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UNCERTAINTY QUANTIFICATION FOR RADIATION TRANSPORT

CONTEXT AND CHALLENGES
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High-fidelity state-of-the-art modeling and simulations with HPC

@_ Predictive science needs Uncertainty Quantification (UQ)

@ UQ under severe simulations budget constraints

@_ Significant dimensionality driven by model complexity

Polynomial Chaos construction for UQ of Radiation Transport Applications
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UNCERTAINTY QUANTIFICATION
GENERALITIES

UQ parameters Quantity of Interest

Input distributic Output distribution
- prior push-forward

Uncertainty Quantification:
@_ UQ main tasks: Forward and Inverse

@_ Forward UQ: Propagation of (known) parameter distributions through numerical code
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UNCERTAINTY QUANTIFICATION
GENERALITIES

Quantity of Interest

Output distribution

UQ parameters
Input di i

prior Prior push-forward
= posterior = posterior push-forward

Distribution

Uncertainty Quantification:
@ UQ main tasks: Forward and Inverse
@_ Forward UQ: Propagation of (known) parameter distributions through numerical code

@_ Inverse UQ: Infer posterior distributions from observational data (Bayes rule)

Forward UQ via surrogate modeling:
@_ Statistics — large number of Qol realizations

@ Computational burden can be alleviated by replacing the original code with a surrogate
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POLYNOMIAL CHAOS EXPANSION
GENERALITIES'

Polynomial Chaos
@ UQ parameters: £ € Z C R?
@_ Joint pdf: p(&) (independent components)
o Qol:Q=Q() € R
@_ Polynomial Chaos Expansion

(no + d)!

and

Q&) = Zﬁm o~ Zﬁkwk(s) = Q" (¢), with P+1=
k=0
no being the total order of the expansion.

@_ Polynomial basis W, is selected to be orthogonal w.r.t. p(&)

10. Le Maitre and O. Knio. Spectral methods for uncertainty quantification. With applications to computational fluid dynamics. Springer Netherlands, 2010.
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POLYNOMIAL CHAOS EXPANSION

GENERALITIES'
Polynomial Chaos

@ UQ parameters: £ € Z C R?

@_ Joint pdf: p(&) (independent components)

o Qol:@=@Q(¢)cRr

@_ Polynomial Chaos Expansion

CE . (no +d)!
Q&) = Zﬁm o~ Zwk(s) =Q""(¢), with P+1= """ and
‘a
k=0
no being the total order of the expansion.

@_ Polynomial basis W, is selected to be orthogonal w.r.t. p(&) i
Remarks

@_ Statistics can be obtained in close form or by sampling QPCE directly, e.g.

L 2
E[Q~ By and Var[Q] ~ Y 57 E[vf]
@_ Coefficients evaluation:
@_ Regression: L2 (ordinary least-square) or L1 (sparse) minimization
@_ Spectral projection: multidimensional integration
10. Le Maitre and O. Knio. Spectral methods for uncertainty quantification. With applications to computational fluid dynamics. Springer Netherlands, 2010. l
Polynomial Chaos construction for UQ of Radiation Transport Applications 3/16



NON-INTRUSIVE SPECTRAL PROJECTION
THE CASE OF RADIATION TRANSPORT APPLICATIONS

Spectral projection — Non-Intrusive Spectral Projection (NISP)

E[Q@WY
E [ V,] = /: U, Wep(§)dE = brore — B = %

@ Our task is the efficient computation of the multi-dimensional integral E [Q¥}]
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Spectral projection — Non-Intrusive Spectral Projection (NISP)

E[Q@WY
E [ V,] = /: U, Wep(§)dE = brore — B = %

@ Our task is the efficient computation of the multi-dimensional integral E [Q¥}]

Radiation transport features

@_ Large dimensionality, i.e. large number of uncertainty sources, random fields, etc.

@_ Noisy response Q(&): MC transport solvers (more on this later)

l

Sampling approaches: potentially more suited than quadrature in this context

Sampling Approaches — Monte Carlo

Ne _ _
5Qu) = [ QW () p(e)de ~ N% S QED) B (D)
= i=1

T
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THE CASE OF RADIATION TRANSPORT APPLICATIONS

Spectral projection — Non-Intrusive Spectral Projection (NISP)

E[Q@WY
E [ V,] = /: U, Wep(§)dE = brore — B = %

@ Our task is the efficient computation of the multi-dimensional integral E [Q¥}]

Radiation transport features

@_ Large dimensionality, i.e. large number of uncertainty sources, random fields, etc.

@_ Noisy response Q(&): MC transport solvers (more on this later)

l

Sampling approaches: potentially more suited than quadrature in this context

Sampling Approaches — Monte Carlo

Ne _ _
5Qu) = [ QW () p(e)de ~ N% S QED) B (D)
= i=1

T

Q: How do we get the Qol (&) in a Radiation Transport context?
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NISP FoOR RT

THE MONTE CARLO TRANSPORT CASE

Context: NISP via sampling is not new?, so...
Q: what do we need to know in the RT context?

2T, Crestaux, O. L. Maitre, and J.-M. Martinez. “Polynomial chaos expansion for sensitivity analysis”. In: Reliability Engineering & System Safety 94 (7 2009), pp. 1161-1172.
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NISP FOR RT

THE MONTE CARLO TRANSPORT CASE

Context: NISP via sampling is not new?, so...
Q: what do we need to know in the RT context?
A: The Qol is not obtained directly, but as a statistics of elementary events

Assumptions/Notation
@ UQ parameters: £ € = C R?
MC transport (internal) randomness: 1 € H C RY
Particle histories are interpreted as elementary events: f = f(&, 1)

RT Qol: Statistics, e.g., average, of f over the histories for a fixed UQ realization:

NT, o ~
Q© =B, e, ) KT -3 f (60) @)
n =1
NOTE:

@_ In the limit of N;; — oo, Q(€) — Q(&), but we do have limited histories

2T, Crestaux, O. L. Maitre, and J.-M. Martinez. “Polynomial chaos expansion for sensitivity analysis”. In: Reliability Engineering & System Safety 94 (7 2009), pp. 1161-1172.
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NISP FOR RT

THE MONTE CARLO TRANSPORT CASE

Context: NISP via sampling is not new?, so...
Q: what do we need to know in the RT context?
A: The Qol is not obtained directly, but as a statistics of elementary events

Assumptions/Notation
@ UQ parameters: £ € = C R?

MC transport (internal) randomness: 1 € H C RY

Particle histories are interpreted as elementary events: f = f(&, 1)

RT Qol: Statistics, e.g., average, of f over the histories for a fixed UQ realization:

McRrr 1 M -
Q) =E, [f&:m] = 5> f(6n”) Ea©)
N, =1
NOTE:
@_ In the limit of N;; — oo, Q(€) — Q(&), but we do have limited histories
In this talk:
Q1: How do we propagate the effect of a limited number of histories?

Q2: What is the impact of this ‘error’ in the PCE coefficients/surrogate?
Q3: Can this knowledge inform the PCE construction?

2T, Crestau, O. L. Maitre, and J.-M. Martinez. “Polynomial chaos expansion for sensitivity analysis”. In: Reliability Engineering & System Safety 94 (7 2009), pp. 1161-1172.
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NISP FoOR RT

THE EFFECT OF A LIMITED NUMBER OF HISTORIES

Step 1. Introducing the MC transport Qol definition

B = 3Be RO (©)
k

- biﬁg (£, [F(&m]Pr(E)]
k
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NISP FOR RT
THE EFFECT OF A LIMITED NUMBER OF HISTORIES

Step 1. Introducing the MC transport Qol definition

Br = 3 Be (RO TA(O)
k

= B[S, (6 ) (©)]
k

Step 2. Sampling approximations

By = e [E, (&, m)] W4 (&)

b
11 Ne _ .
- aNg Z [Ew [f(f(L)77])] \Ilk(fﬂ))}
i=1
1 1 Ne¢ 1 Ny

— | = = . @@ 0 (@) def 2
| o e 2 NﬂjZf(s T (E) ] = B

j=1
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Step 1. Introducing the MC transport Qol definition

Br = 3 Be (RO TA(O)
k

= B[S, (6 ) (©)]
k

Step 2. Sampling approximations

By = e [E, (&, m)] W4 (&)

b
11 Ne _ .
- aNg Z [Ew [f(fmml)] \Ilk(fﬂ))}
i=1
1 1 Ne¢ 1 Ny

— | = = . @@ 0 (@) def 2
| o e 2 NﬂjZf(s T (E) ] = B

j=1

NOTE: this estimator is unbiased
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NISP FOR RADIATION TRANSPORT
VARIANCE OF THE NESTED MC-MC ESTIMATOR4

1 Var [({)\ll/e]

N
e L S o] — [ fa] - 4

4G. Geraci and Aaron J Olson. “Impact of sampling strategies in the polynomial chaos surrogate construction for Monte Carlo transport applications”. In: Proceedings of the
American Nuclear Society M&C 2021 (ANS M&C 2021). 2021, pp. 76-86.
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NISP FOR RADIATION TRANSPORT
VARIANCE OF THE NESTED MC-MC ESTIMATOR4

N, Var |Q
= w - [eeyme] — Jver[3] - b%%(j%]

i=

Q: Can we separate the effect of the MC RT randomness?

4G. Geraci and Aaron J Olson. “Impact of sampling strategies in the polynomial chaos surrogate construction for Monte Carlo transport applications”. In: Proceedings of the
American Nuclear Society M&C 2021 (ANS M&C 2021). 2021, pp. 76-86.
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NISP FOR RADIATION TRANSPORT
VARIANCE OF THE NESTED MC-MC ESTIMATOR4

N Var 0 A\ S
i=1 :

Q: Can we separate the effect of the MC RT randomness?

Law-of-total variance (and variance deconvolution®)

0_2
Var [Q(& )W (€)] :Var[Q(E)‘Ifk(E)HJE{ I’(,(?) %%(g)], o5 (€) = Var, [f(¢,m)]
Finally,
0‘%,(5) 2
L Ve RouE) +E [ v
Var{ ] =—

e Ne

NOTES:

@_ The true variance is polluted by the (average) noise introduced by limited histories

3K. B. Clements, G. Geraci, and A. J. Olson. “Numerical investigation on the performance of a variance deconvolution estimator”. In: Trans. Am. Nucl. Soc. 126 (2022),
pp. 344-347.

4G. Geraci and Aaron J Olson. “Impact of sampling strategies in the polynomial chaos surrogate construction for Monte Carlo transport applications”. In: Proceedings of the
American Nuclear Society M&C 2021 (ANS M&C 2021). 2021, pp. 76-86.
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Algorithmic Contributions




NISP FOR RT

UNBIASED FORMULATION

@_ UQ studies require the evaluation of second or higher powers of the coefficients

@ For instance, to evaluate the variance®

P
Var (@ ~ > 5/ E [\1/,3]
k=1
@_ Through NISP we evaluate
L _ 11 &1 D 0 g, (®
Bk*az\z; Z\Tnjzzlf(f 51 ) k(f )

5or the conditional variances in Global Sensitivity Analysis
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UNBIASED FORMULATION

@_ UQ studies require the evaluation of second or higher powers of the coefficients
@ For instance, to evaluate the variance®

P
Var (@ ~ > 5/ E [\1/,3]
k=1
@_ Through NISP we evaluate
.11 &1 O 0 @
Bkzaz\zz Z\Tn;f(f s )‘I’k (f )

i=1
Q: Can we use the previous expression for Bk to evaluate ﬁf?
A: Yes, but the resulting estimator is biased

Unbiased
——

] =2 (4] - | =T
2 (a)"] - o

5or the conditional variances in Global Sensitivity Analysis
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NISP FOR RT

UNBIASED FORMULATION

@_ UQ studies require the evaluation of second or higher powers of the coefficients

@ For instance, to evaluate the variance®

P
Var (@ ~ > 5/ E [\1/,3]
k=1
@_ Through NISP we evaluate
N, N,
s 1 LS5 0,0 @)
Bk*az\z; Z\Tn;f(flyn )‘I’k(fl>

Q: Can we use the previous expression for Bk to evaluate ﬁf?
A: Yes, but the resulting estimator is biased

Unbiased
——

] =2 (4] - | =T
2 (a)"] - o

Estimator bias
o

— E [(Bk)z] = (B)? + Var [ﬂk]

5or the conditional variances in Global Sensitivity Analysis
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NISP FOR RT

ESTIMATION OF SURROGATE VARIABILITY

@_ Two sources of variability affect the PC construction (in our case)
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ESTIMATION OF SURROGATE VARIABILITY

@_ Two sources of variability affect the PC construction (in our case)

1 Randomness introduced by finite sampling in £, i.e., N¢
2 Randomness introduced by finite sampling in 7, i.e., MC RT noise given by N,

@_ We can quantify #2 by extending variance deconvolution to the variance-covariance matrix of the coefficients’ estimators

Step 1: Write Qol at a fixed UQ parameter location

A~ g T g4
Q(e=8) ~ b+ '8,
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1 Randomness introduced by finite sampling in £, i.e., N¢
2 Randomness introduced by finite sampling in 7, i.e., MC RT noise given by N,

@_ We can quantify #2 by extending variance deconvolution to the variance-covariance matrix of the coefficients’ estimators

Step 1: Write Qol at a fixed UQ parameter location

A~ g T g4
Q(e=8) ~ b+ '8,

Step 2: Estimate the variance of this quantity

Var [gT(E)éNJ =¥’ (§)Var [QNW] (9),
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NISP FOR RT

ESTIMATION OF SURROGATE VARIABILITY

@_ Two sources of variability affect the PC construction (in our case)

1 Randomness introduced by finite sampling in £, i.e., N¢
2 Randomness introduced by finite sampling in 7, i.e., MC RT noise given by N,

@_ We can quantify #2 by extending variance deconvolution to the variance-covariance matrix of the coefficients’ estimators

Step 1: Write Qol at a fixed UQ parameter location

Q=8 ~fo+ T OBy,
Step 2: Estimate the variance of this quantity

var [2 3, | = " @ver |3, | 2@,
n n
Step 3: Estimate the covariance terms
Cov [Bk,Nn ; 5r,N,,] =E [Bk,Nn Br,Nn:I —-E [Ek,Nn} E I:Br,Nn]
1 (E[ww@k,] B[y, ]E[véy,

N byb, - byb,

PO 1 1 o
=C N — Ee |0, 0,1
ove [ﬂk,ﬂ} + Ne biby € [ k Nn:|

Polynomial Chaos construction for UQ of Radiation Transport Applications
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NISP FoOR RT

PC EXPANSION TRIM

@ We have presented the PC expansion with

Q: How do we decide the number of terms to retain?
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NISP FOR RT

PC EXPANSION TRIM

@ We have presented the PC expansion with

Q: How do we decide the number of terms to retain?

Solution

1 Evaluate the Qol variance from sampling only (for N,, > 1), i.e., variance deconvolution

o ~ o?
Var [Q] lec _ Vare [QNW] — E¢ |:N'7:,,:|
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NISP FOR RT

PC EXPANSION TRIM

@ We have presented the PC expansion with

Q: How do we decide the number of terms to retain?

Solution

1 Evaluate the Qol variance from sampling only (for N,, > 1), i.e., variance deconvolution

~jaec A 0-2
Var [Q] lec _ Vare [QNW] — E¢ |:N'7:,,:|

2 Re-order PC coefficients according to their (decreasing) contribution to the variance
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NISP FOR RT

PC EXPANSION TRIM

@ We have presented the PC expansion with

Q: How do we decide the number of terms to retain?

Solution
1 Evaluate the Qol variance from sampling only (for N,, > 1), i.e., variance deconvolution
. dec A ”i
Var Q% = Vare [QNW] —Ee |2
N,

2 Re-order PC coefficients according to their (decreasing) contribution to the variance

3 Select Py < P such that

k=1
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RADIATION TRANSPORT EXAMPLE
1D STOCHASTIC TRANSPORT IN MATERIALS WITH UNCERTAIN PROPERTIES

@_ 1D slab, neutral particle, absorption-only mono-energetic steady state radiation transport
@_ Normally incident beam with unitary magnitude
@_ Random material cross sections: 3, (&) = Z?,m + Efmgm, where &, ~ U(—1,1)
@_ The Qol is the transmittance: T'(§) = ¢(L, 1, &)
oY (x, p,
#w + 5, )%, 1, €) = 0, where 0<x < Ls
X
Analytical solution
d
T(&) = exp | — Z 2:t,m(gm)A-"':m = exp [77—(5)] s
m=1

@_ Uncertain slab optical thickness: 7(&)

@ mth material thickness: Ax,,

Exact solution (nth raw moment)

d
B = [ T Op©de = T ew [, a0

A
, ke’ nEtymAxm

Polynomial Chaos construction for UQ of Radiation Transport Applications
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RADIATION TRANSPORT EXAMPLE
PC VARIABILITY (AND COEFFICIENTS TRIM)

Number of samples (Ng, Nj) = (2000,50) Number of samples (Ng, N,,) = (2000,50)
141 \ — Exact 124 — Exact

3 \ --- PCE 2 \ --- PCE
a Q 104
[d 0
N ~

0.8 4
g 2
© c
§ Y 061
g £
a 3 041
L w r
(@]
& 8 02

~1.00 —0.75 —0.50 -0.25 0.00 025 050 075 1.00 100 —075 —050 —025 0.00 025 050 0.5 1.00
£ 13
(a) PCE W/O Trim (Sample 1) (b) PCE W/ Trim (Sample 1)
Figure: Two PC repetitions for the 1D attenuation problem (dashed red) with (bottom) and without (top) the expansion trim. Results obtained
with N¢ = 2000, N¢ = 50, and ng = 6. The exact attenuation profile is reported in black.
12/16 I
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RADIATION TRANSPORT EXAMPLE
PC VARIABILITY (AND COEFFICIENTS TRIM)

PCE surface and 2 StDev

PCE surface and 2 StDev

Figure: Three PC repetitions for the 1D attenuation problem (dashed red) with (bottom) and without (top) the expansion trim. All the results

Number of samples (Ng, N) = (2000,50)

Number of samples (Ng, N) = (2000,50)

Number of samples (Ng, Ny) = (2000,50)

— Bact 41 — Eact \ — Exact
PCE I PCE 3124\ - pce
=] e
&a & 10
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° °
08
508 5
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0. L
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(a) PCE W/O Trim (Sample 1) (b) PCE W/O Trim (Sample 2) (c) PCE W/O Trim (Sample 3)
Number of samples (N, Ny) = (2000,50) Number of samples (N, N;) = (2000,50) Number of samples (N, ;) = (2000,50)
\ — Exact 124\ — Exact 127 — Exact
\ === PCE g \ === PCE g \ === PCE
10
&1 @
3 Sos
gos z°
& &
% 06 g 08
A= £
304 304
w w
&0z g o2

-100 -0.75 -0.50 -0.25 000 025 050 075 1.00

(d) PCE W/ Trim (Sample 1)

-100 -0.75 -0.50 -0.25 000 025 050 075 100

(e) PCE W/ Trim (Sample 2)

-100 -075 -0.50 -0.25 000 025 050 075 100

(f) PCE W/ Trim (Sample 3)

are obtained with N¢ = 2000, N¢ = 50, and ny = 6. The exact attenuation profile is reported in black.
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RADIATION TRANSPORT EXAMPLE
QOI VARIANCE - INCREASING N

MSE[var{Q]] -- Fixed Ne = 25 MSE[var[Q]] -- Fixed Ne = 50 MSE[var[Q]] -- Fixed Ng = 100
1072
-3
E 10
~
—e— PC (Bias Corr) —e— PC (Bias Corr) . . 10-4] —— PC(Bias Corr)
—%— Var deconv 10744 —— Var deconv —%— Var deconv > .
10-4{ —=— PC (M&C21) —=— PC (M&C21) —=— PC (M&C21)
+— PC (Bias Corr + Trim) \ 4| Pe®ias Comr + Trim) \,‘_\x 10731 —+— PC (Bias Corr + Trim) \\X
10?2 10° 10 102 10° 10?2 10° 104
Computational Cost Computational Cost Computational Cost
@ Ne =25 (b) N¢ = 50 () N = 100
MSE[var{Q]] -- Fixed Ng = 500 MSE[Var{Q]] -- Fixed Ng = 1000 MSE[Var{Q]] -- Fixed Ng = 2000
—e— PC (Bias Corr) —e— PC (Bias Corr) —e— PC (Bias Corr)
10-2 —»— Var deconv 102 —— Var deconv 102 —— Var deconv
—a— PC (M&C21) —a— PC (M&C21) —=— PC (M&C21)
10-3 +— PC (Bias Corr + Trim) 103 +— PC (Bias Corr + Trim) 1073 +~ PC (Bias Corr + Trim)
w
0 10-
s 1074
107°
107
103 104 10% 104 10° 104 10°
Computational Cost Computational Cost Computational Cost
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Figure: MSE for the estimated variance obtained with 1500 independent repetitions with an increasing number of UQ samples NE and
N, = [1,2, 10, 50, 100]. J
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RADIATION TRANSPORT EXAMPLE
QOI VARIANCE - INCREASING N,
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Figure: MSE for the estimated variance obtained with 1500 independent repetitions with an increasing number of particles N,, (per UQ sample)
and N¢ = [25, 50, 100, 500, 1000, 2 000].
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RADIATION TRANSPORT EXAMPLE
BEYOND MOMENTS — GLOBAL SENSITIVITY ANALYSIS
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Figure: Sensitivity index S; (a) and total sensitivity index STl (b) obtained with the PC with bias correction and bias correction and expansion

trim.
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Ongoing

@_ Accounting for the re-start cost as
Ctot = N¢ (Ce¢ + CyNy)

@ We have extended the theory to account for it, but this should be included in the comparisons
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FLEXIBLE SURROGATE CONSTRUCTION FOR RADIATION TRANSPORT

Summary
@ We explored the efficient contruction of PC surrogates for UQ in radiation transport applications
@ We demonstrated how to manage the noise contributed by the MC RT solver in the PC

@_ Several algorithmic refinements improved previous version® of the algorithm

Ongoing
@_ Accounting for the re-start cost as
Cot = N¢ (C¢ + CyNy)

@ We have extended the theory to account for it, but this should be included in the comparisons

Conclusions
@_ Managing MC RT noise in PC seems to be both feasible and efficient

@_ Nevertheless, additional work is needed to rigorously compare and assess the effectiveness of this tool with other
approaches, e.g., variance deconvolution (see Kayla's talk about GSA)

6G. Geraci and Aaron J Olson. “Impact of sampling strategies in the polynomial chaos surrogate construction for Monte Carlo transport applications”. In: Proceedings of the
American Nuclear Society M&C 2021 (ANS M&C 2021). 2021, pp. 76-86.
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RADIATION TRANSPORT EXAMPLE

QOI VARIANCE - PDF'S AND VARIANCE DECONVOLUTION
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Figure: Probability density functions for the estimated variance with PCE and variance deconvolution.
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