos port to both ARM and GPU

• 2022: First attempt at GPU optimization (lessons
learned!)

• 2023: Second, successful attempt at GPU
optimization based on KokkosKernels

8

ARM platform: “Astra,” 28 cores x 2
sockets Cavium Thunder-X2 per node

GPU platform: “Sierra,” 44 cores IBM
Power9 + 4x NVIDIA V100 per node

N
or

m
al

iz
ed

 ru
nt

im
e

2015 2019 2022 2023

1.0 (baseline)*
1.3

0.6

6.8

0.8

0.4

5.0

1.3

0.7

23.0

CPU Platform ARM Platform GPU Platform

(*data labels are speedups)

Historical performance of Modal Random Vibration in Sierra/SD

9

2019: Initial port to GPU and ARM based on Kokkos
Focused on a single performance hotspot: nodal output at each frequency
• Overall complexity O(frequencies * nodes * modes2)
• GPU parallelization only over nodes; O(1000) concurrency insufficient to saturate GPU
• Modal input power spectrum (S) calculation not ported to GPU

for (int i = 0; i < numFreq; ++i) {
 Kokkos::parallel_for("NodalOutput", numNodes,
 KOKKOS_LAMBDA(int j) {
 outputVal(j) = Calc_H_S_Ht(H(j), S);
 });
}

No observable performance benefit from GPU use: small concurrency and too many
serialized computations

Serialized calculation per node

Historical performance of Modal Random Vibration in Sierra/SD

10

2021: (Unsuccessful) first attempt at GPU optimization
GPU optimization focused on calculation of matrix S (input power spectrum):
• S = Zmodes x loads Eloads x loads ZT

loads x modes

• Kokkos “multi-dimensional range” to consolidate 4 nested loops
Kokkos::MDRangePolicy<Kokkos::Rank<4>> range({0, 0, 0, 0}, {nModes, nModes, nLoads, nLoads});
Kokkos::parallel_for(
 "Scalc", range, KOKKOS_LAMBDA(int iMode, int jMode, int iLoad, int jLoad) {
 unsigned iModeIdx = modeIndices(iMode);
 unsigned jModeIdx = modeIndices(jMode);
 Kokkos::atomic_add(&S(iModeIdx, jModeIdx),
 Z(iModeIdx, iLoad) * E(iLoad, jLoad) * Z(jModeIdx, jLoad));
 });

Performance actually degraded due to atomics, frequent data access indirection, and
high operator complexity

O(modes2 * loads2)Accessing data at non-contiguous
locations

Historical performance of Modal Random Vibration in Sierra/SD

11

2023: (Successful) second attempt at GPU optimization
• S = Zmodes x loads Eloads x loads ZT

loads x modes

• Step one: remove modal data access indirection

RemoveInactiveModes(S);
RemoveInactiveModes(Z);
Kokkos::MDRangePolicy<Kokkos::Rank<4>> range({0, 0, 0, 0}, {nModes, nModes, nLoads, nLoads});
Kokkos::parallel_for(
 "Scalc", range, KOKKOS_LAMBDA(int iMode, int jMode, int iLoad, int jLoad) {
 Kokkos::atomic_add(&S(iMode, jMode),
 Z(iMode, iLoad) * E(iLoad, jLoad) * Z(jMode, jLoad));
 });

Data access is now contiguous, but
complexity is still O(modes2 * loads2)

Historical performance of Modal Random Vibration in Sierra/SD

12

2023: (Successful) second attempt at GPU optimization
• ZE = Zmodes x loads Eloads x loads

• S = ZEmodes x loads ZT
loads x modes

• Step two: introduce temporary product, use performance-portable BLAS provided by
KokkosKernels (optimized dense linear algebra)

RemoveInactiveModes(S);
RemoveInactiveModes(Z);
KokkosBlas::gemm(ExecSpace(), "N", "N", 1.0, Z, E, 0.0, ZtimesE);
KokkosBlas::gemm(ExecSpace(), "N", "C", 1.0, ZtimesE, Z, 0.0, S);

Cleaner code, lower O(modes2 * loads) complexity, and truly performance-portable

Summary and impacts on statistical analysis of structures at Sandia

13

Through a combination of
• advances in GPU architectures,
• convenient code porting utilities,
• and algorithm optimizations,
modal random vibration computations in Sierra/SD that used to take days may now take minutes,
enabling statistical analyses of structural designs in real time

Spring 2022
baseline

Fall 2022 Spring 2023

CPU -- ~3x slower
than Spring 22

~4x faster
than Spring 22

GPU on par
with CPU

~1.2x slower
than Spring 22 on CPU

~12x faster
than Spring 22 on CPU

Performance changes in actual SD analyst model, relative to Spring
2022 version of Sierra/SD on CPU HPC platform

