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Motivation and Background



UNCERTAINTY QUANTIFICATION FOR RADIATION TRANSPORT
CONTEXT AND CHALLENGES

  

Figures courtesy of Brian Franke and Shawn Pautz

High-fidelity state-of-the-art modeling and simulations with HPC

Predictive science needs Uncertainty Quantification (UQ)

UQ under severe simulations budget constraints

Significant dimensionality driven by model complexity
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UNCERTAINTY QUANTIFICATION
GENERALITIES

  

Numerical 
Simulation

UQ parameters Quantity of Interest

Uncertainty Quantification:

UQ main tasks: Forward and Inverse

Forward UQ: Propagation of (known) parameter distributions through numerical code

Inverse UQ: Infer posterior distributions from observational data (Bayes rule)

Forward UQ via surrogate modeling:

Statistics −→ large number of QoI realizations

Computational burden can be alleviated by replacing the original code with a surrogate
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Polynomial Chaos



POLYNOMIAL CHAOS EXPANSION
GENERALITIES1

Polynomial Chaos

UQ parameters: ξ ∈ Ξ ⊂ Rd

Joint pdf: p(ξ) (independent components)

QoI: Q = Q(ξ) ∈ R
Polynomial Chaos Expansion

Q(ξ) =

∞∑
k=0

βkΨk(ξ) ≈
P∑

k=0

βkΨk(ξ) = QPCE
(ξ), with P + 1 =

(n0 + d)!

n0! d!
and

n0 being the total order of the expansion.

Polynomial basis Ψk is selected to be orthogonal w.r.t. p(ξ)

Remarks

Statistics can be obtained in close form or by sampling QPCE directly, e.g.

E [Q] ≈ β0 and Var [Q] ≈
P∑

k=1
β

2
k E

[
Ψ

2
k

]
Coefficients evaluation:

Regression: L2 (ordinary least-square) or L1 (sparse) minimization

Spectral projection: multidimensional integration

1O. Le Maitre and O. Knio. Spectral methods for uncertainty quantification. With applications to computational fluid dynamics. Springer Netherlands, 2010.
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NON-INTRUSIVE SPECTRAL PROJECTION
THE CASE OF RADIATION TRANSPORT APPLICATIONS

Spectral projection → Non-Intrusive Spectral Projection (NISP)

E [ΨkΨ`] =

∫
Ξ

ΨkΨ` p(ξ)dξ = bkδk` → βk =
E [QΨk]

bk

� Our task is the efficient computation of the multi-dimensional integral E [QΨk]

Radiation transport features

Large dimensionality, i.e. large number of uncertainty sources, random fields, etc.

Noisy response Q(ξ): MC transport solvers (more on this later)ww�
Sampling approaches: potentially more suited than quadrature in this context

Sampling Approaches → Monte Carlo

E [QΨk] =

∫
Ξ

Q(ξ)Ψk(ξ) p(ξ)dξ ≈
1

Nξ

Nξ∑
i=1

Q(ξ
(i)

)Ψk(ξ
(i)

)

Q: How do we get the QoI Q(ξ) in a Radiation Transport context?
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NISP FOR RT
THE MONTE CARLO TRANSPORT CASE

Context: NISP via sampling is not new2, so...
Q: what do we need to know in the RT context?
A: The QoI is not obtained directly, but as a statistics of elementary events

Assumptions/Notation

UQ parameters: ξ ∈ Ξ ⊂ Rd

MC transport (internal) randomness: η ∈ H ⊂ Rd′

Particle histories are interpreted as elementary events: f = f (ξ, η)

RT QoI: Statistics, e.g., average, of f over the histories for a fixed UQ realization:

Q(ξ) = Eη [f (ξ, η)]
MC RT
≈

1
Nη

Nη∑
j=1

f
(
ξ, η

(j)
)

def
= Q̃(ξ)

NOTE:

In the limit of Nη →∞, Q̃(ξ)→ Q(ξ), but we do have limited histories

In this talk:
Q1: How do we propagate the effect of a limited number of histories?
Q2: What is the impact of this ‘error’ in the PCE coefficients/surrogate?
Q3: Can this knowledge inform the PCE construction?

2T. Crestaux, O. L. Maitre, and J.-M. Martinez. “Polynomial chaos expansion for sensitivity analysis”. In: Reliability Engineering & System Safety 94 (7 2009), pp. 1161–1172.
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NISP FOR RT
THE EFFECT OF A LIMITED NUMBER OF HISTORIES

Step 1. Introducing the MC transport QoI definition

βk =
1
bk

Eξ [Q(ξ)Ψk(ξ)]

=
1
bk

Eξ [Eη [f (ξ, η)]Ψk(ξ)]

Step 2. Sampling approximations

βk =
1
bk

Eξ [Eη [f (ξ, η)] Ψk(ξ)]

=
1
bk

1
Nξ

Nξ∑
i=1

[
Eη
[
f (ξ(i)

, η)
]

Ψk(ξ
(i)

)
]

=
1
bk

1
Nξ

Nξ∑
i=1

 1
Nη

Nη∑
j=1

f (ξ(i)
, η

(j)
)Ψk(ξ

(i)
)

 def
= β̂k

NOTE: this estimator is unbiased
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NISP FOR RADIATION TRANSPORT
VARIANCE OF THE NESTED MC-MC ESTIMATOR4

β̂k =
1
bk

1
Nξ

Nξ∑
i=1

[
Q̃(ξ

(i)
)Ψk(ξ

(i)
)
]
−→ Var

[
β̂k

]
=

1
b2

k

Var
[
Q̃Ψk

]
Nξ

Q: Can we separate the effect of the MC RT randomness?

Law-of-total variance (and variance deconvolution3)

Var
[
Q̃(ξ; η)Ψk(ξ)

]
= Var [Q(ξ)Ψk(ξ)] + E

[
σ2
η(ξ)

Nη
Ψ

2
k(ξ)

]
, σ

2
η(ξ) = Varη [f (ξ, η)]

Finally,

Var
[
β̂k

]
=

1
b2

k

Var [Q(ξ)Ψk(ξ)] + E
[
σ2
η(ξ)

Nη
Ψ2

k(ξ)

]
Nξ

NOTES:

The true variance is polluted by the (average) noise introduced by limited histories

3K. B. Clements, G. Geraci, and A. J. Olson. “Numerical investigation on the performance of a variance deconvolution estimator”. In: Trans. Am. Nucl. Soc. 126 (2022),
pp. 344–347.

4G. Geraci and Aaron J Olson. “Impact of sampling strategies in the polynomial chaos surrogate construction for Monte Carlo transport applications”. In: Proceedings of the
American Nuclear Society M&C 2021 (ANS M&C 2021). 2021, pp. 76–86.
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Algorithmic Contributions



NISP FOR RT
UNBIASED FORMULATION

UQ studies require the evaluation of second or higher powers of the coefficients

For instance, to evaluate the variance5

Var [Q] ≈
P∑

k=1

β
2
k E
[
Ψ

2
k

]
Through NISP we evaluate

β̂k =
1
bk

1
Nξ

Nξ∑
i=1

 1
Nη

Nη∑
j=1

f
(
ξ
(i)
, η

(j)
)

Ψk

(
ξ
(i)
)

Q: Can we use the previous expression for β̂k to evaluate β2
k ?

A: Yes, but the resulting estimator is biased

Var
[
β̂k

]
= E

[(
β̂k

)2
]
−


Unbiased︷ ︸︸ ︷
E
[
β̂k

]
2

= E
[(
β̂k

)2
]
− (βk)

2

=⇒ E
[(
β̂k

)2
]

= (βk)
2

+

Estimator bias︷ ︸︸ ︷
Var

[
β̂k

]

5or the conditional variances in Global Sensitivity Analysis
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NISP FOR RT
ESTIMATION OF SURROGATE VARIABILITY

Two sources of variability affect the PC construction (in our case)

1 Randomness introduced by finite sampling in ξ, i.e., Nξ
2 Randomness introduced by finite sampling in η, i.e., MC RT noise given by Nη

We can quantify #2 by extending variance deconvolution to the variance-covariance matrix of the coefficients’ estimators

Step 1: Write QoI at a fixed UQ parameter location

Q
(
ξ = ξ̄

)
≈ β̂0 + Ψ

T
(ξ)β̂

Nη

Step 2: Estimate the variance of this quantity

Var
[
Ψ

T
(ξ)β̂

Nη

]
= Ψ

T
(ξ)Var

[
β̂

Nη

]
Ψ(ξ),

Step 3: Estimate the covariance terms

Cov
[
β̂k,Nη , β̂r,Nη

]
= E

[
β̂k,Nη β̂r,Nη

]
− E

[
β̂k,Nη

]
E
[
β̂r,Nη

]
=

1
Nξ

E
[
ΨkΨrQ̃2

Nη

]
bkbr

−
E
[
ΨkQ̃Nη

]
E
[
ΨrQ̃Nη

]
bkbr


= Covξ

[
β̂k, β̂r

]
+

1
Nξ

1
bkbr

Eξ

[
ΨkΨr

σ2
η

Nη

]
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NISP FOR RT
PC EXPANSION TRIM

We have presented the PC expansion with

P + 1 =
(n0 + d)!

n0! d!
terms

Q: How do we decide the number of terms to retain?

Solution

1 Evaluate the QoI variance from sampling only (for Nη > 1), i.e., variance deconvolution

Var [Q]
dec

= Varξ
[
Q̃Nη

]
− Eξ

[
σ2
η

Nη

]

2 Re-order PC coefficients according to their (decreasing) contribution to the variance

3 Select Ptrim ≤ P such that
Ptrim∑
k=1

[(
β̂k

)2
− Var

[
β̂k

]]
≤ Var [Q]

dec
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Numerical Results



RADIATION TRANSPORT EXAMPLE
1D STOCHASTIC TRANSPORT IN MATERIALS WITH UNCERTAIN PROPERTIES

1D slab, neutral particle, absorption-only mono-energetic steady state radiation transport

Normally incident beam with unitary magnitude

Random material cross sections: Σt,m(ξm) = Σ0
t,m + Σ∆

t,mξm, where ξm ∼ U(−1, 1)

The QoI is the transmittance: T(ξ) = ψ(L, 1, ξ)

µ
∂ψ(x, µ, ξ)

∂x
+ Σt(x, ξ)ψ(x, µ, ξ) = 0, where 0 ≤ x ≤ L;

Analytical solution

T(ξ) = exp

− d∑
m=1

Σt,m(ξm)∆xm

 = exp [−τ(ξ)] ,

Uncertain slab optical thickness: τ(ξ)

mth material thickness: ∆xm

Exact solution (nth raw moment)

E
[
Tn]

=

∫
[−1,1]d

Tn
(ξ)p(ξ) dξ =

d∏
m=1

exp
[
−nΣ

0
t,m∆xm

] sinh
[
nΣ∆

t,m∆xm

]
nΣ∆

t,m∆xm
.
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RADIATION TRANSPORT EXAMPLE
PC VARIABILITY (AND COEFFICIENTS TRIM)

(a) PCE W/O Trim (Sample 1) (b) PCE W/ Trim (Sample 1)

Figure: Two PC repetitions for the 1D attenuation problem (dashed red) with (bottom) and without (top) the expansion trim. Results obtained
with Nξ = 2000, Nξ = 50, and n0 = 6. The exact attenuation profile is reported in black.
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RADIATION TRANSPORT EXAMPLE
PC VARIABILITY (AND COEFFICIENTS TRIM)

(a) PCE W/O Trim (Sample 1) (b) PCE W/O Trim (Sample 2) (c) PCE W/O Trim (Sample 3)

(d) PCE W/ Trim (Sample 1) (e) PCE W/ Trim (Sample 2) (f) PCE W/ Trim (Sample 3)

Figure: Three PC repetitions for the 1D attenuation problem (dashed red) with (bottom) and without (top) the expansion trim. All the results
are obtained with Nξ = 2000, Nξ = 50, and n0 = 6. The exact attenuation profile is reported in black.

Polynomial Chaos construction for UQ of Radiation Transport Applications 12/16



RADIATION TRANSPORT EXAMPLE
QOI VARIANCE – INCREASING Nξ

(a) Nξ = 25 (b) Nξ = 50 (c) Nξ = 100

(d) Nξ = 500 (e) Nξ = 1000 (f) Nξ = 2000

Figure: MSE for the estimated variance obtained with 1 500 independent repetitions with an increasing number of UQ samples Nξ and
Nη = [1, 2, 10, 50, 100].
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RADIATION TRANSPORT EXAMPLE
QOI VARIANCE – INCREASING Nη

(a) Nη = 1 (b) Nη = 2 (c) Nη = 10

(d) Nη = 50 (e) Nη = 100

Figure: MSE for the estimated variance obtained with 1 500 independent repetitions with an increasing number of particles Nη (per UQ sample)
and Nξ = [25, 50, 100, 500, 1 000, 2 000].
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RADIATION TRANSPORT EXAMPLE
BEYOND MOMENTS – GLOBAL SENSITIVITY ANALYSIS

(a) Sensitivity index S1
(b) Total sensitivity index ST1

Figure: Sensitivity index S1 (a) and total sensitivity index ST1
(b) obtained with the PC with bias correction and bias correction and expansion

trim.
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Summary and Conclusions



SUMMARY AND CONCLUSIONS
FLEXIBLE SURROGATE CONSTRUCTION FOR RADIATION TRANSPORT

Summary

We explored the efficient contruction of PC surrogates for UQ in radiation transport applications

We demonstrated how to manage the noise contributed by the MC RT solver in the PC

Several algorithmic refinements improved previous version6 of the algorithm

Ongoing

Accounting for the re-start cost as
Ctot = Nξ (Cξ + CηNη)

We have extended the theory to account for it, but this should be included in the comparisons

Conclusions

Managing MC RT noise in PC seems to be both feasible and efficient

Nevertheless, additional work is needed to rigorously compare and assess the effectiveness of this tool with other
approaches, e.g., variance deconvolution (see Kayla’s talk about GSA)

6G. Geraci and Aaron J Olson. “Impact of sampling strategies in the polynomial chaos surrogate construction for Monte Carlo transport applications”. In: Proceedings of the
American Nuclear Society M&C 2021 (ANS M&C 2021). 2021, pp. 76–86.
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Additional Material



RADIATION TRANSPORT EXAMPLE
QOI VARIANCE – PDFS AND VARIANCE DECONVOLUTION

(a) (Nξ, Nη) = (25, 1) (b) (Nξ, Nη) = (25, 2) (c) (Nξ, Nη) = (25, 100)

(d) (Nξ, Nη) = (2000, 1) (e) (Nξ, Nη) = (2000, 2) (f) (Nξ, Nη) = (2000, 100)

Figure: Probability density functions for the estimated variance with PCE and variance deconvolution.
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