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Talk Outline2

• Brief  motivation and introduction to ice sheet equations

• Introduction of  the hybrid Finite Elements /Deep Operator Network model

• Results on Humboldt glacier, Greenland

Supported by US DOE Office of  Science projects:
➢ Ph ILMs:  Phys i c s  Informed Learn ing  Mach ines

➢ FAnSS IE :  F ramework  For  An tarct i c  System Sc ience  In  E3SM

➢ ProSPect:  Probabi l i s t i c  Sea- leve l  P roject i on  From I ce  sheet  And Earth  System Model s  

Humboldt 

glacier



Brief Motivation an basic physics

Contributors to global sea level rise (1993-2018):

• Modeling ice sheets (Greenland and Antarctica) 

dynamics is essential to provide estimates for sea-

level rise in next decades to centuries.
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Brief Motivation an basic physics

Contributors to global sea level rise (1993-2018):

• There are several sources of  uncertainties in an ice sheet model (e.g. uncertainties in sliding law, 

calving law, rheology) in addition to uncertainty in climate forcings.

• Quantifying the resulting  uncertainty in the model prediction (e.g. sea-level rise) is a major challenges 

and computationally demanding as it requires the evaluation of  the ice sheet model a large number of  

times.

• Here we explore the use of  neural network models to accelerate the evaluation of  the forward model. 



ice velocity

gravit. acceleration

Model: Ice velocity equations

Stokes equations:

Stress tensor:

Ice viscosity (dependent on temperature): 

Modeled surface ice speed [m/yr]

(Greenland ice sheet)



Model: Ice velocity equations

bed

Stokes equations:

Sliding boundary condition at ice bed:

Free slip:

No slip:

Modeled surface ice speed [m/yr]

(Greenland ice sheet)
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Thickness equation:

vertically avg. velocity accumulation/ablation

Neural Network surrogates

ice thickness

Stokes equation maps the 

thickness and the basal friction 

into the velocity

Time discretization:

ቐ
−∇ ⋅ 𝜎 𝒖𝛽

𝑛 = 𝜌𝒈 in Ω𝐻𝑛

∇ ⋅ 𝒖𝛽
𝑛 = 0 in Ω𝐻𝑛

𝐻𝛽
𝑛+1 − 𝐻𝛽

𝑛

Δ𝑡
+ ∇ ⋅ ഥ𝒖𝛽

𝑛 𝐻𝛽
𝑛+1 = 𝐹𝐻

𝑛+1

ഥ𝒖𝛽
𝑛 = 𝒢(𝛽, 𝐻𝑛)
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The velocity solver is the most expensive part of  the model.

Idea[1]: replace the velocity solve with a Deep Operator Network [2]

DeepONet

[1] G. Jouvet, G. Cordonnier, B. Kim, M. Lüthi, A. Vieli, A. Aschwanden, Deep learning speeds up ice flow modelling by several orders of  

magnitude, Journal of  Glaciology, 2021

[2] Lu, L., Jin, P., Pang, G. et al. Learning nonlinear operators via DeepONet based on the universal approximation theorem of  operators. Nat 

Mach Intell 3, 218–229 (2021).

➢ Instead of  approximating functions, DeepONet approximate nonlinear continuous operators.

➢ The universal approximation theorem provides a strong mathematical foundation of   

DeepONets

Neural Network surrogates
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compare

target Velocity and thickness data are 

generated by the FEM code, 

implemented in FEniCS

DeepONet architecture 

Legend:

𝑀: size of  spatial grid

𝑁𝛽: number beta samples

𝑁𝑇: number of  time snapshots

Branch network 𝒄𝑘(𝛽𝑖 , 𝐻𝑖
𝑛)

𝝓𝑘(𝑥, 𝑦)

=෍
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Input/Output: 

Branch input size: (𝑁𝛽𝑁𝑇 , 1, 𝟐𝑴)

Trunk input size: (𝑁𝛽𝑁𝑇 , 𝑀, 𝟐)

Target size: (𝑁𝛽𝑁𝑇 , 𝑀, 𝟐)

Branch network
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DeepONet architecture 

Input/Output: 

Branch input size: (𝑁𝛽𝑁𝑇 , 1, 𝟐𝑴)

Trunk input size: (𝑁𝛽𝑁𝑇 , 𝑀, 𝟐)

Target size: (𝑁𝛽𝑁𝑇 , 𝑀, 𝟐)

Branch network

Trunk network

Velocity and thickness data are 

generated by the FEM code, 

implemented in FEniCS

(𝑥, 𝑦) Legend:

𝑀: size of  spatial grid

𝑁𝛽: number beta samples

𝑁𝑇: number of  time snapshots



Problem setup (approximation and assumptions)

1. P. Bochev et al., CMAME, 2020

2. T. D. dos Santos, M. Morlighem, D. Brinkerhoff, The Cryosphere, 2022

3. FEniCS code, developed by C. Sockwell and M. Perego from an original implementation by D. Brinkerhoff

4. Jax code developed by Q. He and A. Howard

• Ice geometry is fixed (ice front can retreat but cannot advance, ice flux through margin allowed). No calving.

• Ice thickness and velocity model are coupled in a staggered fashion, with backward Euler discretization in time

• Problem discretized with piece-wise linear continuous finite elements on triangles. 

• We use a simplification of  the Stokes model, MOLHO2, that relies on the fact that ice-sheet are shallow and 

solves two 2d equations for the depth-averaged velocity ഥ𝒖(𝑥, 𝑦) and a corrective velocity ഥ𝒖𝑑𝑒𝑓(𝑥, 𝑦)(1 − 𝜁4)

varying in the normalized vertical component 𝜁.

Ice-sheet models implemented in FEniCS3.  DeepONet implemented in JAX4



Humboldt glacier
(north-west Greenland)

14

sample 𝛽0 sample 𝛽1

bed topography [m] ice thickness [m] observed surface ice velocity [m/yr]



Humboldt (basal friction samples)15

sample 𝛽0 sample 𝛽1

Basal friction sampled from a log-normal distribution:

Basal friction samples

Workflow:

• Generated beta samples

• Generate thickness and velocity data for 

different beta samples using Finite Elements 

(FEM) code 

• Train the DeepONet w/ velocity data

𝛽 = exp 𝛾 , where 𝛾 ~𝒩 log(βopt), 𝑘 , and 𝑘 𝒙𝟏, 𝒙𝟐 = 𝜎2 exp −
𝒙𝟏−𝒙𝟐

2

2 𝑙2

𝜎2 = 0.2, l = 50km



16 Humboldt (computing averaged velocity w/ DeepONets)
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Hybrid FEM

Hybrid FEM
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𝟏

Hybrid: thickness solved w/ FEM calling the DeepONet at 

each time step to compute velocity

FEM: thickness and velocity models solved with FEM

averaged velocity averaged velocity

averaged velocityaveraged velocity

Left: Averaged velocity at T=100 yr for test beta samples (NOT
used for training)



17 Humboldt (relative error as a function of time for different samples)

Settings:

# training beta samples: 300

#epochs: 300,000

4 layers of  width W: 300

time snapshots: 1, 2, …, 100

extrapolation



18 Humboldt (glacier mass loss)

Glacier mass change over time, Hybrid modelGlacier mass change over time, FEM model

extrapolation extrapolation



19 Humboldt – SSA model (glacier mass loss)

➢ Fast evaluation of  forward model will enable the quantification of  uncertainty on of  sea level rise

Solve only

Including “off-line” training costs, Hybrid 

model becomes advantageous over traditional 

model for more than 500 samples.

Histogram of  glacier mass change in gigatons. 

Comparison between Hybrid and FEM for 2000 

samples



Final Remarks20

• We introduced a hybrid model based a DeepONet surrogate of  the velocity equation

• We demonstrated its effectiveness in computing statistics of  glacier mass loss

• Computational savings will be potentially greater when considering more expensive 

models

• TODO: scale this up to larger/higher resolution glaciers

• TODO: use resNet for thickness evolution, to further speed-up model

• TODO: explore use of  DeepONet surrogate in multi-fidelity framework (see talk 

tomorrow afternoon in 705.1)


