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2 | Talk Outline

* Brief motivation and introduction to ice sheet equations
* Hierarchy of ice sheet models (high to low fidelity)
* Introduction to multi-fidelity methods

* Results on Humboldt glacier
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Brief Motivation an basic physics

Modeling ice sheets (Greenland and Antarctica)

dynamics 1s essential to provide estimates for sea-

level rise in next decades to centuries.

Ice behaves like a very viscous shear-thinning fluid

driven by gravity.

There are several sources of uncertainties in an ice sheet model
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(e.g. uncertainties in sliding law, calving law, rheology) in addition to uncertainty in climate forcings.

Quantifying the resulting uncertainty in the model prediction (e.g. sea-level rise) 1s a major challenges

and computationally demanding as it requires the evaluation of the ice sheet model a large number of

times.

Here we explore the use of multi-fidelity approaches to accelerate the uncertainty quantification (UQ)

analysis: we consider a hierarchy of model with different fidelity and cost, and develop a strategy to

favor sampling of less expensive models over expensive ones, while maintaining a target accuracy.



Model: Ice velocity equations

Modeled surface ice speed [m/y1]

Stokes equations: .
(Greenland ice sheet)

{ ~V -0 =pg

V-u=0 ™~ gravit. acceleration

™ ice velocity

Stress tensor: L /9 5
U; U;
= 2uD — pl D;i(u) == . J
Ice viscosity (dependent on temperature):

1 1
= §A(T) D(u)|=~', n>1, (tipically n ~3)
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‘ Model: Ice velocity equations

Stokes equations: Modeled surface ice speed [m/y1]

(Greenland ice sheet)
{ —V .0 =pg |

V-u=0

Sliding boundary condition at ice bed:

{ u-n =0, (impenetrablity)
(on)| = fu

Free slip: 5 =0
Noslip: =00
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‘ Model: Ice velocity equations

Stokes equations: Modeled surface ice speed [m/y1]

(Greenland ice sheet)
—V -0 =pg -
V-u=20

Thickness evolution equation:
\

ice thickness T accumulation/ablation
depth-averaged velocity
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Increasing fidelity and cost

I\

Multi-fidelity Models

Hierarchy of approximations of Stokes model, based on the fact that ice sheets are shallow

First Order (FO) model
(3d PDE)

Mono-Layer Higher-order (MOLHO) model
(two 2d PDEs)

Shallow Shelf Approx. (SSA)
(2d PDE, for floating fast-flowing ice)

Shallow Ice Approx. (SIA)

(for grounded slow-flowing ice)

—V- (Qulj) — 0,(n0.u) = —pgV's
214Dn = Bu, on bed

Solve FO with trial function

u=1u(z,y) + udet(z,y) p(2)

-V - (Q#Hf)(ﬁ)) + fu = —pgHVs

24 3 3
1_1:—( {;g H4|\75|2+%H) Vs




Problem setup
(approximation and assumptions)

* Ice geometry 1s fixed (ice front can retreat but cannot advance, ice flux through margin allowed). No calving.
* Ice thickness and velocity model are solved implicitly (monolithic coupling), with backward Euler in time
* Problem discretized with piece-wise linear continuous finite elements on triangles.

* Thickness positivity is guaranteed using two methods:
o Nonconservative: At each time step the thickness is updated at each node so that it is greater than 1m
o Conservative: Thickness is constrained to be larger than 1m with a optimization-base! procedure that
guarantees that mass changes are consistent with forcing terms and boundary fluxes

Ice-sheet models implemented in FEniCS?. The non-conservative methods are indicated with a “star” (SSA —
conservative, SSA* non conservative)

FENICS
&% ProJECT

1. P. Bochev et al., CMAME, 2020
2. FEniCS code, developed by C. Sockwell and M. Perego from an original implementation by D. Brinkerhoff



13 I Set up of uncertainty quantification problem

* We are interested in computing uncertainty in the total ice mass loss, our Quantity of
Interest (Qol), due to the uncertainty in the basal friction.

* We assume that the basal friction distribution is lognormal, centered on the value B¢
obtained solving an inverse problem to match observations.

B = exp(y), wherey ~N(log(,80pt),k), and k(xq,x2) = 0 exp (— le_x2|2)

; 212
variance correlation length

Samples of basal friction f near Humboldt glacier outlet (6% = 1,1 = 10 km):
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14 | Multi-fidelity Approach

Multi-level Monte Carlo

Models of different fidelity for the Qol (total mass change): fO , fl ) wee fM

high-fidelity

Elfol = E[fil + Elfo — fil

No

Ny
~ 1 1
Elfo] ~ Q) =37 ) F1(&0) +37 ) o (2) ~ @)
k=1

0k=1

Ifz2°nzl =9

" 1 1
Var[Q (z)] = N, /e LAl + N, Var|fo — fil

Model is cheap, If models are well correlated
can evaluate a large this variance is small
number of times



15 | Multi-fidelity Approach

Generalized approximate control variate

Models of different fidelity for the Qol (total mass change):

N

N 1

Qi(z;) := Nz fi(Zik)
=1

M
Qo(er, z) = Qo(2o) + z a; (Qz(zll ) — Qi(z ))
k=1

M
= 0o(z0) + ) a;Bu(z;) = Qo(z0) + '
k=1

Optimal weights that minimize variance of estimator

aACV — Cov[A, A]_l COV[A; @0]

fO'fli "'JfM

high-fidelity

Minimize variance of estimator by

1. Selecting what models to use
2. Selecting the sampling strategy

Methods implemented in
PyApprox by J. Jakeman
https://sandialabs.github.io/pyap

prox/intro.html

We consider four different mesh resolutions and three different formulations: MOLHO, SSA, SIA.



https://sandialabs.github.io/pyapprox/intro.html

16 Models

(different mesh resolutions)

Mass change over time, MOL (Sample 0)
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We consider four different mesh resolutions.




17 1 Models

(different formulations)

Mass change over time SSA (finest mesh)
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‘ Correlation of different models
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lative Estimator Variance
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Multi-fidelity Results

We compare different multi-fidelity approaches with the vanilla Monte Carlo approach.
The best approach is projected to be about 14x faster than the Monte Carlo approach and 7x times faster than the
classic Multi-level Monte Carlo approach.

MLBLUE

]_DD ‘\, ——
RN o= ACV-GMFMC MC Monte Catlo MOL,; - highest fidelity model
SN 0T MLMCH MLMC-1 Multi-level Monte Catlo MOL,, MOL,, MOL,
‘., =% MLMC-2
—e MO MI.MC-2 Multi-level Monte Carlo MOL,, SSA™,, SSA",

10714
] ACV-GMFMC  Generalized Approximate MOL,;, MOL",, SSA",, SSA,
Control Variate!

MLBLUE Multilevel Best Linear MOL,;, MOL",, SSA",, SSA",
Unbiased Estimators?

» SSA", is 30x faster than MOL,

B 1[.)3 S l[l)*l 1. G. Bomarito, P. Leser, J. Warner, W. Leser, JCP, 2022
2. D Schaden, E Ullmann, SIAM/ASA J. Uncertainty Quantification 8 (2), 601 - 635, 2020
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We compare different multi-fidelity approaches with the vanilla Monte Carlo approach.

Multi-fidelity Results

The best approach is projected to be about 14x faster than the Monte Carlo approach and 7x times faster than the
classic Multi-level Monte Carlo approach.
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Final Remarks

* Demonstrated effectiveness of multi fidelity approach 1n ice-sheet application.
* Correlations between models is very high in our example. Correlation will likely be lower
when considering high-order model for velocity (e.g. FO), more physics (e.g. calving) and

when allowing the geometry to change.

* TODO: Use the multi-fidelity approach on different glaciers with improved accuracy for
high-fidelity model.

* TODO: Include NN surrogate in our multi-fidelity strategy.
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MOL3 MOLo MOL{ MOL MOLZ MOL3 MOL7Y MOL SSAg3
Realtive Cost 1.0e+00 | 6.3e-01 4.3e-01 1.2e-01 8.1e-01 5.1e-01 3.5e-01 9.7¢-02 | 4.7e-01

SSAq SSAq SSAq SSAZ SSAJ SSAT SSA SIAg SIA
Realtive Cost 2.9e-01 1.9e-01 5.6e-02 2.7e-01 1.6e-01 1.1e-01 3.1e-02 [ 4.7e-02 2.3e-02




