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Talk Outline

* Brief motivation and introduction to ice sheet equations
* Introduction of the hybrid Finite Elements /Deep Operator Network model

* Results on Humboldt glacier, Greenland
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Supported by US DOE Office of Science projects:

» PhILMs: Physics Informed Learning Machines

» FAnSSIE: Framework For Antarctic System Science In E3SM s

» ProSPect: Probabilistic Sea-level Projection From Ice sheet And Earth System Models




‘ Brief Motivation an basic physics

* Modeling ice sheets (Greenland and Antarctica)
dynamics is essential to provide estimates for sea-

level rise in next decades to centuries.
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Brief Motivation an basic physics

Contributors to global sea level rise (1993-2018):
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Modeling ice sheets (Greenland and Antarctica) added water + thermal expansion
dynamics is essential to provide estimates for sea-

level rise in next decades to centuries.
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driven by gravity. 0
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There are several sources of uncertainties in an ice sheet model (e.g. uncertainties in sliding law,
calving law, rheology) in addition to uncertainty in climate forcings.

Quantifying the resulting uncertainty in the model prediction (e.g. sea-level rise) 1s a major challenges
and computationally demanding as it requires the evaluation of the ice sheet model a large number of |

times.

Here we explore the use of neural network models to accelerate the evaluation of the forward model.




Model: Ice velocity equations

Modeled surface ice speed [m/y1]

Stokes equations: .
(Greenland ice sheet)
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™ ice velocity

Stress tensor: L /9 5
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Ice viscosity (dependent on temperature):
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‘ Model: Ice velocity equations

Stokes equations: Modeled surface ice speed [m/y1]

(Greenland ice sheet)
{ —V .0 =pg |

V-u=0

Sliding boundary condition at ice bed:

{ u-n =0, (impenetrablity)
(on)| = fu

Free slip: 5 =0
Noslip: =00
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s I Neural Network surrogates

Thickness equation:

ice thickness vertically avg. velocity

OH +V - (0H) = fu

accumulation/ablation

Time discretization:
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thickness and the basal friction
into the velocity




9 I Neural Network surrogates

The velocity solver 1s the most expensive part of the model.
Idea[1]: replace the velocity solve with a Deep Operator Network [2]

l_lg =|G(B,H™) h DeepONet

» Instead of approximating functions, DeepONet approximate nonlinear continuous operators.

> 'The universal approximation theorem provides a strong mathematical foundation of
DeepONets

[1] G. Jouvet, G. Cordonnier, B. Kim, M. Liuthi, A. Vieli, A. Aschwanden, Deep learning speeds up ice flow modelling by several orders of
magnitude, Journal of Glaciology, 2021

[2] Lu, L., Jin, P, Pang, G. et al. Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nat
Mach Intel] 3, 218-229 (2021).



DeepONet architecture
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DeepONet architecture
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Velocity and thickness data are
generated by the FEM code,
implemented in FEniCS

Input/Output:

Branch input size: (NgNp,1,2M)
Trunk input size: (Ng Ny, M, 2)
Target size: (NgNp, M, 2)

Legend:

M: size of spatial grid

Ng: number beta samples

N7: number of time snapshots



DeepONet architecture
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Problem setup (approximation and assumptions)

* Ice geometry 1s fixed (ice front can retreat but cannot advance, ice flux through margin allowed). No calving,
* Ice thickness and velocity model are coupled in a staggered fashion, with backward Euler discretization in time
* Problem discretized with piece-wise linear continuous finite elements on triangles.

* We use a simplification of the Stokes model, MOLHO?, that relies on the fact that ice-sheet are shallow and
solves two 2d equations for the depth-averaged velocity U(x, y) and a corrective velocity Uger(x, ¥)(1 — ¢ )

varying in the normalized vertical component ¢.

Ice-sheet models implemented in FEniCS’. DeepONet implemented in JAX*

FENICS Sy
&§ PROJECG &IV R

P. Bochev et al., CMAME, 2020
T. D. dos Santos, M. Motlighem, D. Brinkerhotf, The Cryosphere, 2022
FEniCS code, developed by C. Sockwell and M. Perego from an original implementation by D. Brinkerhotf

Jax code developed by Q. He and A. Howard

B =



14 I Humboldt glacier

(north-west Greenland)
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s 1 Humboldt (basal friction samples)

Basal friction sampled from a log-normal distribution:

12
B = exp(y), wherey ~N(log([30pt), k), and k(xq,x2) = 0% exp (— |x12 ;Zl )

Workflow:

* Generated beta samples

* Generate thickness and velocity data for
different beta samples using Finite Elements
(FEM) code

* Train the DeepONet w/ velocity data

Basal friction samples
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16 1 Humboldt (computing averaged velocity w/ DeepONets)

Hybrid: thickness solved w/ FEM calling the DeepONet at

each time step to compute velocity

& FEM.: thickness and velocity models solved with FEM
Q :
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17 1 Humboldt (relative error as a function of time for different samples)
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Mass change [gigatons]

Humboldt (glacier mass loss)
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19 I Humboldt — SSA model (glacier mass loss)
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Histogram of glacier mass change in gigatons.
Comparison between Hybrid and FEM for 2000
samples

Times per sample (s) Total Solve only
Finite element model | 123.30 105.20
Hybrid model 24.15 0.46
Ratio 19.59 % 8.99%

Including “off-line” training costs, Hybrid
model becomes advantageous over traditional
model for more than 500 samples.

» Fast evaluation of forward model will enable the quantification of uncertainty on of sea level rise
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Final Remarks

* We introduced a hybrid model based a DeepONet surrogate of the velocity equation

* We demonstrated its effectiveness in computing statistics of glacier mass loss

* Computational savings will be potentially greater when considering more expensive
models

* TODO: scale this up to larger/higher resolution glaciers

* TODO: use resNet for thickness evolution, to further speed-up model

* TODO: explore use of DeepONet surrogate in multi-fidelity framework (see talk
tomorrow afternoon in 705.1)



