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Motivation: Global Climate Model Calibration
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The goal of climate model tuning, or
calibration, is to find the set of model
parameters such that model predictions best
match observational records.

Currently, model tuning is done by "hand”
through a tedious "plug and check” process.
Different sets of parameters can be favored to
best predict select variables or represent
oscillations (e.g. ENSO, AMOC, NAO, etc.) most
accurately. (F.g. Ma et al., 2022)

We propose a flexible and straightforward
framework for the automated tuning of the
atmosphere-only model of the Department of
Energy’'s Energy Exascale Earth System Model
(E3SMv2).
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Figure: Changes in 10 year averaged precipitation due to
perturbations in five atmospheric E3SM parameters. The goal
of calibration is to select these parameters such that the
precipitation matches historical observations @ |
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Proposed methods in literature

« Inthe statistical literature, the classical proposed solution is the calibration approach of Kennedy
and O’Hagan (2001) in which they propose Gaussian Process (GP) emulators within a Bayesian
framework to account for all known sources of uncertainty involved in model calibration.

« Jackson et al. (2008) propose a multiple very fast simulated annealing scheme (MVFSA) scheme
to quantify uncertainty in climate model predictions.

« Higdon et al. (2012) demonstrates a multistep ensemble kalman filtering approach which also
leverages GP emulators and accounts for model discrepancy on the Community Atmosphere
Model (CAM).

. The ‘Calibrate, Emulate, Sample” approach of Cleary et al. (2022) leverages GPs as emulators
within an approximate Bayesian learning framework.

« In the climate modeling literature, the focus has been on using machine learning methods such
as convolutional neural networks to build climate model emulators for multiple output variables
(e.g. Fletcher et al., 2022).
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Workflow Overview

INPUT:
E3SM Parameters

Input 6
(d scalar values)

/

Generate E3SM
perturbed parameter

Build surrogate
from parameters
to model output

ensemble

OUTPUT: E3SM time-averaged spatial fields
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min g L(f (6, $), Yobs)

Optimize parameters
using surrogate and
climate observations

Validate
parameters in
E3SM
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Perturbed parameter ensemble for v2

« 250 simulation runs, with varying input
parameters chosen by Latin Hypercube
Sampling.

. Five input parameters changed:
ice_sed_al, clubb_c1, clubb_gamma_coef,
zmconv_tau, zmconv_dmpdz

b
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Run info:
« V2 of E3SM
. Prescribed present-day sea surface temperature (SST)

« 10 year runs: then average variables over time for each season DJF, MAM, JJA,
SON
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High-dimensional output fields

. 8 latitude/longitude fields
. SWCF, LWCF, PRECT, PSL, 2500, U200,
U850, TREFHT
. consider either 24x48 and 180x360
resolution
. weight to take into account area
represented by each grid point
3 latitude/pressure level fields
« U, RELHUM, T
. 24x37 resolution

. Consider seasonal target fields: one
for each DJF, MAM, JJA, SON

. Also consider globally averaged
RESTOM value

Results in 45 fields
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The use of a surrogate model

Advantages Disadvantages
. Surrogates will be able to enable . Generating data for training the
real-time, fast evaluation of E3SM surrogates is non-trivial and
outputs (fractions of a second computationally expensive
versus a few days for a single low | syrrogate is only as good as the
resolution simulation) training data it is built with

. With a fast surrogate, we can
evaluate gradients, perform
parameter optimization,
Bayesian inference, etc.

Feature space

Surrogate
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Some Notation

0 = (61,...,04) : d-dimensional variable describing the input parameters

f(8) € R™ : m—dimensional time-averaged spatial fields (target outputs of the ESM)
Yobs € R™ : observations of target fields

X € R™4 : sampled input values from @

Y € R"™™M : predicted target fields for given inputs X
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Goal

The goal of autotuning is to find values for the vector of E3SM parameters 6 that
minimize a loss function L(-,-) between f(@) and an m-dimensional vector of target
observations Yqps, i.e. L(f(0), Yops)-

Substituting f(@) with a surrogate model, f(@, ¢), we can write the solution as

6= arggmin L(f(e, é)v Yobs)- (1)

0 refers to the input parameters

¢ represents parameters of the surrogate modelfitself
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Surrogate Model
We construct our surrogate on a reduced space through PCA,
k
j=1

and fit a surrogate model,fj(o,cpj), j=1,...,k to to each of the k projection
coefficients, n; using regularized polynomial-based regression models such that our
surrogate can be written as

k
f(0.9) =50, ¢);. (2)
j=1
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Surrogate Fitting

mlnz "7} f} I7¢j)) +)‘Pen(¢j)

Through cross-validation, we automate the learning of the following
. surrogate parameters ¢;
. Polynomial order (up to order 12)
. Penalty Form: linear (APen(¢;)=0), lasso or elastic net
. regularization parameter X for lasso or elastic net

August 8, 2023
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Optimization

Let Y, o denote the entry of Y,y corresponding the the p-th target field and the ¢
grid point of that target field. The normalized likelihood for this output can then be

written as

Yo ind (fpzw@ 53) @)

Tp opWpye
where {Wp,g}zn:pl are area weights on grid points for the p-th output field,

and oj = Vary(Yp) is the variance of the observational spatial field for the p-th
output field.
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Optimization

We can construct our Gaussian likelihood-based loss function through the joint
log-likelihood over all target fields:

L (0,52, ?, Yob5> x Z (—W + mp log (S%)) (4)
p

p

where o means “proportional to” and e (-) is the weighted mean-squared error
(MSE) for variable p,

e (for0.8) Vo)

p

¢a obs ZWIDZ pz 02 P .
p
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Optimization

The maximum a posteriori (MAP) estimate is then defined as

Omap, Sap = argmaxg (975 ‘¢7 Yobs) :
0,s2

9 (0,5%|@, Yops) = L (0,57, 0, Yops) + Y _log (P (sp)).
p

2

We assign inverse gamma priors P to variance terms s;

and uniform priors to 6.

August 8, 2023 @ | "



Results: optimized parameters

Input Parameter v2 control Autotuned Minimum Maximum
ice_sed_ai 500.00 1400.00 350.00 1400.00
clubb_c1 2.40 1.00 1.00 5.00
clubb_gamma_coef 0120 0312 0100 0.500
zmconv_tau 3600.00 4787.46 1800.00 14400.00
zmconv_dmpdz -0.00070 -0.00042 -0.00200  -0.00010

Minimum and maximum specify the range considered for the Autotuned parameters.

August 8, 2023
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Results: RMSE Improvement

Comparison of autotuned and
v2 default parameters:
percentage change in
root-mean-squared-error
(RMSE) between time-averaged
E3SMv2 output and observation.
Green represents improvements
when using the autotuning
parameters.

August 8, 2023

Variable DJF MAM JJA  SON Avg.

LWCF 9.7 —-13 0.4 10.0 4.7
PRECT 9.5 4.1 —0.3 11.8 6.3
PSL 4.3 —-69 —-53 —-180 —8.6
RELHUM -1.7 0.3 1.9 0.4 0.2
SWCF 5.1 -03 —6.2 2.0 0.1
T -0.3 -3.3 1.9 —40 -14
TREFHT -72 -100 -25 -103 75
U 1.4 -106 —-6.7 —-10.8 —6.7
U200 74 —=12.8 —18.0 —7.3 —4.0
U850 57 —11.8 -16.1 0.7 —54
Z500 40 -98 -71 -150 2.7
Average 2.7 —5.7 -5.3 —2.4 —2.7
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Results

g
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E3SM and surrogate-predicted
output for time-averaged

PRECT during JJA, plotted ona =

24x48 grid. (Top Left) E3SM
output, (Top Right) surrogate
prediction, (Bottom) the
difference between the E3SM
output and the surrogate
prediction.
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Results
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and the surrogate predicted fields. The line y=x is plotted
in each plot.
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Exploration of posterior distribution of 8
(Left) Searched parameter bounds (Right) Zoomed in
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Exploration of posterior distribution of sj2 for DJF
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Taylor Diagram

® SWCF uss0 ® v2 Control
® LWCF © TREFHT © Autotuned ©
* PRECT u i
©
@ ]
=
S
o |
s
~
s
® SWCF U850
= e LWCF o TREFHT
© |ePRECT *uU "
° PSL © RELHUM  v2 Control
2500 T © Autotuned
2 - e U200 250 Simulation Runs
T T T T T T
00 05 1.0 15 07 08 09 10 14 12 13

Normalized Standard Deviation N
Normalized Standard Deviation

The Taylor diagram visualizes the components of the centered mean-squared error between
the model run and observations in one plot with polar coordinates.
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Surrogate model choice

Comparison of surrogate models using cross-validated scores: polynomial chaos

expansion (PCE), random forest (RF), Gaussian process regression (GPR), and

multilayer perceptron (MLP). For each surrogate model, we run on a single node in

wwwwwww
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Chrysalis.
Name R-squared RMSE MAE Time (mm:ss)
PCE 0.478 7.36 5.04 07:42
RF 0.444 7.60 519  45:01
GPR 0.468 7.45 5.08 06:52
MLP 0.466 7.46 510 4245

August 8, 2023
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Summary
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We present an intuitive approach to autotune GCMs and demonstrate on E3SM.

This approach produces an improved set of tuning parameters over the tuning parameters
chosen by the expert while considering a large number of output fields.

Approach allows us to flexibly weight some output fields more than others if needed to obtain
alternative solutions.

Can easily interchange surrogate choices, loss functions, etc.
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Further Research

« Choice of Loss Function
o lterative approach to sampling ensemble members - ongoing research in this area at Sandia

» surrogate model choice - have only scratched the surface here
- PCE not easily implemented within a fully Bayesian framework

- currently exploring promising options: Bayesian Adaptive Smoothing Splines (BASS) and Bayesian Adaptive
Regression Trees (BART)

« Bayesian Model Averaging (BMA) approaches to avoid model selection all together

o E3SMis ultimately a multi-step procedure for the coupled model. Can this method easily extend to the
coupled model?

o Are there clear metrics that could ensure we are accurately capturing climate oscillations? e.g. AMOC, QBO
(ongoing SciDAC project at Sandia)
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