
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a
wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract
DE-NA-0003525. SAND NO. 2023-07335C

An autotuning approach to DOE’s
earth system model
Lyndsay Shand, Benjamin Wagman, Drew Yarger, Kenny Chowdhary (NVIDIA), Gavin Collins
Sandia National Laboratories, lshand@sandia.gov

August 8, 2023

SAND2023-07335CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do
not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract
DE-NA0003525.



Motivation: Global Climate Model Calibration

• The goal of climate model tuning, or
calibration, is to find the set of model
parameters such that model predictions best
match observational records.

• Currently, model tuning is done by ”hand”
through a tedious ”plug and check” process.
Different sets of parameters can be favored to
best predict select variables or represent
oscillations (e.g. ENSO, AMOC, NAO, etc.) most
accurately. (E.g. Ma et al., 2022)

• We propose a flexible and straightforward
framework for the automated tuning of the
atmosphere-only model of the Department of
Energy’s Energy Exascale Earth System Model
(E3SMv2).
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Proposed methods in literature

• In the statistical literature, the classical proposed solution is the calibration approach of Kennedy
and O’Hagan (2001) in which they propose Gaussian Process (GP) emulators within a Bayesian
framework to account for all known sources of uncertainty involved in model calibration.

• Jackson et al. (2008) propose a multiple very fast simulated annealing scheme (MVFSA) scheme
to quantify uncertainty in climate model predictions.

• Higdon et al. (2012) demonstrates a multistep ensemble kalman filtering approach which also
leverages GP emulators and accounts for model discrepancy on the Community Atmosphere
Model (CAM).

• The ‘Calibrate, Emulate, Sample” approach of Cleary et al. (2022) leverages GPs as emulators
within an approximate Bayesian learning framework.

• In the climate modeling literature, the focus has been on using machine learning methods such
as convolutional neural networks to build climate model emulators for multiple output variables
(e.g. Fletcher et al., 2022).
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Workflow Overview
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Perturbed parameter ensemble for v2

• 250 simulation runs, with varying input
parameters chosen by Latin Hypercube
Sampling.

• Five input parameters changed:
ice_sed_ai, clubb_c1, clubb_gamma_coef,
zmconv_tau, zmconv_dmpdz

Run info:
• v2 of E3SM
• Prescribed present-day sea surface temperature (SST)
• 10 year runs: then average variables over time for each season DJF, MAM, JJA,
SON
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High-dimensional output fields
• 8 latitude/longitude fields

• SWCF, LWCF, PRECT, PSL, Z500, U200,
U850, TREFHT

• consider either 24x48 and 180x360
resolution

• weight to take into account area
represented by each grid point

• 3 latitude/pressure level fields
• U, RELHUM, T
• 24x37 resolution

• Consider seasonal target fields: one
for each DJF, MAM, JJA, SON

• Also consider globally averaged
RESTOM value

• Results in 45 fields
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The use of a surrogate model

Advantages
• Surrogates will be able to enable
real-time, fast evaluation of E3SM
outputs (fractions of a second
versus a few days for a single low
resolution simulation)

• With a fast surrogate, we can
evaluate gradients, perform
parameter optimization,
Bayesian inference, etc.

Disadvantages
• Generating data for training the
surrogates is non-trivial and
computationally expensive

• Surrogate is only as good as the
training data it is built with
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Some Notation

θ = (θ1, . . . , θd) : d-dimensional variable describing the input parameters

f(θ) ∈ Rm : m−dimensional time-averaged spatial fields (target outputs of the ESM)

Yobs ∈ Rm : observations of target fields

X ∈ Rn×d : sampled input values from θ

Y ∈ Rn×m : predicted target fields for given inputs X
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Goal

The goal of autotuning is to find values for the vector of E3SM parameters θ that
minimize a loss function L(·, ·) between f(θ) and an m-dimensional vector of target
observations Yobs, i.e. L(f(θ), Yobs).

Substituting f(θ) with a surrogate model, f̂(θ,ϕ), we can write the solution as

θ̂ = arg min
θ

L(̂f(θ, ϕ̂), Yobs). (1)

θ refers to the input parameters

ϕ represents parameters of the surrogate model f̂ itself
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Surrogate Model

We construct our surrogate on a reduced space through PCA,

Y ≈
k∑
j=1

ηjψ
⊤
j ,

and fit a surrogate model, f̂j(θ,ϕj), j = 1, . . . , k, to to each of the k projection
coefficients, ηj using regularized polynomial-based regression models such that our
surrogate can be written as

f̂(θ,ϕ) =
k∑
j=1

f̂j(θ,ϕj)ψj. (2)
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Surrogate Fitting

ϕ̂j = min
ϕj

n∑
i=1

((ηj)i − f̂j(Xi·,ϕj))
2 + λPen(ϕj)

Through cross-validation, we automate the learning of the following
• surrogate parameters ϕj
• Polynomial order (up to order 12)
• Penalty Form: linear (λPen(ϕj)=0), lasso or elastic net
• regularization parameter λ for lasso or elastic net
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Optimization

Let Yp,ℓ denote the entry of Yobs corresponding the the p-th target field and the ℓ
grid point of that target field. The normalized likelihood for this output can then be
written as

Yp,ℓ
σp

ind∼ N

(
f̂p,ℓ(θ, ϕ̂)

σp
,
s2p
wp,ℓ

)
(3)

where {wp,ℓ}
mp
ℓ=1 are area weights on grid points for the p-th output field,

and σ2
p = Varℓ(Yp,ℓ) is the variance of the observational spatial field for the p-th

output field.
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Optimization

We can construct our Gaussian likelihood-based loss function through the joint
log-likelihood over all target fields:

L
(
θ, s2, ϕ̂, Yobs

)
∝
∑
p

(
−
ep(θ, ϕ̂, Yobs)

s2p
+mp log

(
s2p
))

(4)

where ∝ means “proportional to” and ep(·) is the weighted mean-squared error
(MSE) for variable p,

ep(θ, ϕ̂, Yobs) =
mp∑
ℓ=1

wp,ℓ

(̂
fp,ℓ(θ, ϕ̂)− Yp,ℓ

)2
σ2
p

.
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Optimization

The maximum a posteriori (MAP) estimate is then defined as

θ̂MAP, ŝ2MAP = arg max
θ,s2

g
(
θ, s2

∣∣∣ϕ̂, Yobs) .
g
(
θ, s2

∣∣ϕ, Yobs) = L
(
θ, s2,ϕ, Yobs

)
+
∑
p

log (P (sp)) .

We assign inverse gamma priors P to variance terms s2p and uniform priors to θ.
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Results: optimized parameters

Input Parameter v2 control Autotuned Minimum Maximum
ice_sed_ai 500.00 1400.00 350.00 1400.00
clubb_c1 2.40 1.00 1.00 5.00
clubb_gamma_coef 0.120 0.312 0.100 0.500
zmconv_tau 3600.00 4787.46 1800.00 14400.00
zmconv_dmpdz -0.00070 -0.00042 -0.00200 -0.00010

Minimum and maximum specify the range considered for the Autotuned parameters.
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Results: RMSE Improvement

Comparison of autotuned and
v2 default parameters:
percentage change in
root-mean-squared-error
(RMSE) between time-averaged
E3SMv2 output and observation.
Green represents improvements
when using the autotuning
parameters.

Variable DJF MAM JJA SON Avg.
LWCF 9.7 −1.3 0.4 10.0 4.7
PRECT 9.5 4.1 −0.3 11.8 6.3
PSL 4.3 −6.9 −5.3 −18.0 −8.6
RELHUM −1.7 0.3 1.9 0.4 0.2
SWCF 5.1 −0.3 −6.2 2.0 0.1
T −0.3 −3.3 1.9 −4.0 −1.4
TREFHT −7.2 −10.0 −2.5 −10.3 −7.5
U 1.4 −10.6 −6.7 −10.8 −6.7
U200 7.4 −12.8 −18.0 −7.3 −4.0
U850 5.7 −11.8 −16.1 0.7 −5.4
Z500 4.0 −9.8 −7.1 −15.0 −2.7

Average 2.7 −5.7 −5.3 −2.4 −2.7
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Results

E3SM and surrogate-predicted
output for time-averaged
PRECT during JJA, plotted on a
24x48 grid. (Top Left) E3SM
output, (Top Right) surrogate
prediction, (Bottom) the
difference between the E3SM
output and the surrogate
prediction.
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Results

The cumulative proportion of
variance in the data explained
by the first k principal
components, for k = 1, 2, . . . , 16. Principal component (PC) score/coordinate values for each

principal component, comparing the simulation output
and the surrogate predicted fields. The line y=x is plotted
in each plot.
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Exploration of posterior distribution of θ
(Left) Searched parameter bounds (Right) Zoomed in
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Exploration of posterior distribution of s2j for DJF
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Taylor Diagram

The Taylor diagram visualizes the components of the centered mean-squared error between
the model run and observations in one plot with polar coordinates.
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Surrogate model choice

Comparison of surrogate models using cross-validated scores: polynomial chaos
expansion (PCE), random forest (RF), Gaussian process regression (GPR), and
multilayer perceptron (MLP). For each surrogate model, we run on a single node in
Chrysalis.

Name R-squared RMSE MAE Time (mm:ss)
PCE 0.478 7.36 5.04 07:42
RF 0.444 7.60 5.19 45:01
GPR 0.468 7.45 5.08 06:52
MLP 0.466 7.46 5.10 42:45

22August 8, 2023



Summary

• We present an intuitive approach to autotune GCMs and demonstrate on E3SM.

• This approach produces an improved set of tuning parameters over the tuning parameters
chosen by the expert while considering a large number of output fields.

• Approach allows us to flexibly weight some output fields more than others if needed to obtain
alternative solutions.

• Can easily interchange surrogate choices, loss functions, etc.
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Further Research

• Choice of Loss Function

• Iterative approach to sampling ensemble members - ongoing research in this area at Sandia

• surrogate model choice - have only scratched the surface here

- PCE not easily implemented within a fully Bayesian framework

- currently exploring promising options: Bayesian Adaptive Smoothing Splines (BASS) and Bayesian Adaptive
Regression Trees (BART)

• Bayesian Model Averaging (BMA) approaches to avoid model selection all together

• E3SM is ultimately a multi-step procedure for the coupled model. Can this method easily extend to the
coupled model?

• Are there clear metrics that could ensure we are accurately capturing climate oscillations? e.g. AMOC, QBO
(ongoing SciDAC project at Sandia)
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