

A Polynomial Chaos Approach for Uncertainty Quantification of Monte Carlo Transport Codes

Gianluca Geraci, Kayla B. Clements, and Aaron J. Olson

M&C 2023

Mathematics and Computational Methods Applied to Nuclear Science and Engineering

August 16th, 2023

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration. DE-NA0003525.

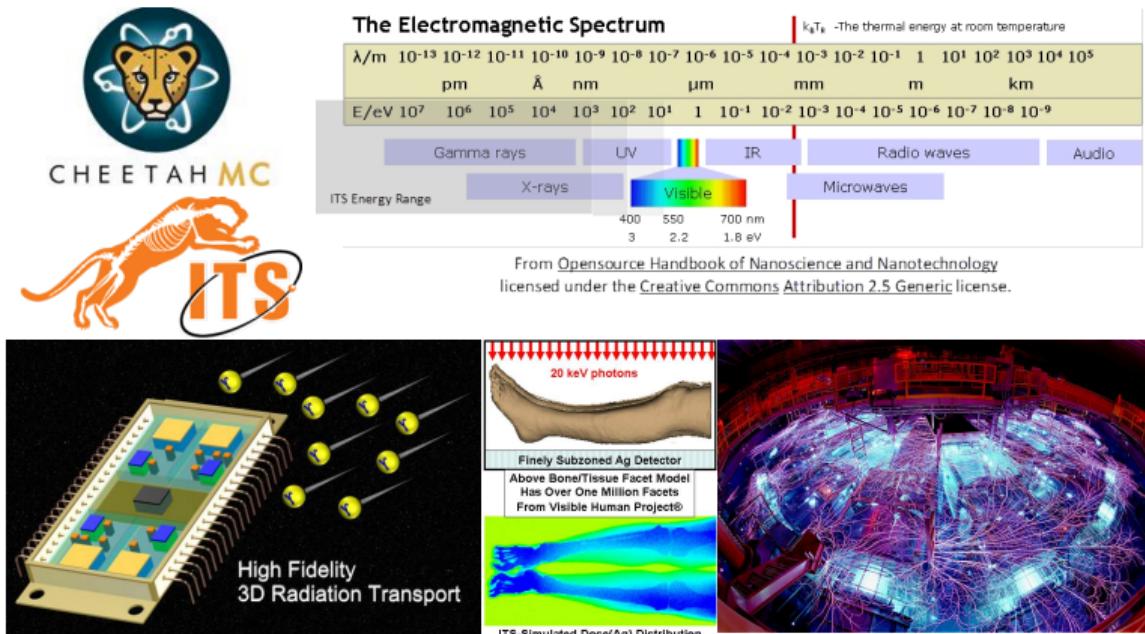
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration. DE-NA0003525.

- MOTIVATION AND BACKGROUND
- POLYNOMIAL CHAOS
- ALGORITHMIC CONTRIBUTIONS
- NUMERICAL RESULTS
- SUMMARY AND CONCLUSIONS
- REFERENCES

Motivation and Background

UNCERTAINTY QUANTIFICATION FOR RADIATION TRANSPORT

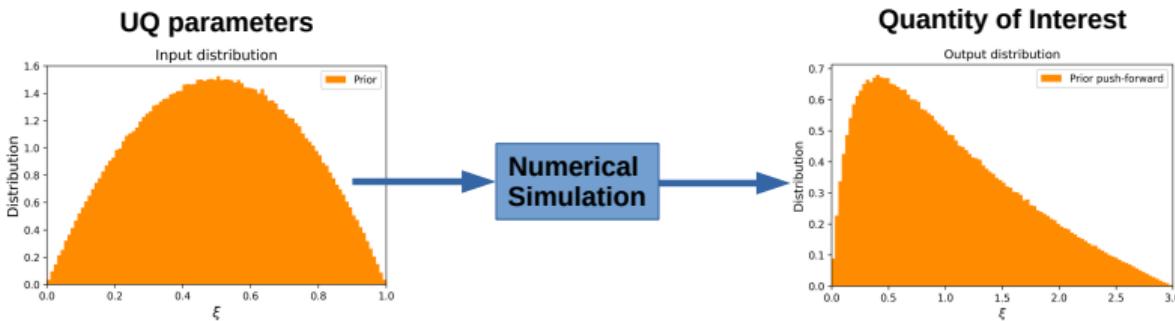
CONTEXT AND CHALLENGES



Figures courtesy of Brian Franke and Shawn Pautz

High-fidelity state-of-the-art modeling and simulations with HPC

- **Predictive science** needs Uncertainty Quantification (UQ)
- UQ under **severe simulations budget constraints**
- **Significant dimensionality** driven by model complexity

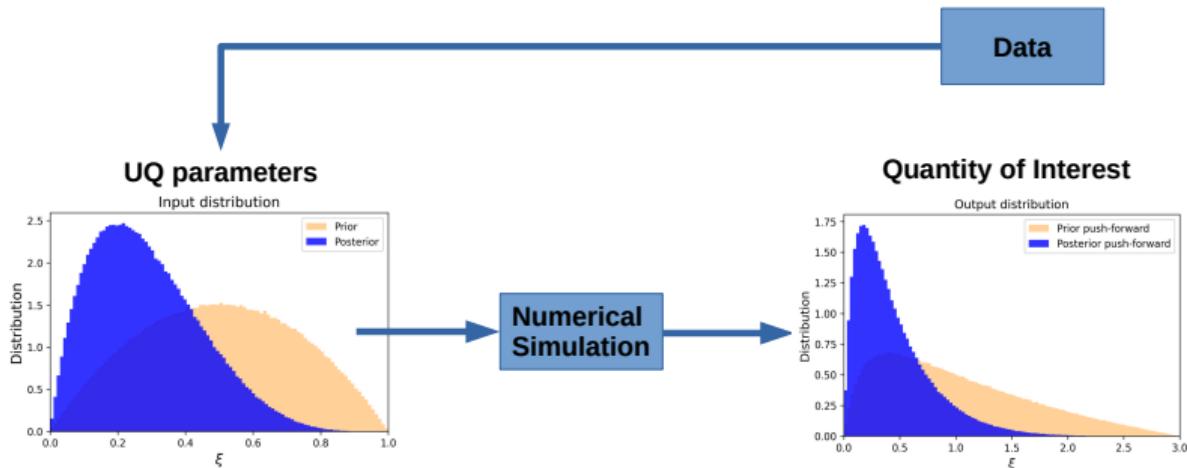


Uncertainty Quantification:

- **UQ main tasks:** **Forward** and **Inverse**
- **Forward UQ:** Propagation of (known) parameter distributions through numerical code
- **Inverse UQ:** Infer posterior distributions from observational data (Bayes rule)

Forward UQ via surrogate modeling:

- Statistics \rightarrow large number of QoI realizations
- Computational burden can be alleviated by replacing the original code with a surrogate



Uncertainty Quantification:

- **UQ main tasks:** **Forward** and **Inverse**
- **Forward UQ:** Propagation of (known) parameter distributions through numerical code
- **Inverse UQ:** Infer posterior distributions from observational data (Bayes rule)

Forward UQ via surrogate modeling:

- Statistics \rightarrow **large number of QoI realizations**
- Computational burden **can be alleviated** by replacing the original code **with a surrogate**

Polynomial Chaos

Polynomial Chaos

- **UQ parameters:** $\xi \in \Xi \subset \mathbb{R}^d$
- **Joint pdf:** $p(\xi)$ (independent components)
- **QoI:** $Q = Q(\xi) \in \mathbb{R}$
- **Polynomial Chaos Expansion**

$$Q(\xi) = \sum_{k=0}^{\infty} \beta_k \Psi_k(\xi) \approx \sum_{k=0}^P \beta_k \Psi_k(\xi) = Q^{PCE}(\xi), \quad \text{with } P+1 = \frac{(n_0 + d)!}{n_0! d!} \quad \text{and}$$

n_0 being the **total order** of the expansion.

- Polynomial basis Ψ_k is selected to be **orthogonal w.r.t.** $p(\xi)$

Remarks

- Statistics can be obtained in close form or by sampling Q^{PCE} directly, e.g.

$$\mathbb{E}[Q] \approx \beta_0 \quad \text{and} \quad \text{Var}[Q] \approx \sum_{k=1}^P \beta_k^2 \mathbb{E}[\Psi_k^2]$$

- Coefficients evaluation:

- **Regression:** L2 (ordinary least-square) or L1 (sparse) minimization
- **Spectral projection:** multidimensional integration

¹ O. Le Maître and O. Knio. *Spectral methods for uncertainty quantification. With applications to computational fluid dynamics*. Springer Netherlands, 2010.

Polynomial Chaos

- **UQ parameters:** $\xi \in \Xi \subset \mathbb{R}^d$
- **Joint pdf:** $p(\xi)$ (independent components)
- **QoI:** $Q = Q(\xi) \in \mathbb{R}$
- **Polynomial Chaos Expansion**

$$Q(\xi) = \sum_{k=0}^{\infty} \beta_k \Psi_k(\xi) \approx \sum_{k=0}^P \beta_k \Psi_k(\xi) = Q^{PCE}(\xi), \quad \text{with } P+1 = \frac{(n_0 + d)!}{n_0! d!} \quad \text{and}$$

n_0 being the **total order** of the expansion.

- Polynomial basis Ψ_k is selected to be **orthogonal w.r.t.** $p(\xi)$

Remarks

- **Statistics can be obtained in close form** or by sampling Q^{PCE} directly, e.g.

$$\mathbb{E}[Q] \approx \beta_0 \quad \text{and} \quad \text{Var}[Q] \approx \sum_{k=1}^P \beta_k^2 \mathbb{E}[\Psi_k^2]$$

- **Coefficients evaluation:**

- **Regression:** L2 (ordinary least-square) or L1 (sparse) minimization
- **Spectral projection:** multidimensional integration

¹ O. Le Maître and O. Knio. *Spectral methods for uncertainty quantification. With applications to computational fluid dynamics*. Springer Netherlands, 2010.

NON-INTRUSIVE SPECTRAL PROJECTION

THE CASE OF RADIATION TRANSPORT APPLICATIONS

Spectral projection → Non-Intrusive Spectral Projection (NISP)

$$\mathbb{E} [\Psi_k \Psi_\ell] = \int_{\Xi} \Psi_k \Psi_\ell p(\xi) d\xi = b_k \delta_{k\ell} \quad \rightarrow \quad \beta_k = \frac{\mathbb{E} [Q \Psi_k]}{b_k}$$

Our task is the efficient computation of the multi-dimensional integral $\mathbb{E} [Q \Psi_k]$

Radiation transport features

- Large dimensionality, *i.e.* large number of uncertainty sources, random fields, etc.
- Noisy response $Q(\xi)$: MC transport solvers (more on this later)

Sampling approaches: potentially more suited than quadrature in this context

Sampling Approaches → Monte Carlo

$$\mathbb{E} [Q \Psi_k] = \int_{\Xi} Q(\xi) \Psi_k(\xi) p(\xi) d\xi \approx \frac{1}{N_\xi} \sum_{i=1}^{N_\xi} Q(\xi^{(i)}) \Psi_k(\xi^{(i)})$$

Q: How do we get the QoI $Q(\xi)$ in a Radiation Transport context?

NON-INTRUSIVE SPECTRAL PROJECTION

THE CASE OF RADIATION TRANSPORT APPLICATIONS

Spectral projection → Non-Intrusive Spectral Projection (NISP)

$$\mathbb{E} [\Psi_k \Psi_\ell] = \int_{\Xi} \Psi_k \Psi_\ell p(\xi) d\xi = b_k \delta_{k\ell} \quad \rightarrow \quad \beta_k = \frac{\mathbb{E} [Q \Psi_k]}{b_k}$$

Our task is the efficient computation of the multi-dimensional integral $\mathbb{E} [Q \Psi_k]$

Radiation transport features

- **Large dimensionality**, i.e. large number of uncertainty sources, random fields, etc.
- **Noisy response $Q(\xi)$** : MC transport solvers (more on this later)

Sampling approaches: potentially more suited than quadrature in this context

Sampling Approaches → Monte Carlo

$$\mathbb{E} [Q \Psi_k] = \int_{\Xi} Q(\xi) \Psi_k(\xi) p(\xi) d\xi \approx \frac{1}{N_\xi} \sum_{i=1}^{N_\xi} Q(\xi^{(i)}) \Psi_k(\xi^{(i)})$$

Q: How do we get the QoI $Q(\xi)$ in a Radiation Transport context?

NON-INTRUSIVE SPECTRAL PROJECTION

THE CASE OF RADIATION TRANSPORT APPLICATIONS

Spectral projection → Non-Intrusive Spectral Projection (NISP)

$$\mathbb{E} [\Psi_k \Psi_\ell] = \int_{\Xi} \Psi_k \Psi_\ell p(\xi) d\xi = b_k \delta_{k\ell} \quad \rightarrow \quad \beta_k = \frac{\mathbb{E} [Q \Psi_k]}{b_k}$$

Our task is the efficient computation of the multi-dimensional integral $\mathbb{E} [Q \Psi_k]$

Radiation transport features

- **Large dimensionality**, i.e. large number of uncertainty sources, random fields, etc.
- **Noisy response $Q(\xi)$** : MC transport solvers (more on this later)

Sampling approaches: potentially more suited than quadrature in this context

Sampling Approaches → Monte Carlo

$$\mathbb{E} [Q \Psi_k] = \int_{\Xi} Q(\xi) \Psi_k(\xi) p(\xi) d\xi \approx \frac{1}{N_\xi} \sum_{i=1}^{N_\xi} Q(\xi^{(i)}) \Psi_k(\xi^{(i)})$$

Q: How do we get the QoI $Q(\xi)$ in a Radiation Transport context?

NON-INTRUSIVE SPECTRAL PROJECTION

THE CASE OF RADIATION TRANSPORT APPLICATIONS

Spectral projection → Non-Intrusive Spectral Projection (NISP)

$$\mathbb{E} [\Psi_k \Psi_\ell] = \int_{\Xi} \Psi_k \Psi_\ell p(\xi) d\xi = b_k \delta_{k\ell} \quad \rightarrow \quad \beta_k = \frac{\mathbb{E} [Q \Psi_k]}{b_k}$$

Our task is the efficient computation of the multi-dimensional integral $\mathbb{E} [Q \Psi_k]$

Radiation transport features

- **Large dimensionality**, i.e. large number of uncertainty sources, random fields, etc.
- **Noisy response $Q(\xi)$** : MC transport solvers (more on this later)

Sampling approaches: potentially more suited than quadrature in this context

Sampling Approaches → Monte Carlo

$$\mathbb{E} [Q \Psi_k] = \int_{\Xi} Q(\xi) \Psi_k(\xi) p(\xi) d\xi \approx \frac{1}{N_\xi} \sum_{i=1}^{N_\xi} Q(\xi^{(i)}) \Psi_k(\xi^{(i)})$$

Q: How do we get the QoI $Q(\xi)$ in a Radiation Transport context?

NON-INTRUSIVE SPECTRAL PROJECTION

THE CASE OF RADIATION TRANSPORT APPLICATIONS

Spectral projection → Non-Intrusive Spectral Projection (NISP)

$$\mathbb{E} [\Psi_k \Psi_\ell] = \int_{\Xi} \Psi_k \Psi_\ell p(\xi) d\xi = b_k \delta_{k\ell} \quad \rightarrow \quad \beta_k = \frac{\mathbb{E} [Q \Psi_k]}{b_k}$$

Our task is the efficient computation of the multi-dimensional integral $\mathbb{E} [Q \Psi_k]$

Radiation transport features

- **Large dimensionality**, i.e. large number of uncertainty sources, random fields, etc.
- **Noisy response $Q(\xi)$** : MC transport solvers (more on this later)

Sampling approaches: potentially more suited than quadrature in this context

Sampling Approaches → Monte Carlo

$$\mathbb{E} [Q \Psi_k] = \int_{\Xi} Q(\xi) \Psi_k(\xi) p(\xi) d\xi \approx \frac{1}{N_\xi} \sum_{i=1}^{N_\xi} Q(\xi^{(i)}) \Psi_k(\xi^{(i)})$$

Q: How do we get the QoI $Q(\xi)$ in a Radiation Transport context?

Context: NISP via sampling is not new², so...

Q: what do we need to know in the **RT context**?

A: The **QoI** is not obtained directly, but as a statistics of elementary events

Assumptions/Notation

- UQ parameters: $\xi \in \Xi \subset \mathbb{R}^d$
- MC transport (internal) randomness: $\eta \in H \subset \mathbb{R}^{d'}$
- Particle histories are interpreted as elementary events: $f = f(\xi, \eta)$
- RT QoI: Statistics, e.g., average, of f over the histories for a fixed UQ realization:

$$Q(\xi) = \mathbb{E}_\eta [f(\xi, \eta)] \stackrel{MC\ RT}{\approx} \frac{1}{N_\eta} \sum_{j=1}^{N_\eta} f(\xi, \eta^{(j)}) \stackrel{\text{def}}{=} \tilde{Q}(\xi)$$

NOTE:

- In the limit of $N_\eta \rightarrow \infty$, $\tilde{Q}(\xi) \rightarrow Q(\xi)$, but we do have **limited histories**

In this talk:

Q1: How do we propagate the effect of a limited number of histories?

Q2: What is the impact of this 'error' in the PCE coefficients/surrogate?

Q3: Can this knowledge inform the PCE construction?

² T. Crestaux, O. L. Maitre, and J.-M. Martinez. "Polynomial chaos expansion for sensitivity analysis". In: *Reliability Engineering & System Safety* 94 (7 2009), pp. 1161–1172.

Context: NISP via sampling is not new², so...

Q: what do we need to know in the **RT context**?

A: The **QoI is not obtained directly**, but as a statistics of elementary events

Assumptions/Notation

- UQ parameters: $\xi \in \Xi \subset \mathbb{R}^d$
- MC transport (internal) randomness: $\eta \in H \subset \mathbb{R}^{d'}$
- Particle histories are interpreted as elementary events: $f = f(\xi, \eta)$
- RT QoI: Statistics, e.g., average, of f over the histories for a fixed UQ realization:

$$Q(\xi) = \mathbb{E}_\eta [f(\xi, \eta)] \stackrel{MC\ RT}{\approx} \frac{1}{N_\eta} \sum_{j=1}^{N_\eta} f(\xi, \eta^{(j)}) \stackrel{\text{def}}{=} \tilde{Q}(\xi)$$

NOTE:

- In the limit of $N_\eta \rightarrow \infty$, $\tilde{Q}(\xi) \rightarrow Q(\xi)$, but we do have **limited histories**

In this talk:

Q1: How do we propagate the effect of a limited number of histories?

Q2: What is the impact of this 'error' in the PCE coefficients/surrogate?

Q3: Can this knowledge inform the PCE construction?

² T. Crestaux, O. L. Maitre, and J.-M. Martinez. "Polynomial chaos expansion for sensitivity analysis". In: *Reliability Engineering & System Safety* 94 (7 2009), pp. 1161–1172.

Context: NISP via sampling is not new², so...

Q: what do we need to know in the **RT context**?

A: The **QoI is not obtained directly**, but as a statistics of elementary events

Assumptions/Notation

- **UQ parameters:** $\xi \in \Xi \subset \mathbb{R}^d$
- **MC transport (internal) randomness:** $\eta \in H \subset \mathbb{R}^{d'}$
- **Particle histories** are interpreted as elementary events: $f = f(\xi, \eta)$
- **RT QoI:** Statistics, e.g., average, of f over the histories for a fixed UQ realization:

$$Q(\xi) = \mathbb{E}_\eta [f(\xi, \eta)] \stackrel{MC\ RT}{\approx} \frac{1}{N_\eta} \sum_{j=1}^{N_\eta} f(\xi, \eta^{(j)}) \stackrel{\text{def}}{=} \tilde{Q}(\xi)$$

NOTE:

- In the limit of $N_\eta \rightarrow \infty$, $\tilde{Q}(\xi) \rightarrow Q(\xi)$, but we do have **limited histories**

In this talk:

Q1: How do we propagate the effect of a limited number of histories?

Q2: What is the impact of this 'error' in the PCE coefficients/surrogate?

Q3: Can this knowledge inform the PCE construction?

²T. Crestaux, O. L. Maitre, and J.-M. Martinez. "Polynomial chaos expansion for sensitivity analysis". In: *Reliability Engineering & System Safety* 94 (7 2009), pp. 1161–1172.

Context: NISP via sampling is not new², so...

Q: what do we need to know in the **RT context**?

A: The **QoI is not obtained directly**, but as a statistics of elementary events

Assumptions/Notation

- **UQ parameters:** $\xi \in \Xi \subset \mathbb{R}^d$
- **MC transport (internal) randomness:** $\eta \in H \subset \mathbb{R}^{d'}$
- **Particle histories** are interpreted as elementary events: $f = f(\xi, \eta)$
- **RT QoI:** Statistics, e.g., average, of f over the histories for a fixed UQ realization:

$$Q(\xi) = \mathbb{E}_\eta [f(\xi, \eta)] \stackrel{MC\ RT}{\approx} \frac{1}{N_\eta} \sum_{j=1}^{N_\eta} f(\xi, \eta^{(j)}) \stackrel{\text{def}}{=} \tilde{Q}(\xi)$$

NOTE:

- In the limit of $N_\eta \rightarrow \infty$, $\tilde{Q}(\xi) \rightarrow Q(\xi)$, but we do have **limited histories**

In this talk:

Q1: How do we **propagate the effect** of a limited number of histories?

Q2: What is the **impact of this 'error'** in the PCE coefficients/surrogate?

Q3: Can this knowledge inform the **PCE construction**?

² T. Crestaux, O. L. Maitre, and J.-M. Martinez. "Polynomial chaos expansion for sensitivity analysis". In: *Reliability Engineering & System Safety* 94 (7 2009), pp. 1161–1172.

Step 1. Introducing the MC transport QoI definition

$$\begin{aligned}\beta_k &= \frac{1}{b_k} \mathbb{E}_\xi [\mathcal{Q}(\xi) \Psi_k(\xi)] \\ &= \frac{1}{b_k} \mathbb{E}_\xi [\mathbb{E}_\eta [f(\xi, \eta)] \Psi_k(\xi)]\end{aligned}$$

Step 2. Sampling approximations

$$\begin{aligned}\beta_k &= \frac{1}{b_k} \mathbb{E}_\xi [\mathbb{E}_\eta [f(\xi, \eta)] \Psi_k(\xi)] \\ &= \frac{1}{b_k} \frac{1}{N_\xi} \sum_{i=1}^{N_\xi} \left[\mathbb{E}_\eta \left[f(\xi^{(i)}, \eta) \right] \Psi_k(\xi^{(i)}) \right] \\ &= \boxed{\frac{1}{b_k} \frac{1}{N_\xi} \sum_{i=1}^{N_\xi} \left[\frac{1}{N_\eta} \sum_{j=1}^{N_\eta} f(\xi^{(i)}, \eta^{(j)}) \Psi_k(\xi^{(i)}) \right]} \stackrel{\text{def}}{=} \hat{\beta}_k\end{aligned}$$

NOTE: this estimator is unbiased

Step 1. Introducing the MC transport QoI definition

$$\begin{aligned}\beta_k &= \frac{1}{b_k} \mathbb{E}_\xi [\mathcal{Q}(\xi) \Psi_k(\xi)] \\ &= \frac{1}{b_k} \mathbb{E}_\xi [\mathbb{E}_\eta [f(\xi, \eta)] \Psi_k(\xi)]\end{aligned}$$

Step 2. Sampling approximations

$$\begin{aligned}\beta_k &= \frac{1}{b_k} \mathbb{E}_\xi [\mathbb{E}_\eta [f(\xi, \eta)] \Psi_k(\xi)] \\ &= \frac{1}{b_k} \frac{1}{N_\xi} \sum_{i=1}^{N_\xi} \left[\mathbb{E}_\eta \left[f(\xi^{(i)}, \eta) \right] \Psi_k(\xi^{(i)}) \right] \\ &= \boxed{\frac{1}{b_k} \frac{1}{N_\xi} \sum_{i=1}^{N_\xi} \left[\frac{1}{N_\eta} \sum_{j=1}^{N_\eta} f(\xi^{(i)}, \eta^{(j)}) \Psi_k(\xi^{(i)}) \right]} \stackrel{\text{def}}{=} \hat{\beta}_k\end{aligned}$$

NOTE: this estimator is unbiased

Step 1. Introducing the MC transport QoI definition

$$\begin{aligned}\beta_k &= \frac{1}{b_k} \mathbb{E}_\xi [\mathcal{Q}(\xi) \Psi_k(\xi)] \\ &= \frac{1}{b_k} \mathbb{E}_\xi [\mathbb{E}_\eta [f(\xi, \eta)] \Psi_k(\xi)]\end{aligned}$$

Step 2. Sampling approximations

$$\begin{aligned}\beta_k &= \frac{1}{b_k} \mathbb{E}_\xi [\mathbb{E}_\eta [f(\xi, \eta)] \Psi_k(\xi)] \\ &= \frac{1}{b_k} \frac{1}{N_\xi} \sum_{i=1}^{N_\xi} \left[\mathbb{E}_\eta \left[f(\xi^{(i)}, \eta) \right] \Psi_k(\xi^{(i)}) \right] \\ &= \boxed{\frac{1}{b_k} \frac{1}{N_\xi} \sum_{i=1}^{N_\xi} \left[\frac{1}{N_\eta} \sum_{j=1}^{N_\eta} f(\xi^{(i)}, \eta^{(j)}) \Psi_k(\xi^{(i)}) \right]} \stackrel{\text{def}}{=} \hat{\beta}_k\end{aligned}$$

NOTE: this estimator is unbiased

NISP FOR RADIATION TRANSPORT

VARIANCE OF THE NESTED MC-MC ESTIMATOR⁴

$$\hat{\beta}_k = \frac{1}{b_k} \frac{1}{N_\xi} \sum_{i=1}^{N_\xi} \left[\tilde{Q}(\xi^{(i)}) \Psi_k(\xi^{(i)}) \right] \quad \rightarrow \quad \mathbb{V}ar \left[\hat{\beta}_k \right] = \frac{1}{b_k^2} \frac{\mathbb{V}ar \left[\tilde{Q} \Psi_k \right]}{N_\xi}$$

Q: Can we separate the effect of the MC RT randomness?

Law-of-total variance (and variance deconvolution³)

$$\mathbb{V}ar \left[\tilde{Q}(\xi; \eta) \Psi_k(\xi) \right] = \mathbb{V}ar [Q(\xi) \Psi_k(\xi)] + \mathbb{E} \left[\frac{\sigma_\eta^2(\xi)}{N_\eta} \Psi_k^2(\xi) \right], \quad \sigma_\eta^2(\xi) = \mathbb{V}ar_\eta [f(\xi, \eta)]$$

Finally,

$$\mathbb{V}ar \left[\hat{\beta}_k \right] = \frac{1}{b_k^2} \frac{\mathbb{V}ar [Q(\xi) \Psi_k(\xi)] + \mathbb{E} \left[\frac{\sigma_\eta^2(\xi)}{N_\eta} \Psi_k^2(\xi) \right]}{N_\xi}$$

NOTES:

- The true variance is polluted by the (average) noise introduced by limited histories

³K. B. Clements, G. Geraci, and A. J. Olson. "Numerical investigation on the performance of a variance deconvolution estimator". In: *Trans. Am. Nucl. Soc.* 126 (2022), pp. 344–347.

⁴G. Geraci and Aaron J Olson. "Impact of sampling strategies in the polynomial chaos surrogate construction for Monte Carlo transport applications". In: *Proceedings of the American Nuclear Society M&C 2021 (ANS M&C 2021)*. 2021, pp. 76–86.

NISP FOR RADIATION TRANSPORT

VARIANCE OF THE NESTED MC-MC ESTIMATOR⁴

$$\hat{\beta}_k = \frac{1}{b_k} \frac{1}{N_\xi} \sum_{i=1}^{N_\xi} [\tilde{Q}(\xi^{(i)}) \Psi_k(\xi^{(i)})] \quad \rightarrow \quad \mathbb{V}ar [\hat{\beta}_k] = \frac{1}{b_k^2} \frac{\mathbb{V}ar [\tilde{Q} \Psi_k]}{N_\xi}$$

Q: Can we separate the effect of the MC RT randomness?

Law-of-total variance (and variance deconvolution³)

$$\mathbb{V}ar [\tilde{Q}(\xi; \eta) \Psi_k(\xi)] = \mathbb{V}ar [Q(\xi) \Psi_k(\xi)] + \mathbb{E} \left[\frac{\sigma_\eta^2(\xi)}{N_\eta} \Psi_k^2(\xi) \right], \quad \sigma_\eta^2(\xi) = \mathbb{V}ar_\eta [f(\xi, \eta)]$$

Finally,

$$\mathbb{V}ar [\hat{\beta}_k] = \frac{1}{b_k^2} \frac{\mathbb{V}ar [Q(\xi) \Psi_k(\xi)] + \mathbb{E} \left[\frac{\sigma_\eta^2(\xi)}{N_\eta} \Psi_k^2(\xi) \right]}{N_\xi}$$

NOTES:

- The true variance is polluted by the (average) noise introduced by limited histories

³K. B. Clements, G. Geraci, and A. J. Olson. "Numerical investigation on the performance of a variance deconvolution estimator". In: *Trans. Am. Nucl. Soc.* 126 (2022), pp. 344–347.

⁴G. Geraci and Aaron J Olson. "Impact of sampling strategies in the polynomial chaos surrogate construction for Monte Carlo transport applications". In: *Proceedings of the American Nuclear Society M&C 2021 (ANS M&C 2021)*. 2021, pp. 76–86.

NISP FOR RADIATION TRANSPORT

VARIANCE OF THE NESTED MC-MC ESTIMATOR⁴

$$\hat{\beta}_k = \frac{1}{b_k} \frac{1}{N_\xi} \sum_{i=1}^{N_\xi} [\tilde{Q}(\xi^{(i)}) \Psi_k(\xi^{(i)})] \quad \rightarrow \quad \mathbb{V}ar [\hat{\beta}_k] = \frac{1}{b_k^2} \frac{\mathbb{V}ar [\tilde{Q} \Psi_k]}{N_\xi}$$

Q: Can we separate the effect of the MC RT randomness?

Law-of-total variance (and *variance deconvolution*³)

$$\mathbb{V}ar [\tilde{Q}(\xi; \eta) \Psi_k(\xi)] = \mathbb{V}ar [Q(\xi) \Psi_k(\xi)] + \mathbb{E} \left[\frac{\sigma_\eta^2(\xi)}{N_\eta} \Psi_k^2(\xi) \right], \quad \sigma_\eta^2(\xi) = \mathbb{V}ar_\eta [f(\xi, \eta)]$$

Finally,

$$\mathbb{V}ar [\hat{\beta}_k] = \frac{1}{b_k^2} \frac{\mathbb{V}ar [Q(\xi) \Psi_k(\xi)] + \mathbb{E} \left[\frac{\sigma_\eta^2(\xi)}{N_\eta} \Psi_k^2(\xi) \right]}{N_\xi}$$

NOTES:

- The **true variance** is polluted by the (average) **noise** introduced by limited histories

³ K. B. Clements, G. Geraci, and A. J. Olson. "Numerical investigation on the performance of a variance deconvolution estimator". In: *Trans. Am. Nucl. Soc.* 126 (2022), pp. 344–347.

⁴ G. Geraci and Aaron J Olson. "Impact of sampling strategies in the polynomial chaos surrogate construction for Monte Carlo transport applications". In: *Proceedings of the American Nuclear Society M&C 2021 (ANS M&C 2021)*. 2021, pp. 76–86.

Algorithmic Contributions

- UQ studies require the evaluation of second or **higher powers of the coefficients**
- For instance, to evaluate the **variance**⁵

$$\text{Var}[Q] \approx \sum_{k=1}^P \beta_k^2 \mathbb{E}[\Psi_k^2]$$

- Through NISP we evaluate

$$\hat{\beta}_k = \frac{1}{b_k} \frac{1}{N_\xi} \sum_{i=1}^{N_\xi} \left[\frac{1}{N_\eta} \sum_{j=1}^{N_\eta} f(\xi^{(i)}, \eta^{(j)}) \Psi_k(\xi^{(i)}) \right]$$

Q: Can we use the previous expression for $\hat{\beta}_k$ to evaluate β_k^2 ?

A: Yes, but the resulting estimator is biased

$$\begin{aligned} \text{Var}[\hat{\beta}_k] &= \mathbb{E}[(\hat{\beta}_k)^2] - \overbrace{\mathbb{E}[\hat{\beta}_k]}^{\text{Unbiased}}^2 \\ &\implies \mathbb{E}[(\hat{\beta}_k)^2] = (\beta_k)^2 + \overbrace{\text{Var}[\hat{\beta}_k]}^{\text{Estimator bias}} \\ &= \mathbb{E}[(\hat{\beta}_k)^2] - (\beta_k)^2 \end{aligned}$$

⁵ or the conditional variances in Global Sensitivity Analysis

- UQ studies require the evaluation of second or **higher powers of the coefficients**
- For instance, to evaluate the **variance**⁵

$$\text{Var}[Q] \approx \sum_{k=1}^P \beta_k^2 \mathbb{E}[\Psi_k^2]$$

- Through NISP we evaluate

$$\hat{\beta}_k = \frac{1}{b_k} \frac{1}{N_\xi} \sum_{i=1}^{N_\xi} \left[\frac{1}{N_\eta} \sum_{j=1}^{N_\eta} f(\xi^{(i)}, \eta^{(j)}) \Psi_k(\xi^{(i)}) \right]$$

Q: Can we use the previous expression for $\hat{\beta}_k$ to evaluate β_k^2 ?

A: Yes, but **the resulting estimator is biased**

$$\begin{aligned} \text{Var}[\hat{\beta}_k] &= \mathbb{E}[(\hat{\beta}_k)^2] - \overbrace{\mathbb{E}[\hat{\beta}_k]}^{(\text{Unbiased})}^2 \\ &\implies \mathbb{E}[(\hat{\beta}_k)^2] = (\beta_k)^2 + \overbrace{\text{Var}[\hat{\beta}_k]}^{(\text{Estimator bias})} \\ &= \mathbb{E}[(\hat{\beta}_k)^2] - (\beta_k)^2 \end{aligned}$$

⁵ or the conditional variances in Global Sensitivity Analysis

- UQ studies require the evaluation of second or **higher powers of the coefficients**
- For instance, to evaluate the **variance**⁵

$$\text{Var}[Q] \approx \sum_{k=1}^P \beta_k^2 \mathbb{E}[\Psi_k^2]$$

- Through NISP we evaluate

$$\hat{\beta}_k = \frac{1}{b_k} \frac{1}{N_\xi} \sum_{i=1}^{N_\xi} \left[\frac{1}{N_\eta} \sum_{j=1}^{N_\eta} f(\xi^{(i)}, \eta^{(j)}) \Psi_k(\xi^{(i)}) \right]$$

Q: Can we use the previous expression for $\hat{\beta}_k$ to evaluate β_k^2 ?

A: Yes, but **the resulting estimator is biased**

$$\begin{aligned} \text{Var}[\hat{\beta}_k] &= \mathbb{E}[(\hat{\beta}_k)^2] - \overbrace{\mathbb{E}[\hat{\beta}_k]}^{\text{Unbiased}}^2 \\ &\implies \mathbb{E}[(\hat{\beta}_k)^2] = (\beta_k)^2 + \overbrace{\text{Var}[\hat{\beta}_k]}^{\text{Estimator bias}} \\ &= \mathbb{E}[(\hat{\beta}_k)^2] - (\beta_k)^2 \end{aligned}$$

⁵ or the conditional variances in Global Sensitivity Analysis

- Two **sources of variability** affect the **PC construction** (in our case)

- Randomness introduced by **finite sampling** in ξ , i.e., N_ξ
- Randomness introduced by **finite sampling** in η , i.e., MC RT noise given by N_η

- We can quantify #2 by extending **variance deconvolution** to the variance-covariance matrix of the coefficients' estimators

Step 1: Write QoI at a fixed UQ parameter location

$$Q(\xi = \bar{\xi}) \approx \hat{\beta}_0 + \underline{\Psi}^T(\bar{\xi}) \underline{\hat{\beta}}_{N_\eta}$$

Step 2: Estimate the variance of this quantity

$$\text{Var} \left[\underline{\Psi}^T(\bar{\xi}) \underline{\hat{\beta}}_{N_\eta} \right] = \underline{\Psi}^T(\bar{\xi}) \text{Var} \left[\underline{\hat{\beta}}_{N_\eta} \right] \underline{\Psi}(\bar{\xi}),$$

Step 3: Estimate the covariance terms

$$\begin{aligned} \text{Cov} \left[\hat{\beta}_{k,N_\eta}, \hat{\beta}_{r,N_\eta} \right] &= \mathbb{E} \left[\hat{\beta}_{k,N_\eta} \hat{\beta}_{r,N_\eta} \right] - \mathbb{E} \left[\hat{\beta}_{k,N_\eta} \right] \mathbb{E} \left[\hat{\beta}_{r,N_\eta} \right] \\ &= \frac{1}{N_\xi} \left(\frac{\mathbb{E} \left[\Psi_k \Psi_r \tilde{Q}_{N_\eta}^2 \right]}{b_k b_r} - \frac{\mathbb{E} \left[\Psi_k \tilde{Q}_{N_\eta} \right] \mathbb{E} \left[\Psi_r \tilde{Q}_{N_\eta} \right]}{b_k b_r} \right) \\ &= \text{Cov}_\xi \left[\hat{\beta}_k, \hat{\beta}_r \right] + \frac{1}{N_\xi} \frac{1}{b_k b_r} \mathbb{E}_\xi \left[\Psi_k \Psi_r \frac{\sigma_\eta^2}{N_\eta} \right] \end{aligned}$$

- Two **sources of variability** affect the **PC construction** (in our case)
 - Randomness introduced by **finite sampling in ξ** , i.e., N_ξ
 - Randomness introduced by **finite sampling in η** , i.e., MC RT noise given by N_η
- We can quantify #2 by extending **variance deconvolution** to the variance-covariance matrix of the coefficients' estimators

Step 1: Write QoI at a fixed UQ parameter location

$$Q(\xi = \bar{\xi}) \approx \hat{\beta}_0 + \underline{\Psi}^T(\bar{\xi}) \underline{\hat{\beta}}_{N_\eta}$$

Step 2: Estimate the variance of this quantity

$$\text{Var} \left[\underline{\Psi}^T(\bar{\xi}) \underline{\hat{\beta}}_{N_\eta} \right] = \underline{\Psi}^T(\bar{\xi}) \text{Var} \left[\underline{\hat{\beta}}_{N_\eta} \right] \underline{\Psi}(\bar{\xi}),$$

Step 3: Estimate the covariance terms

$$\begin{aligned} \text{Cov} \left[\hat{\beta}_{k,N_\eta}, \hat{\beta}_{r,N_\eta} \right] &= \mathbb{E} \left[\hat{\beta}_{k,N_\eta} \hat{\beta}_{r,N_\eta} \right] - \mathbb{E} \left[\hat{\beta}_{k,N_\eta} \right] \mathbb{E} \left[\hat{\beta}_{r,N_\eta} \right] \\ &= \frac{1}{N_\xi} \left(\frac{\mathbb{E} \left[\Psi_k \Psi_r \tilde{Q}_{N_\eta}^2 \right]}{b_k b_r} - \frac{\mathbb{E} \left[\Psi_k \tilde{Q}_{N_\eta} \right] \mathbb{E} \left[\Psi_r \tilde{Q}_{N_\eta} \right]}{b_k b_r} \right) \\ &= \text{Cov}_\xi \left[\hat{\beta}_k, \hat{\beta}_r \right] + \frac{1}{N_\xi} \frac{1}{b_k b_r} \mathbb{E}_\xi \left[\Psi_k \Psi_r \frac{\sigma_\eta^2}{N_\eta} \right] \end{aligned}$$

- Two **sources of variability** affect the **PC construction** (in our case)
 - Randomness introduced by **finite sampling in ξ** , i.e., N_ξ
 - Randomness introduced by **finite sampling in η** , i.e., MC RT noise given by N_η
- We can quantify #2 by extending variance deconvolution to the variance-covariance matrix of the coefficients' estimators

Step 1: Write QoI at a fixed UQ parameter location

$$Q(\xi = \bar{\xi}) \approx \hat{\beta}_0 + \underline{\Psi}^T(\bar{\xi}) \underline{\hat{\beta}}_{N_\eta}$$

Step 2: Estimate the variance of this quantity

$$\text{Var} \left[\underline{\Psi}^T(\bar{\xi}) \underline{\hat{\beta}}_{N_\eta} \right] = \underline{\Psi}^T(\bar{\xi}) \text{Var} \left[\underline{\hat{\beta}}_{N_\eta} \right] \underline{\Psi}(\bar{\xi}),$$

Step 3: Estimate the covariance terms

$$\begin{aligned} \text{Cov} \left[\hat{\beta}_{k,N_\eta}, \hat{\beta}_{r,N_\eta} \right] &= \mathbb{E} \left[\hat{\beta}_{k,N_\eta} \hat{\beta}_{r,N_\eta} \right] - \mathbb{E} \left[\hat{\beta}_{k,N_\eta} \right] \mathbb{E} \left[\hat{\beta}_{r,N_\eta} \right] \\ &= \frac{1}{N_\xi} \left(\frac{\mathbb{E} \left[\Psi_k \Psi_r \tilde{Q}_{N_\eta}^2 \right]}{b_k b_r} - \frac{\mathbb{E} \left[\Psi_k \tilde{Q}_{N_\eta} \right] \mathbb{E} \left[\Psi_r \tilde{Q}_{N_\eta} \right]}{b_k b_r} \right) \\ &= \text{Cov}_\xi \left[\hat{\beta}_k, \hat{\beta}_r \right] + \frac{1}{N_\xi} \frac{1}{b_k b_r} \mathbb{E}_\xi \left[\Psi_k \Psi_r \frac{\sigma_\eta^2}{N_\eta} \right] \end{aligned}$$

- Two **sources of variability** affect the **PC construction** (in our case)
 - Randomness introduced by **finite sampling in ξ** , i.e., N_ξ
 - Randomness introduced by **finite sampling in η** , i.e., MC RT noise given by N_η
- We can quantify **#2** by extending **variance deconvolution** to the variance-covariance matrix of the coefficients' estimators

Step 1: Write QoI at a fixed UQ parameter location

$$Q(\xi = \bar{\xi}) \approx \hat{\beta}_0 + \underline{\Psi}^T(\bar{\xi}) \underline{\hat{\beta}}_{N_\eta}$$

Step 2: Estimate the variance of this quantity

$$\text{Var} \left[\underline{\Psi}^T(\bar{\xi}) \underline{\hat{\beta}}_{N_\eta} \right] = \underline{\Psi}^T(\bar{\xi}) \text{Var} \left[\underline{\hat{\beta}}_{N_\eta} \right] \underline{\Psi}(\bar{\xi}),$$

Step 3: Estimate the covariance terms

$$\begin{aligned} \text{Cov} \left[\hat{\beta}_{k,N_\eta}, \hat{\beta}_{r,N_\eta} \right] &= \mathbb{E} \left[\hat{\beta}_{k,N_\eta} \hat{\beta}_{r,N_\eta} \right] - \mathbb{E} \left[\hat{\beta}_{k,N_\eta} \right] \mathbb{E} \left[\hat{\beta}_{r,N_\eta} \right] \\ &= \frac{1}{N_\xi} \left(\frac{\mathbb{E} \left[\Psi_k \Psi_r \tilde{Q}_{N_\eta}^2 \right]}{b_k b_r} - \frac{\mathbb{E} \left[\Psi_k \tilde{Q}_{N_\eta} \right] \mathbb{E} \left[\Psi_r \tilde{Q}_{N_\eta} \right]}{b_k b_r} \right) \\ &= \text{Cov}_\xi \left[\hat{\beta}_k, \hat{\beta}_r \right] + \frac{1}{N_\xi} \frac{1}{b_k b_r} \mathbb{E}_\xi \left[\Psi_k \Psi_r \frac{\sigma_\eta^2}{N_\eta} \right] \end{aligned}$$

- Two **sources of variability** affect the **PC construction** (in our case)
 - Randomness introduced by **finite sampling in ξ** , i.e., N_ξ
 - Randomness introduced by **finite sampling in η** , i.e., MC RT noise given by N_η
- We can quantify **#2** by extending **variance deconvolution** to the variance-covariance matrix of the coefficients' estimators

Step 1: Write QoI at a fixed UQ parameter location

$$Q(\xi = \bar{\xi}) \approx \hat{\beta}_0 + \underline{\Psi}^T(\bar{\xi}) \underline{\hat{\beta}}_{N_\eta}$$

Step 2: Estimate the variance of this quantity

$$\text{Var} \left[\underline{\Psi}^T(\bar{\xi}) \underline{\hat{\beta}}_{N_\eta} \right] = \underline{\Psi}^T(\bar{\xi}) \text{Var} \left[\underline{\hat{\beta}}_{N_\eta} \right] \underline{\Psi}(\bar{\xi}),$$

Step 3: Estimate the covariance terms

$$\begin{aligned} \text{Cov} \left[\hat{\beta}_{k,N_\eta}, \hat{\beta}_{r,N_\eta} \right] &= \mathbb{E} \left[\hat{\beta}_{k,N_\eta} \hat{\beta}_{r,N_\eta} \right] - \mathbb{E} \left[\hat{\beta}_{k,N_\eta} \right] \mathbb{E} \left[\hat{\beta}_{r,N_\eta} \right] \\ &= \frac{1}{N_\xi} \left(\frac{\mathbb{E} \left[\Psi_k \Psi_r \tilde{Q}_{N_\eta}^2 \right]}{b_k b_r} - \frac{\mathbb{E} \left[\Psi_k \tilde{Q}_{N_\eta} \right] \mathbb{E} \left[\Psi_r \tilde{Q}_{N_\eta} \right]}{b_k b_r} \right) \\ &= \text{Cov}_\xi \left[\hat{\beta}_k, \hat{\beta}_r \right] + \frac{1}{N_\xi} \frac{1}{b_k b_r} \mathbb{E}_\xi \left[\Psi_k \Psi_r \frac{\sigma_\eta^2}{N_\eta} \right] \end{aligned}$$

- Two **sources of variability** affect the **PC construction** (in our case)
 - Randomness introduced by **finite sampling in ξ** , i.e., N_ξ
 - Randomness introduced by **finite sampling in η** , i.e., MC RT noise given by N_η
- We can quantify **#2** by extending **variance deconvolution** to the variance-covariance matrix of the coefficients' estimators

Step 1: Write QoI at a fixed UQ parameter location

$$Q(\xi = \bar{\xi}) \approx \hat{\beta}_0 + \underline{\Psi}^T(\bar{\xi}) \underline{\hat{\beta}}_{N_\eta}$$

Step 2: Estimate the variance of this quantity

$$\text{Var} \left[\underline{\Psi}^T(\bar{\xi}) \underline{\hat{\beta}}_{N_\eta} \right] = \underline{\Psi}^T(\bar{\xi}) \text{Var} \left[\underline{\hat{\beta}}_{N_\eta} \right] \underline{\Psi}(\bar{\xi}),$$

Step 3: Estimate the covariance terms

$$\begin{aligned} \text{Cov} \left[\hat{\beta}_{k,N_\eta}, \hat{\beta}_{r,N_\eta} \right] &= \mathbb{E} \left[\hat{\beta}_{k,N_\eta} \hat{\beta}_{r,N_\eta} \right] - \mathbb{E} \left[\hat{\beta}_{k,N_\eta} \right] \mathbb{E} \left[\hat{\beta}_{r,N_\eta} \right] \\ &= \frac{1}{N_\xi} \left(\frac{\mathbb{E} \left[\Psi_k \Psi_r \tilde{Q}_{N_\eta}^2 \right]}{b_k b_r} - \frac{\mathbb{E} \left[\Psi_k \tilde{Q}_{N_\eta} \right] \mathbb{E} \left[\Psi_r \tilde{Q}_{N_\eta} \right]}{b_k b_r} \right) \\ &= \text{Cov}_\xi \left[\hat{\beta}_k, \hat{\beta}_r \right] + \frac{1}{N_\xi} \frac{1}{b_k b_r} \mathbb{E}_\xi \left[\Psi_k \Psi_r \frac{\sigma_\eta^2}{N_\eta} \right] \end{aligned}$$

- Two **sources of variability** affect the **PC construction** (in our case)
 - Randomness introduced by **finite sampling in ξ** , i.e., N_ξ
 - Randomness introduced by **finite sampling in η** , i.e., MC RT noise given by N_η
- We can quantify **#2** by extending **variance deconvolution** to the variance-covariance matrix of the coefficients' estimators

Step 1: Write QoI at a fixed UQ parameter location

$$Q(\xi = \bar{\xi}) \approx \hat{\beta}_0 + \underline{\Psi}^T(\bar{\xi}) \underline{\hat{\beta}}_{N_\eta}$$

Step 2: Estimate the variance of this quantity

$$\text{Var} \left[\underline{\Psi}^T(\bar{\xi}) \underline{\hat{\beta}}_{N_\eta} \right] = \underline{\Psi}^T(\bar{\xi}) \text{Var} \left[\underline{\hat{\beta}}_{N_\eta} \right] \underline{\Psi}(\bar{\xi}),$$

Step 3: Estimate the covariance terms

$$\begin{aligned} \text{Cov} \left[\hat{\beta}_{k,N_\eta}, \hat{\beta}_{r,N_\eta} \right] &= \mathbb{E} \left[\hat{\beta}_{k,N_\eta} \hat{\beta}_{r,N_\eta} \right] - \mathbb{E} \left[\hat{\beta}_{k,N_\eta} \right] \mathbb{E} \left[\hat{\beta}_{r,N_\eta} \right] \\ &= \frac{1}{N_\xi} \left(\frac{\mathbb{E} \left[\Psi_k \Psi_r \tilde{Q}_{N_\eta}^2 \right]}{b_k b_r} - \frac{\mathbb{E} \left[\Psi_k \tilde{Q}_{N_\eta} \right] \mathbb{E} \left[\Psi_r \tilde{Q}_{N_\eta} \right]}{b_k b_r} \right) \\ &= \text{Cov}_\xi \left[\hat{\beta}_k, \hat{\beta}_r \right] + \frac{1}{N_\xi} \frac{1}{b_k b_r} \mathbb{E}_\xi \left[\Psi_k \Psi_r \frac{\sigma_\eta^2}{N_\eta} \right] \end{aligned}$$

- Two **sources of variability** affect the **PC construction** (in our case)
 - Randomness introduced by **finite sampling in ξ** , i.e., N_ξ
 - Randomness introduced by **finite sampling in η** , i.e., MC RT noise given by N_η
- We can quantify **#2** by extending **variance deconvolution** to the variance-covariance matrix of the coefficients' estimators

Step 1: Write QoI at a fixed UQ parameter location

$$Q(\xi = \bar{\xi}) \approx \hat{\beta}_0 + \underline{\Psi}^T(\bar{\xi}) \underline{\hat{\beta}}_{N_\eta}$$

Step 2: Estimate the variance of this quantity

$$\text{Var} \left[\underline{\Psi}^T(\bar{\xi}) \underline{\hat{\beta}}_{N_\eta} \right] = \underline{\Psi}^T(\bar{\xi}) \text{Var} \left[\underline{\hat{\beta}}_{N_\eta} \right] \underline{\Psi}(\bar{\xi}),$$

Step 3: Estimate the covariance terms

$$\begin{aligned} \text{Cov} \left[\hat{\beta}_{k,N_\eta}, \hat{\beta}_{r,N_\eta} \right] &= \mathbb{E} \left[\hat{\beta}_{k,N_\eta} \hat{\beta}_{r,N_\eta} \right] - \mathbb{E} \left[\hat{\beta}_{k,N_\eta} \right] \mathbb{E} \left[\hat{\beta}_{r,N_\eta} \right] \\ &= \frac{1}{N_\xi} \left(\frac{\mathbb{E} \left[\Psi_k \Psi_r \tilde{Q}_{N_\eta}^2 \right]}{b_k b_r} - \frac{\mathbb{E} \left[\Psi_k \tilde{Q}_{N_\eta} \right] \mathbb{E} \left[\Psi_r \tilde{Q}_{N_\eta} \right]}{b_k b_r} \right) \\ &= \text{Cov}_\xi \left[\hat{\beta}_k, \hat{\beta}_r \right] + \frac{1}{N_\xi} \frac{1}{b_k b_r} \mathbb{E}_\xi \left[\Psi_k \Psi_r \frac{\sigma_\eta^2}{N_\eta} \right] \end{aligned}$$

- We have presented the PC expansion with

$$P + 1 = \frac{(n_0 + d)!}{n_0! d!} \text{ terms}$$

Q: How do we decide the number of terms to retain?

Solution

- Evaluate the QoI variance from sampling only (for $N_s > 1$), i.e., variance deconvolution

$$\text{Var}(Q)^{\text{obs}} = \text{Var}_S \left[Q_{N_S} \right] = S_S \left[\frac{\sigma^2}{N_S} \right]$$

- Re-order PC coefficients according to their (decreasing) contribution to the variance

- Select $P_{\text{trim}} \leq P$ such that

$$\sum_{i=1}^{P_{\text{trim}}} \left[(\hat{b}_i)^2 - \text{Var}[\hat{b}_i] \right] \leq \text{Var}(Q)^{\text{obs}}$$

- We have presented the PC expansion with

$$P + 1 = \frac{(n_0 + d)!}{n_0! d!} \text{ terms}$$

Q: How do we decide the number of terms to retain?

Solution

- Evaluate the QoI variance from sampling only (for $N_\eta > 1$), i.e., **variance deconvolution**

$$\text{Var} [Q]^{\text{dec}} = \text{Var}_\xi \left[\tilde{Q}_{N_\eta} \right] - \mathbb{E}_\xi \left[\frac{\sigma_\eta^2}{N_\eta} \right]$$

- Re-order PC coefficients according to their (decreasing) contribution to the variance

- Select $P_{\text{trim}} \leq P$ such that

$$\sum_{k=1}^{P_{\text{trim}}} \left[\left(\hat{\beta}_k \right)^2 - \text{Var} \left[\hat{\beta}_k \right] \right] \leq \text{Var} [Q]^{\text{dec}}$$

- We have presented the PC expansion with

$$P + 1 = \frac{(n_0 + d)!}{n_0! d!} \text{ terms}$$

Q: How do we decide the number of terms to retain?

Solution

- 1 Evaluate the QoI variance from sampling only (for $N_\eta > 1$), i.e., **variance deconvolution**

$$\text{Var} [Q]^{\text{dec}} = \text{Var}_\xi \left[\tilde{Q}_{N_\eta} \right] - \mathbb{E}_\xi \left[\frac{\sigma_\eta^2}{N_\eta} \right]$$

- 2 **Re-order PC coefficients** according to their (decreasing) contribution to the variance

- 3 Select $P_{\text{trim}} \leq P$ such that

$$\sum_{k=1}^{P_{\text{trim}}} \left[\left(\hat{\beta}_k \right)^2 - \text{Var} \left[\hat{\beta}_k \right] \right] \leq \text{Var} [Q]^{\text{dec}}$$

- We have presented the PC expansion with

$$P + 1 = \frac{(n_0 + d)!}{n_0! d!} \text{ terms}$$

Q: How do we decide the number of terms to retain?

Solution

- Evaluate the QoI variance from sampling only (for $N_\eta > 1$), i.e., **variance deconvolution**

$$\text{Var} [Q]^{\text{dec}} = \text{Var}_\xi \left[\tilde{Q}_{N_\eta} \right] - \mathbb{E}_\xi \left[\frac{\sigma_\eta^2}{N_\eta} \right]$$

- Re-order PC coefficients** according to their (decreasing) contribution to the variance

- Select $P_{\text{trim}} \leq P$ such that

$$\sum_{k=1}^{P_{\text{trim}}} \left[\left(\hat{\beta}_k \right)^2 - \text{Var} \left[\hat{\beta}_k \right] \right] \leq \text{Var} [Q]^{\text{dec}}$$

Numerical Results

RADIATION TRANSPORT EXAMPLE

1D STOCHASTIC TRANSPORT IN MATERIALS WITH UNCERTAIN PROPERTIES

- 1D slab, neutral particle, **absorption-only** mono-energetic steady state radiation transport
- Normally incident beam with unitary magnitude
- Random** material **cross sections**: $\Sigma_{t,m}(\xi_m) = \Sigma_{t,m}^0 + \Sigma_{t,m}^\Delta \xi_m$, where $\xi_m \sim \mathcal{U}(-1, 1)$
- The **QoI** is the **transmittance**: $T(\xi) = \psi(L, 1, \xi)$

$$\mu \frac{\partial \psi(x, \mu, \xi)}{\partial x} + \Sigma_t(x, \xi) \psi(x, \mu, \xi) = 0, \quad \text{where } 0 \leq x \leq L;$$

Analytical solution

$$T(\xi) = \exp \left[- \sum_{m=1}^d \Sigma_{t,m}(\xi_m) \Delta x_m \right] = \exp [-\tau(\xi)],$$

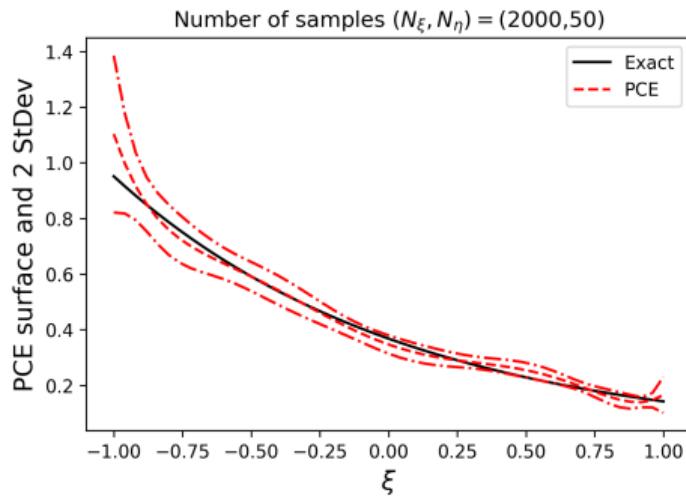
- Uncertain slab optical thickness**: $\tau(\xi)$
- mth material thickness**: Δx_m

Exact solution (nth raw moment)

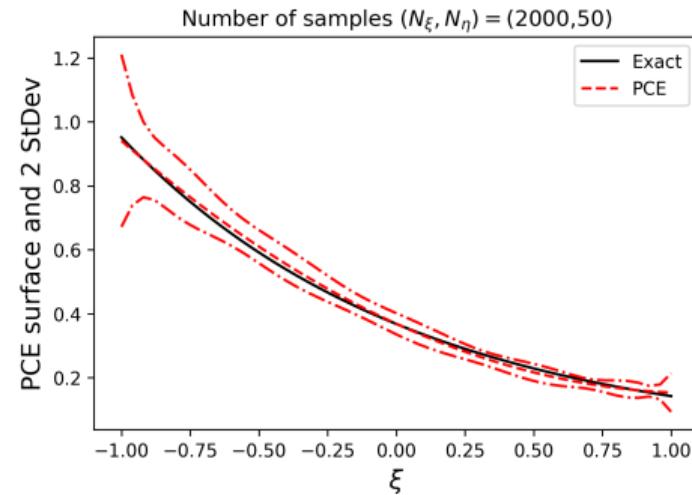
$$\mathbb{E} [T^n] = \int_{[-1,1]^d} T^n(\xi) p(\xi) d\xi = \prod_{m=1}^d \exp \left[-n \Sigma_{t,m}^0 \Delta x_m \right] \frac{\sinh \left[n \Sigma_{t,m}^\Delta \Delta x_m \right]}{n \Sigma_{t,m}^\Delta \Delta x_m}.$$

RADIATION TRANSPORT EXAMPLE

PC VARIABILITY (AND COEFFICIENTS TRIM)



(a) PCE W/O Trim (Sample 1)

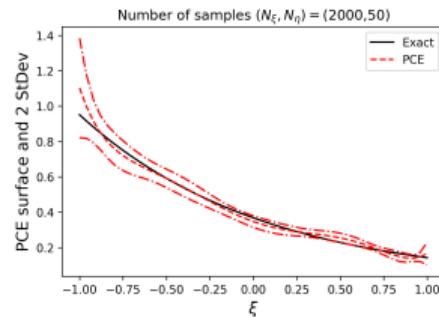


(b) PCE W/ Trim (Sample 1)

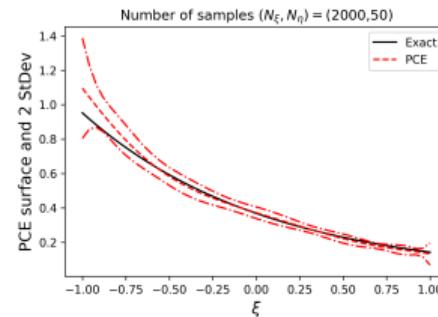
Figure: Two PC repetitions for the 1D attenuation problem (dashed red) with (bottom) and without (top) the expansion trim. Results obtained with $N_\xi = 2000$, $N_\xi = 50$, and $n_0 = 6$. The exact attenuation profile is reported in black.

RADIATION TRANSPORT EXAMPLE

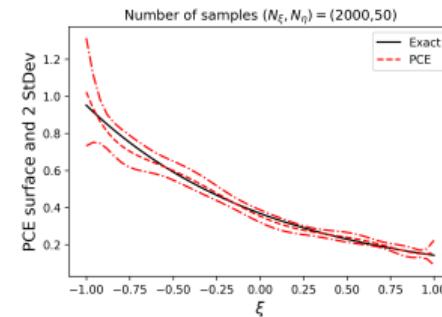
PC VARIABILITY (AND COEFFICIENTS TRIM)



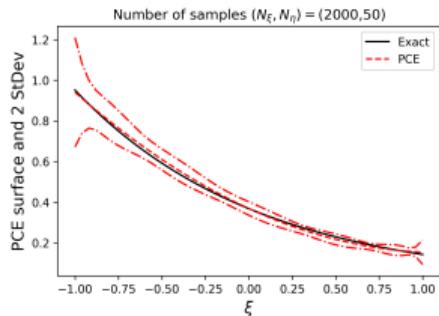
(a) PCE W/O Trim (Sample 1)



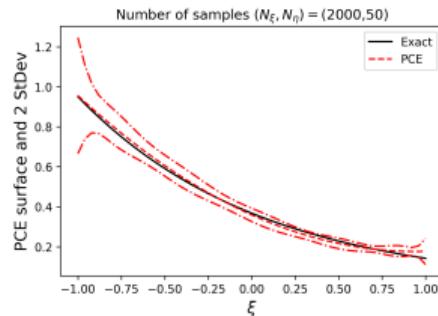
(b) PCE W/O Trim (Sample 2)



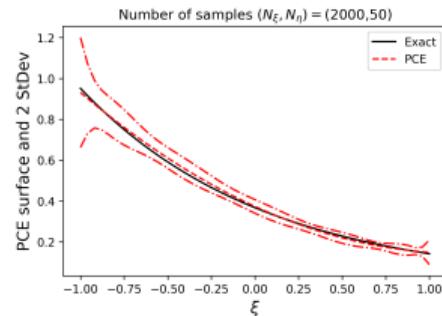
(c) PCE W/O Trim (Sample 3)



(d) PCE W/ Trim (Sample 1)



(e) PCE W/ Trim (Sample 2)



(f) PCE W/ Trim (Sample 3)

Figure: Three PC repetitions for the 1D attenuation problem (dashed red) with (bottom) and without (top) the expansion trim. All the results are obtained with $N_\xi = 2000$, $N_\eta = 50$, and $n_0 = 6$. The exact attenuation profile is reported in black.

RADIATION TRANSPORT EXAMPLE

QoI VARIANCE – INCREASING N_ξ

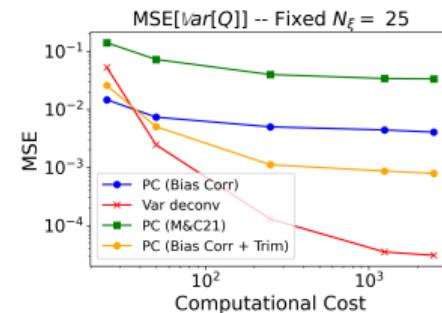
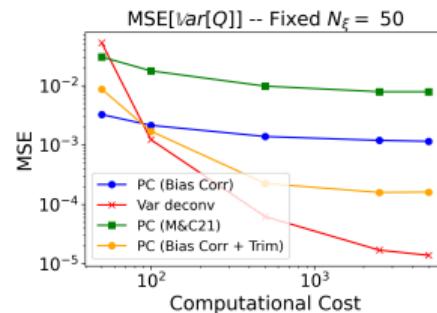
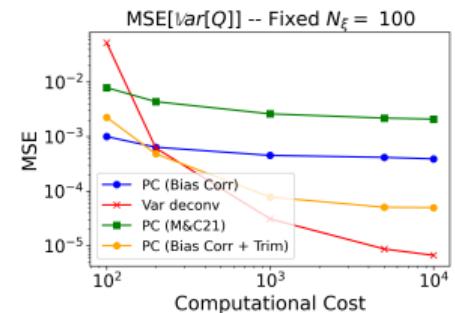
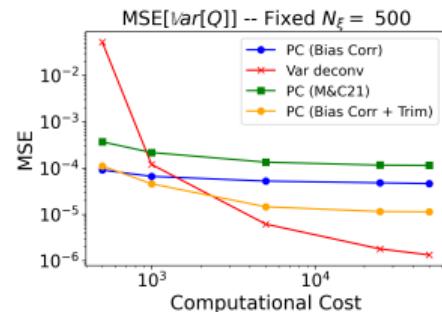
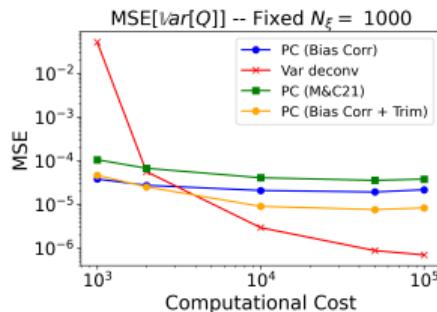


Figure: MSE for the estimated variance obtained with 1500 independent repetitions with an increasing number of UQ samples N_ξ and $N_\eta = [1, 2, 10, 50, 100]$.

RADIATION TRANSPORT EXAMPLE

QoI VARIANCE – INCREASING N_η

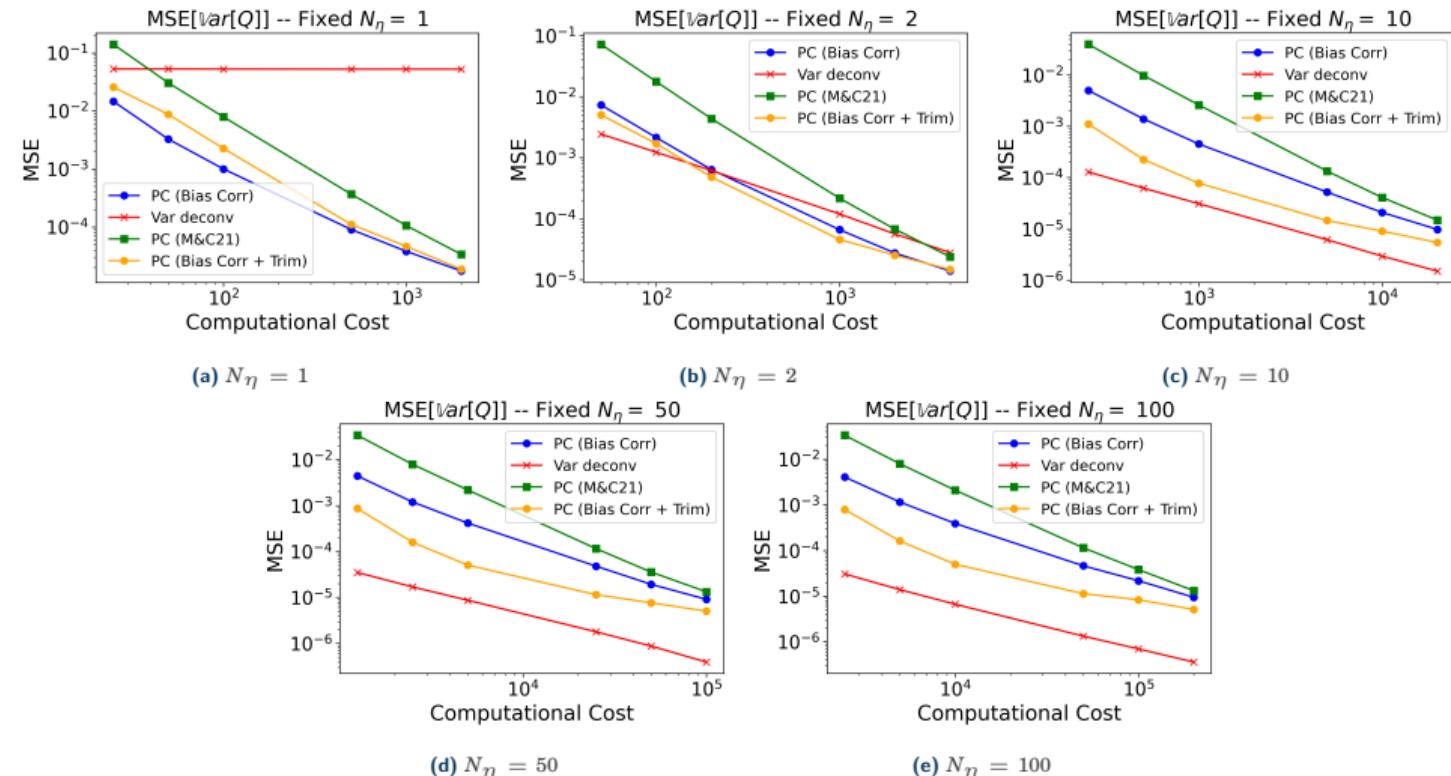


Figure: MSE for the estimated variance obtained with 1500 independent repetitions with an increasing number of particles N_η (per UQ sample) and $N_\xi = [25, 50, 100, 500, 1\,000, 2\,000]$.

RADIATION TRANSPORT EXAMPLE

BEYOND MOMENTS – GLOBAL SENSITIVITY ANALYSIS

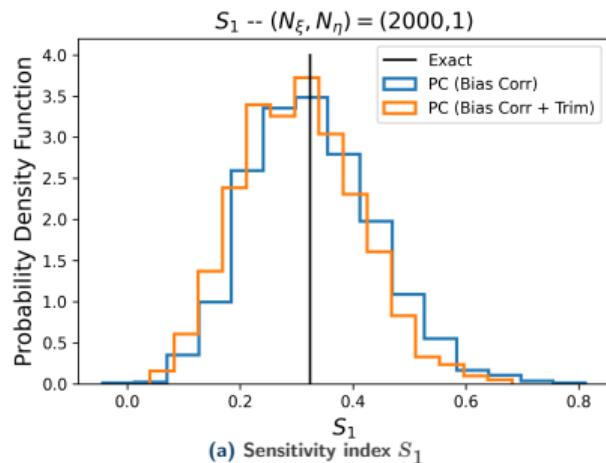
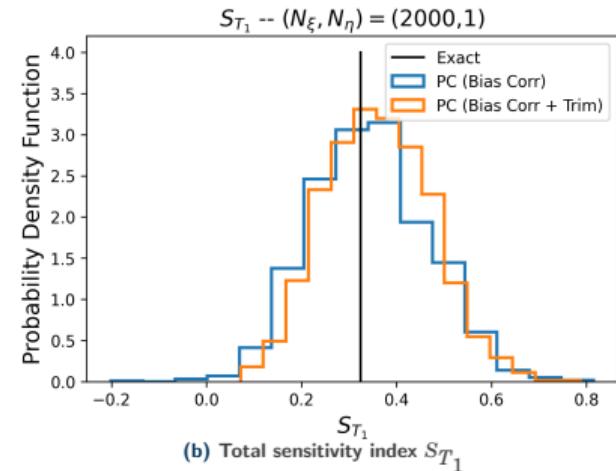


Figure: Sensitivity index S_1 (a) and total sensitivity index S_{T_1} (b) obtained with the PC with bias correction and bias correction and expansion trim.

Summary and Conclusions

Summary

- We explored the **efficient construction of PC surrogates** for UQ in **radiation transport** applications
- We demonstrated how to **manage the noise contributed by the MC RT** solver in the PC
- Several **algorithmic refinements** improved previous version⁶ of the algorithm

Ongoing

- Accounting for the re-start cost as

$$C_{tot} = N_\xi (C_\xi + C_\eta N_\eta)$$

- We have extended the theory to account for it, but this should be included in the comparisons

Conclusions

- Managing MC RT noise in PC seems to be both feasible and efficient
- Nevertheless, additional work is needed to rigorously compare and assess the effectiveness of this tool with other approaches, e.g., variance deconvolution (see Kayla's talk about GSA)

⁶ G. Geraci and Aaron J Olson. "Impact of sampling strategies in the polynomial chaos surrogate construction for Monte Carlo transport applications". In: *Proceedings of the American Nuclear Society M&C 2021 (ANS M&C 2021)*. 2021, pp. 76–86.

Summary

- We explored the **efficient construction of PC surrogates** for UQ in **radiation transport** applications
- We demonstrated how to **manage the noise contributed by the MC RT** solver in the PC
- Several **algorithmic refinements** improved previous version⁶ of the algorithm

Ongoing

- Accounting for the **re-start cost** as

$$C_{tot} = N_\xi (C_\xi + C_\eta N_\eta)$$

- We have extended the theory to account for it, but this **should be included in the comparisons**

Conclusions

- Managing MC RT noise in PC seems to be both feasible and efficient
- Nevertheless, additional work is needed to rigorously compare and assess the effectiveness of this tool with other approaches, e.g., variance deconvolution (see Kayla's talk about GSA)

⁶ G. Geraci and Aaron J Olson. "Impact of sampling strategies in the polynomial chaos surrogate construction for Monte Carlo transport applications". In: *Proceedings of the American Nuclear Society M&C 2021 (ANS M&C 2021)*. 2021, pp. 76–86.

Summary

- We explored the **efficient construction of PC surrogates** for UQ in **radiation transport** applications
- We demonstrated how to **manage the noise contributed by the MC RT** solver in the PC
- Several **algorithmic refinements** improved previous version⁶ of the algorithm

Ongoing

- Accounting for the **re-start cost** as

$$\mathcal{C}_{tot} = N_\xi (\mathcal{C}_\xi + \mathcal{C}_\eta N_\eta)$$

- We have extended the theory to account for it, but this **should be included in the comparisons**

Conclusions

- Managing MC RT noise in PC seems to be both feasible and efficient
- Nevertheless, **additional work is needed to rigorously compare and assess the effectiveness of this tool** with other approaches, e.g., variance deconvolution (see Kayla's talk about GSA)

⁶ G. Geraci and Aaron J Olson. "Impact of sampling strategies in the polynomial chaos surrogate construction for Monte Carlo transport applications". In: *Proceedings of the American Nuclear Society M&C 2021 (ANS M&C 2021)*. 2021, pp. 76–86.

THANKS!

Supported by the Laboratory Directed Research and Development program at Sandia National Laboratories, a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DENA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

References

- K. B. Clements, G. Geraci, and A. J. Olson. "Numerical investigation on the performance of a variance deconvolution estimator". In: *Trans. Am. Nucl. Soc.* 126 (2022), pp. 344–347.
- T. Crestaux, O. L. Maitre, and J.-M. Martinez. "Polynomial chaos expansion for sensitivity analysis". In: *Reliability Engineering & System Safety* 94 (7 2009), pp. 1161–1172.
- G. Geraci and Aaron J Olson. "Impact of sampling strategies in the polynomial chaos surrogate construction for Monte Carlo transport applications". In: *Proceedings of the American Nuclear Society M&C 2021 (ANS M&C 2021)*. 2021, pp. 76–86.
- O. Le Maitre and O. Knio. *Spectral methods for uncertainty quantification. With applications to computational fluid dynamics*. Springer Netherlands, 2010.

Additional Material

RADIATION TRANSPORT EXAMPLE

QoI VARIANCE – PDFs AND VARIANCE DECONVOLUTION

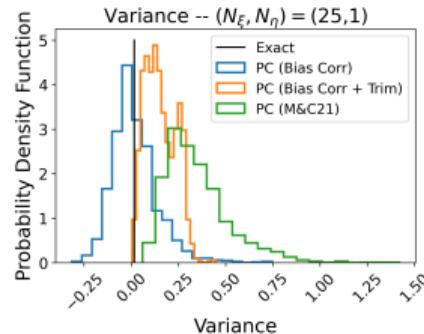
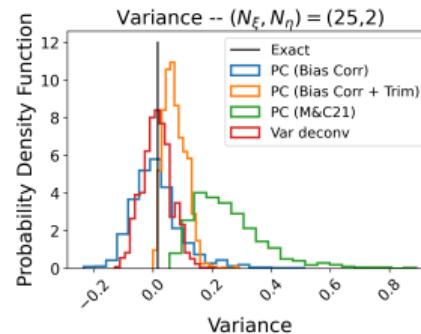
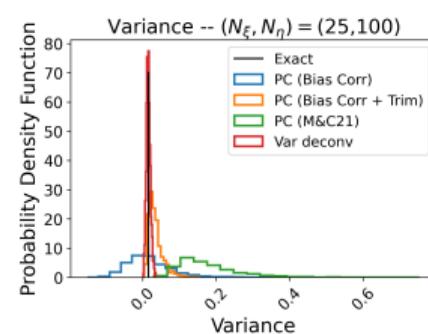
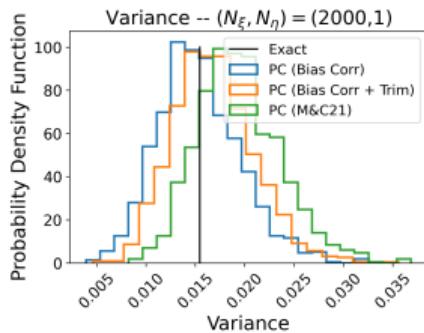
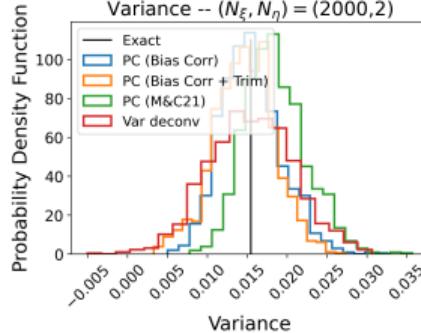
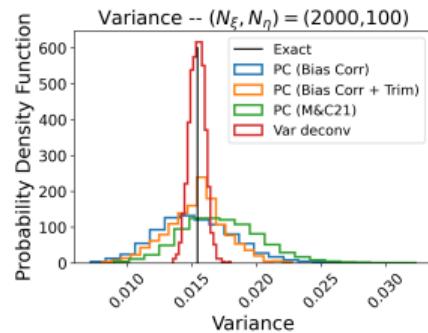


Figure: Probability density functions for the estimated variance with PCE and variance deconvolution.