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What is Modal Random Vibration?
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Modal random vibration is a means to evaluate the statistical behavior of a structure in a
steady-state vibration environment
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What is Modal Random Vibration?
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An efficient alternative to performing large ensembles of transient structural analyses to 
understand response of structures under random excitation in environments such as

Typical probabilistic quantities of interest include
• margin to material yield,
• acceleration spectra near or inside a structural component,
• fatigue crack initiation and growth, etc.

Transportation Test fixtures and experimental 
configurations

Flight and atmospheric 
reentry



Modal Random Vibration mathematics
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S(ω) = Z(ω)modes x loads E(ω)loads x loads ZT(ω)loads x modes

A(ω) = H*(ω)modes S(ω)modes x modes H(ω)modes

ω = response frequency
A(ω) = response output (maybe complex-valued)
H(ω) = transfer function (complex-valued)
S(ω) = modal input power spectrum (complex-valued)
Z(ω) = modal excitation for load (real-valued)
E(ω) = input load magnitudes and correlations (complex-valued, input)

Typically engineers deal with up to thousands each of modes, loads, frequencies, and output 
locations, yielding possibly trillions of computations for a single simulation

An opportunity to utilize novel high-performance computing platforms to drastically 
reduce simulation turnaround times



Sierra Structural Dynamics simulations at Sandia

Sierra/SD (Structural Dynamics): 
massively parallel C++ finite element 
analysis code in the Sierra suite of tools

• In development for 25+ years
• Designed to run on the fastest 

supercomputers in the world featuring 
CPU and GPU acceleration

• Support national security missions
SD simulations are used to predict the 
behavior of a wide variety of systems, 
components, and experimental 
configurations
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Computational science and engineering research for success in large
SD simulations
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Engineering Analysis Tool 
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Porting Sierra/SD to GPUs: Kokkos performance portability library
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Sandia-developed C++ Performance Portability Programming EcoSystem1

• Write algorithms just once, execute on any architecture

Kokkos::View<double*, Kokkos::CudaSpace>
    v("myData", 1024);
auto vHost = Kokkos::create_mirror(v);
... // do work on vHost
Kokkos::deep_copy(v, vHost);

struct MyKernel
{
  void operator()(const size_t i) const {
    printf("Hello, world!\n");
    myGpuData(i) = 2 * i;
  }

  Kokkos::View<double*> myGpuData;
};

Kokkos::parallel_for(1024, MyKernel());

• Automatically move data between 
memory spaces (e.g., CUDA to host and 
back)

• Execute kernels in parallel through a 
tailored template interface

KokkosBlas::gemm(Sal::ExecSpace(), "N", "N", 1.0, Z, Eij,
                 0.0, Z_times_E);
KokkosBlas::gemm(Sal::ExecSpace(), "N", "C", 1.0, ZtimesE,
                 Z, 0.0, Sij);

Kokkos on Github: 
https://github.com/kokkos 

• Provide an agnostic interface to vendor-supplied linear algebra 
operations (e.g., cuBlas)

1. Kokkos: Enabling manycore performance portability through polymorphic memory access patterns
H. C. Edwards , C. R. Trott , D. Sunderland, Kokkos, J. Parallel and Distributed Computing, v.74 n.12, p.3202-3216, Dec. 
2014

https://github.com/kokkos
https://www.osti.gov/servlets/purl/1106586


Historical performance of Modal Random Vibration in Sierra/SD
• Exemplar model performance:

Medium-fidelity simulation of vibration of a 
system in atmospheric reentry environment

• 2015: Historical performance, CPU only

• 2019: Initial Kokkos port to both ARM and GPU

• 2022: First attempt at GPU optimization (lessons 
learned!)

• 2023: Second, successful attempt at GPU 
optimization based on KokkosKernels
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ARM platform: “Astra,” 28 cores x 2 
sockets Cavium Thunder-X2 per node

GPU platform: “Sierra,” 44 cores IBM 
Power9 + 4x NVIDIA V100 per node
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Historical performance of Modal Random Vibration in Sierra/SD
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2019: Initial port to GPU and ARM based on Kokkos
Focused on a single performance hotspot: nodal output at each frequency
• Overall complexity O(frequencies * nodes * modes2)
• GPU parallelization only over nodes; O(1000) concurrency insufficient to saturate GPU
• Modal input power spectrum (S) calculation not ported to GPU

for (int i = 0; i < numFreq; ++i) {
  Kokkos::parallel_for("NodalOutput", numNodes,
    KOKKOS_LAMBDA(int j) {
      outputVal(j) = Calc_H_S_Ht(H(j), S);
    });
}

No observable performance benefit from GPU use: small concurrency and too many 
serialized computations

Serialized calculation per node



Historical performance of Modal Random Vibration in Sierra/SD
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2021: (Unsuccessful) first attempt at GPU optimization
GPU optimization focused on calculation of matrix S (input power spectrum):
• S = Zmodes x loads Eloads x loads ZT

loads x modes

• Kokkos “multi-dimensional range” to consolidate 4 nested loops
Kokkos::MDRangePolicy<Kokkos::Rank<4>> range({0, 0, 0, 0}, {nModes, nModes, nLoads, nLoads});
Kokkos::parallel_for(
    "Scalc", range, KOKKOS_LAMBDA(int iMode, int jMode, int iLoad, int jLoad) {
      unsigned iModeIdx = modeIndices(iMode);
      unsigned jModeIdx = modeIndices(jMode);
      Kokkos::atomic_add(&S(iModeIdx, jModeIdx),
                         Z(iModeIdx, iLoad) * E(iLoad, jLoad) * Z(jModeIdx, jLoad));
    });

Performance actually degraded due to atomics, frequent data access indirection, and 
high operator complexity

O(modes2 * loads2)Accessing data at non-contiguous 
locations



Historical performance of Modal Random Vibration in Sierra/SD
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2023: (Successful) second attempt at GPU optimization
• S = Zmodes x loads Eloads x loads ZT

loads x modes

• Step one: remove modal data access indirection

RemoveInactiveModes(S);
RemoveInactiveModes(Z);
Kokkos::MDRangePolicy<Kokkos::Rank<4>> range({0, 0, 0, 0}, {nModes, nModes, nLoads, nLoads});
Kokkos::parallel_for(
    "Scalc", range, KOKKOS_LAMBDA(int iMode, int jMode, int iLoad, int jLoad) {
      Kokkos::atomic_add(&S(iMode, jMode),
                         Z(iMode, iLoad) * E(iLoad, jLoad) * Z(jMode, jLoad));
    });

Data access is now contiguous, but 
complexity is still O(modes2 * loads2)



Historical performance of Modal Random Vibration in Sierra/SD
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2023: (Successful) second attempt at GPU optimization
• ZE = Zmodes x loads Eloads x loads

• S = ZEmodes x loads ZT
loads x modes

• Step two: introduce temporary product, use performance-portable BLAS provided by 
KokkosKernels (optimized dense linear algebra)

RemoveInactiveModes(S);
RemoveInactiveModes(Z);
KokkosBlas::gemm(ExecSpace(), "N", "N", 1.0, Z, E, 0.0, ZtimesE);
KokkosBlas::gemm(ExecSpace(), "N", "C", 1.0, ZtimesE, Z, 0.0, S);

Cleaner code, lower O(modes2 * loads) complexity, and truly performance-portable



Summary and impacts on statistical analysis of structures at Sandia
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Through a combination of
• advances in GPU architectures,
• convenient code porting utilities,
• and algorithm optimizations,
modal random vibration computations in Sierra/SD that used to take days may now take minutes, 
enabling statistical analyses of structural designs in real time

Spring 2022 
baseline

Fall 2022 Spring 2023

CPU -- ~3x slower
than Spring 22

~4x faster
than Spring 22

GPU on par
with CPU

~1.2x slower
than Spring 22 on CPU

~12x faster
than Spring 22 on CPU

Performance changes in actual SD analyst model, relative to Spring 
2022 version of Sierra/SD on CPU HPC platform


