SAND2023-07158C

Sandia
@ National https://github.com/sandialabs/Fugu
Laboratories

Clone, install and follow-along!
All code for the tutorial is available in
the examples folder.

Building Scalable, Composable Spiking
Neural Algorithms with Fugu

Team:

Brad Aimone Michael Krygier

Sylvain Bernard Srideep Musuvathy

Suma Cardwell Leah Reeder*

Frances Chance Fred Rothganger

Yang Ho Corinne Teeter
Presented by Srideep MusuvathyT Ingrid Lane* Craig Vineyard

William Severa and Craig Vineyard Zubin Kane Felix Wang

https://github.com/sandialabs/Fugu

%5 The Why and How of Fugu

<=y Workflow

<=5 Building a Scaffold

< Building a

Brick

<2y Backend Overview

Introduction, Concepts and Key
Design Ideas

The Why and How of Fugu

Fugu was created out of need to map applications
to Neuromorphic hardware

First Prototype First Distribution to Partners ~ SpiNNaker Backend Loihi Backend Open Source v0.1
Sept 2018 April 2019 July 2019 February 2020 June 2022

https://qgithub.com/sandialabs/Fugu

* Fugu aims to help support the field by providing standardization and expand accessibility by lowering
barriers of entry

« Some Fugu-related publications:

Aimone, James B., William Severa, and Craig M. Vineyard. "Composing neural algorithms with Fugu." Proceedings of the International
Conference on Neuromorphic Systems. 2019.

Reeder, Leah Evelyn, James Bradley Aimone, and William Mark Severa. The Future of Computing: Integrating Scientific Computation on
Neuromorphic Systems. No. SAND-2019-14547R. Sandia National Lab.(SNL-NM), Albuguerque, NM (United States), 2020.

Vineyard, Craig, et al. "Neural Mini-Apps as a Tool for Neuromorphic Computing Insight." Neuro-Inspired Computational Elements Conference.
2022.

Aimone, James B., et al. "Spiking Neural Streaming Binary Arithmetic." 2021 International Conference on Rebooting Computing (ICRC). IEEE,
2021.

Aimone, James, et al. "A review of non-cognitive applications for neuromorphic computing.” Neuromorphic Computing and Engineering (2022).

https://github.com/sandialabs/Fugu

Motivations

 Hardware Independence - Write once, run In several places

“You wrote LCA code for Loihi; | want to run it on SpiNNaker.”
 Composition - Pieces work together with one-another

“I want to use your Localization method with my new idea for Navigation.”
» Scalability - Grows to your problem size

“| found a CNN trained for 28x28, but my data is 32x32.”

Key Classes

* Bricks
Brick A
* Roughly represents a function /N
* Should be standalone but also not decomposable Brick B Brick C
\ /
Brick D

 Contain code to generate a network
» Scaffold
* Represents an application
 Composed of bricks linked together in a graph
Backends

e Backends

* Responsible for conversion to platform-specific versions Loihi Simulator

 Responsible for hardware-specific oddities

User Cases

» Users will define an application at the level of functions/Bricks by building a
Scaffold

* Bricks (and Scaffolds) use spikes for both inputs and outputs

* Users should not worry about how the network itself is built or how/where it
runs

* Brick Builders will write code that instructs how a brick will be built
* Bricks must know which neurons need to exist and how they connect
* Bricks do not need to know where they run or what they’re connected to

 Backend Developers will write code that converts a generic graph to a HW
graph

More About Bricks

* Bricks should be standalone and represent ‘one job’

* Bricks have some defining characteristics, and all bricks should exhibit these
qualities

* Bricks should build their network (neurons, synapses) procedurally

* Bricks should maintain compatibility by using standard input/output codings

Workflow and Features

Example Classifier

(Not all these bricks exist)

In this example, we have data x; € X and a pre-trained MLP.

We want to classity x; after some preprocessing using the pre-trained MLF.

Operations are
x — 108

1. Preprocessing: f(x) =
p ing: f(x) v

2. Apply MLP to f(x)

. Scaffold is built
User defines a scaffold Scaffold.lay_bricks()

Scaffold

Scaffold Rough Example of Code

R

#User defines a scaffold

scaffold = Scaffold()
scaffold.add_brick(Vector_Input(array), ‘input’)
scaffold.add_brick(Subtract(108))

scaffold.add _brick(Divide(256))
scaffold.add_brick(MLP(model _file), output=True)
scaffold. lay_bricks() #Scaffold is built

backend = loihi_Backend() #User defines a backend
backend.compile(scaffold) #User compiles Scaffold

#User runs a Scaffold
output_spikes = backend.run(time steps)

User compiles Scaffold
with a Backend
Loihi Backend

User defines a backend -

Loihi Backend

HW
Graph

User runs a scaffold
via a backend

What is supported?

Neurons and Synapses

* For best compatibility, we choose a very simple neuron model:

Xip1 =X, + L+ W;-§,_,

l

¢ {1 ifX;,> T;and a < p;
o O otherwise

l

i+l = | |

0 otherwise

where Xx; is the potential of neuron i, /; is an injection current, W. is a weight matrix, S is a spike history, T,
is the threshold, p; is the spike probabillity, 71, is a decay constant™ and a is a random uniform draw

* Synapses have a weight and an integer delay.

* Spikes persist for a single tilmestep and increase the post-synaptic potential by the weight value.

* Correct at the time of presentation. Fred is looking to update this and will notify if there are changes.

What about learning?

 For now, Fugu is designed for non-learning or offline learning algorithms
* A learned component can be fed to a brick at instantiation

* |n the future, we would like to support learning in the same manner as other
hardware-specific features

* As features become common, they can be moved into the fugu base neuron

HW-Dependent
Brick

Requests HW
Features

Reports HW
Features

HW-Aware Graph

IR Graph

G —

Schematic for HW-specific features

HOW tO InteraCt With Fugu https://github.com/sandialabs/Fugu

We are always looking for collaborators! If you use Fugu for research, please
| | cite our ICONS paper: Aimone,
e End User - Works with bricks, scaffolds and backends Severa, Vineyard. Composing neural

algorithms with Fugu, 2019.

* Should clone Fugu repository and import fugu.

 New code should go in its own project-specific repository
 Brick/Backend Builder - Creates new Bricks/Backends for End User

* |If the code is generally applicable, create a feature branch from Fugu, write code, merge request.
Recommended to e-mail wg-fugu@sandia.gov to coordinate and collaborate first.

* |If the code is project-specific or sensitive, create your own repository and inherit from Brick /
Backend

* Core Fugu - Modifies Core parts of Fugu

* Create a feature branch from Fugu, create code, merge request. Recommended to e-mail wg-
fugu@sandia.gov to coordinate and collaborate first.

* Large suggestions/collaborations will require discussions with wg-fugu@sandia.gov

mailto:wg-fugu@sandia.gov
mailto:wg-fugu@sandia.gov
mailto:wg-fugu@sandia.gov
https://github.com/sandialabs/Fugu

Building a Basic Scaffold

Scaffolds

Algorithm

Insert Brick A, input IN //A=f, (in)
Insert Brick B, input A //B=f, (R)
Insert Brick C, input A //C=f.(R)
Insert Brick D, input B, C //D=f,(B, C)

 The main entry point for using Fugu

* Should represent an application
* Could represent an algorithm

 But Bricks also use an algorithm, so that’s
a little confusing

 Spikes in, spikes out

Necessary Components

l.e. what to worry about

 The computation we want to do
Scaffold

 Scaffolds are directed acyclic graphs Input

/

 Think of each node as a function that operates on
data

Subtract 108

| LookUp Table
Divide by 256 |

* |nput spikes and dimensionality

|
MLP — Equality

o Scaffolds accept an input spike raster (humpy

array)
Rolling Mean

* Future bricks could handle spike generation |
automatically Output

Built-in conversions
to/from spikes soon!

Fibonacci Example
examp les/Fi1bonacciTutorial. 1pynb

Setup

This notebook shows how Fugu can be used to generate more complex arithmetic circuits from basic streaming arithmetic
functions such as addition. The goal of this notebook is to show how more complex arithmetic functions can be simply composed
from Fugu bricks.

Step 0: Setup
First, we need to import Fugu and other relevant libraries. Here, we will include the adder bricks and basic setup.

import networkx as nx

import numpy as np

import fugu

from fugu import Scaffold, Brick

from fugu.bricks import Vector Input

from fugu.backends import snn Backend

from fugu.bricks import streaming adder, temporal shift

#A function to plot spike rasters:

def plot spike raster(scaffold, results):
import matplotlib.pyplot as plot
num elements=scaffold.graph.number of nodes()
print ('Number of neurons: ', num elements)
results.plot.scatter(x="time', y='neuron number', title="Spike Raster")
plot.show()

#A function to compute the value from LEIT coded neurons
def compute value(result):
for i in range(0,8):
add element=12+9*1

last adder begin=np.sum(result.query(neuron number=='+str(add element)+'-6"')['time'])
query str=str(last adder begin)+' <= time and neuron number ==' +str(add element-1)
fl0=np.sum(2**(result.query(query str)[time']-last adder begin))

print('Fibonacci ' + str(i+3) + ' '+ str(f10) +' at neuron ' + str(add element-1))

Brute Force Circuit

The goal of this circuit is to implement the Fibonacci sequence by brute force; if we want to go 10 layers, we will have 10 adders.
First we instantiate an empty scaffold, and we prep some input data.

The input data might seem strange; The examples in this notebook describe circuits that use inputs which are encoded using a little-
endian-in-time (LEIT) coding scheme. LEIT coding is simple - think of a binary description of a number (19 = 10011), flip it around so the
least significant bit is first (19 == 11001), and then have the input neuron spike at the first, second, and fifth timesteps.

scaffold = Scaffold()

#Input values

F 1=[0,0]

F 2=[1,0]

shift length total = 2

Brute Force Circuit

Specifying Input Bricks
We'll now add input bricks to represent the first and second values. We add a brick to a scaffold like this:

scaffold.add brick(brick function, input nodes=[], metadata=None, name=None, output=False)

e brick function is the brick itself.

e input nodes is a list of inputs nodes. In this case, they are inputs so we have the special case of 'input’, or equivalently ['input’].
¢ metadata is used to include extra information about a node. Previously this had some functionality, but now is mostly just for
taking notes and is usually unused.

¢ ouput set to True if this is an output for the network. Generally, only output bricks are recorded.

We use Vector Input as our input brick type. This type of input brick is useful for loading a numpy array (or anything that can be
cast to a numpy array) as a spike train.

Creating a Vector Input looks like this:

Vector Input(spikes, time dimension = False, coding='Undefined', batchable=True,
name='VectorInput')

scaffold.add_brick(Vector_Input(np.array([F_1]), coding='binary-L', name='F1l', time_dimension=True), 'input') #0
scaffold.add brick(Vector Input(np.array([F_2]), coding='binary-L', name='F2', time_dimension=True), 'input') #I

Brute Force Circuit

More addition
Let's repeat the process to build more sums. We could've (and should've) use a for loop for this.

One thing to note, bricks transfer spikes to the next brick as soon as possible.
In this example, that matters because (for example): F1 + F2 = F3 (viabrickadd 12)
F2 + F3 = F4 (viabrickadd 23)

But F2 will send its spikes to add 23 as soon as they are available. But, add 12 takes time to compute. It takes
precisely 2 timesteps. So, we add an additional brick, temporal shift to delay the spikes from F2. This way all
the information arrives at add 23 at the same time.

The second adder adds a time-delayed version (2 timesteps) of F2 and F3. This output is F4
scaffold.add brick(temporal shift(name='shift 2 ', shift length=shift length total), [(1,0)], output=True) #3

scaffold.add brick(streaming adder(name='add 23 '), [(2,0), (3,0)], output=True)

The third adder adds a time-delayed version of F3 and F4. This output is F5
scaffold.add brick(temporal shift(name='shift 3 ', shift length=shift length total), [(2,0)], output=True) #5
scaffold.add brick(streaming adder (name='add 34 "), [(4,0), (5,0)], output=True)

The fourth adder adds a time-delayed version of F4 and F5. This output is F6
scaffold.add brick(temporal shift(name='shift 4 ', shift length=shift length total), [(4,0)], output=True) #7
scaffold.add brick(streaming adder (name='add 45 "), [(6,0), (7,0)], output=True)

Building a Basic Brick

How Do Bricks Communicate?

* Bricks use a predefined set of codings to
represent input/output values

* We need better definition of what a coding
means

Coding types are soon to be redefined and defined

more concretely and more formally!

e Bricks also define ‘control neurons’ which are
used to send extra signals such as

 When a brick should start processing

 When a brick has finished processing

Name Description

unary-B Unary coding, large values first
unary-L Unary, small values first
binary-B Binary, large values first
binary-L Binary, small values first
temporal-B Temporal, large values first
temporal-L Temporal, small values first
Raster Grid-like array

Population # active represents value
Rate Rate coded neurons
Undefined Neurons without a coding
Current Used for pre-threshold

computation

How are Bricks built?

Bricks are built by iterating over the
Scaffold.circuit

Each brick is responsible for

» Building a portion, i.e. its part, of the
neuron graph

* Providing indexed output neurons
» Connecting Control Nodes
Each brick is provided

* Indexed input neurons from incoming
bricks

* Incoming Control Nodes
» Any Brick-specific parameters

A Brick
is Built

4

Control Flow for a Brick’s

building process

Build local
graph

Wait

|

Report
Built

80-20 Example
examp les/EightTwentyTutorial. 1pynb

80-20 Example

Networks with 80 percent excitatory and 20 percent inhibitory connectivity are common and can be used, for example,
as a liquid in a reservoir computing method (e.g. LSM). This tutorial builds a quick bricks for such a network.

To try to avoid confusion and overloading of terms, we'll refer to neurons within our 80-20 network to be 'liquid
neurons' or 'neurons in the liquid,’ etc. First, some imports:

import numpy as np

np.random.seed(0)

import networkx as nx

import fugu

from fugu import Scaffold, Brick

from fugu.bricks import Vector Input
from fugu.backends import snn Backend

def plot spike raster(scaffold, results):
import matplotlib.pyplot as plot
num elements=scaffold.graph.number of nodes()
print ('Number of neurons: ', num elements)

results.plot.scatter(x="time', y='neuron number', title="Spike Raster")
plot.show()

def plot scaffold graph(scaffold):
edge weights = [scaffold.graph.edges[v]['weight'] for v in scaffold.graph.edges()]
nx.draw networkx(scaffold.graph,
with labels = False,
pos = nx.spring layout(scaffold.graph),
edge color = edge weights,
node size = 100)

80-20 Example

Inherit from Brick

 All bricks should inherit from the Brick class.

* Bricks that are listed as input bricks should instead inherit from InputBrick, which is beyond the scope
of this tutorial.

* The construction of most brick types is similar; constructing a brick that takes input coding "current” (see
below) is a bit different and is beyond the scope of this tutorial.

The Brick class provides the framework for the a scaffold to build a neural graph. Subclasses of Brick
should provide the actual code that will generate the nodes and edges on a graph. The graph construction
should take place within the build method. Let's look at the definition of the parent class Brick.

80-20 Example

The first line class Brick (ABC) defines the abstract class of
Brick. Brick objects inherit from ABC which just means that
Brick is an abstract class that cannot be instantiated on its
own; only subclasses may be instantiated.

The init method contains standard instantiation code.
All bricks are expected to have a member property self.name
that is unigue to the brick. The uniqueness needs to be
determined by the scaffold, not by the brick.

The property self.is built is a boolean that is True if the
brick has been built (added to the graph).

The property self.supported codings is a list of input
codings (strings) that the brick supports. Since you have the full
use of python when you are defining your brick, you can
support multiple coding types completely transparent to the
user. A full list of coding types can be found at

fugu.input coding types.

class Brick(ABC):
def _init (self):
self.name = "Empty Brick"
self.supported codings = []

@abstractmethod
def build(self, graph,
metadata,
complete_node,
input_lists,
input_codings):
pass

Better and more formal coding

definitions are being developed!

80-20 Example

The method build will be called by the scaffold when the graph is to be
built. Arguments are:

* graph: The graph object that we are building onto.

* metadata: A dictionary of shapes and parameters. This will likely be
modified in future implementations, so don't rely on it.

e control_nodes: A dict of lists of nodes that transmit a control
information. The most common is control nodes|['complete’]
which carries a list of 'finished' spikes from input bricks. If your brick
has one input, then this will be a list of a single node. The only other
currently used key is control nodes['begin'] which is used for
temporally coded bricks (and outside the scope of this tutorial)

* input_lists: A list of lists of nodes that correspond to input neurons.
The outermost list contains a list of neurons, one for each input on the
scaffold.

* input_codings: A list of input coding types. The list contains one
coding type per input on the scaffold.

Each brick is responsible for throwing the appropriate errors/warnings if
the inputs are not compatible with the brick.

class Brick(ABC):
def init (self):
self.name = "Empty Brick"
self.supported _codings = []

@abstractmethod
def build(self, graph,
metadata,
complete_node,
input_lists,
input_codings):
pass

Brick-to-brick

communication is being
redesigned!

Introduction to Backend Design

Why do we need backends?

- Backends provide an interface with an execution platform (Hardware or
Simulator)

» This allows Fugu networks to run on multiple platforms

» Decoupling network design and network execution is an incredibly
useful ideal

* From the user perspective:
* You should not need to worry about hardware details

» Anything you write will work on new hardware once a backend exists
* From the HW perspective:

» Experts in the HW are the ones that are interfacing with HW

» Anything previously written in Fugu Is available as soon as you write a
backend

Backend Lifetime

Neurons = nodes, neuron
properties are node properties

Synapses = edges, synapse
properties are edge properties

Backend.__init__ * Backend.compile * Backend.run

v

+Compile Args + Runtime
 Backend is an * Converts generic IR * Executes or * Return should be a
abstract class to platform-specific simulates the sparse DataFrame
* |nstantiates the representation network graph where each record is
backend and any Backend owns a a spike (time,
HW initialization or platform-specific neuron)
environment copy of the graph

variables

Benefits and Challenges for Backend Design

Benefits Challenges
Experts in a particular execution Backend must support general SNN
platform (hardware) write platform- (arbitrary graph, specific neuron model)

specific code
 Dynamic range in weights, potentials

Common hardware limitations can be may be large

abstracted from algorithm design
» Currently no clear backend testing

Platform-specific optimizations and best regimen

practices are easy to use
 Network graph must fit entirely In

Backend designers do not need to worry memory

about spiking algorithms
Guidelines for (ranges and precision) for neuron and
synapse properties! Backend testing program!

10N

%5 Fugu Motivat

<=y Workflow

<= Scaffold
<=y Brick

<2y Backend Overview

August 3ra16:45-17:00 Presentation:

Neuromorphic Population Evaluation using the Fugu
Framework.
William Severa, Suma Cardwell, Michael Krygier, Fredrick
Rothganger and Craig Vineyard.

