
Presented by Srideep Musuvathy
William Severa and Craig Vineyard

†

Building Scalable, Composable Spiking
Neural Algorithms with Fugu
ICONS Tutorials
August 1st 2023

Team:
Brad Aimone
Sylvain Bernard
Suma Cardwell
Frances Chance
Yang Ho
Ingrid Lane*
Zubin Kane

Michael Krygier
Srideep Musuvathy
Leah Reeder*
Fred Rothganger
Corinne Teeter
Craig Vineyard
Felix Wang

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a
wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract

DE-NA0003525. SAND2023-07158C

https://github.com/sandialabs/Fugu

Clone, install and follow-along!

All code for the tutorial is available in

the examples folder.

SAND2023-07158CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do
not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract
DE-NA0003525.

https://github.com/sandialabs/Fugu

Agenda

 The Why and How of Fugu

 Workflow

 Building a Scaffold

 Building a Brick

 Backend Overview

Introduction, Concepts and Key
Design Ideas

The Why and How of Fugu

Fugu was created out of need to map applications
to Neuromorphic hardware

• Fugu aims to help support the field by providing standardization and expand accessibility by lowering
barriers of entry

• Some Fugu-related publications:

• Aimone, James B., William Severa, and Craig M. Vineyard. "Composing neural algorithms with Fugu." Proceedings of the International

Conference on Neuromorphic Systems. 2019.

• Reeder, Leah Evelyn, James Bradley Aimone, and William Mark Severa. The Future of Computing: Integrating Scientific Computation on

Neuromorphic Systems. No. SAND-2019-14547R. Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2020.

• Vineyard, Craig, et al. "Neural Mini-Apps as a Tool for Neuromorphic Computing Insight." Neuro-Inspired Computational Elements Conference.

2022.

• Aimone, James B., et al. "Spiking Neural Streaming Binary Arithmetic." 2021 International Conference on Rebooting Computing (ICRC). IEEE,

2021.

• Aimone, James, et al. "A review of non-cognitive applications for neuromorphic computing." Neuromorphic Computing and Engineering (2022).

Sept 2018 June 2022

First Prototype Open Source v0.1

April 2019

First Distribution to Partners

February 2020

Loihi Backend

July 2019

SpiNNaker Backend

https://github.com/sandialabs/Fugu

https://github.com/sandialabs/Fugu

Motivations
• Hardware Independence - Write once, run in several places

“You wrote LCA code for Loihi; I want to run it on SpiNNaker.”

• Composition - Pieces work together with one-another

“I want to use your Localization method with my new idea for Navigation.”

• Scalability - Grows to your problem size

“I found a CNN trained for 28x28, but my data is 32x32.”

Key Classes
• Bricks

• Roughly represents a function

• Should be standalone but also not decomposable

• Contain code to generate a network

• Scaffold

• Represents an application

• Composed of bricks linked together in a graph

• Backends

• Responsible for conversion to platform-specific versions

• Responsible for hardware-specific oddities

Scaffold
Brick A

Brick C

Brick D

Brick B

Backends

Loihi Simulator

User Cases
• Users will define an application at the level of functions/Bricks by building a

Scaffold

• Bricks (and Scaffolds) use spikes for both inputs and outputs

• Users should not worry about how the network itself is built or how/where it
runs

• Brick Builders will write code that instructs how a brick will be built

• Bricks must know which neurons need to exist and how they connect

• Bricks do not need to know where they run or what they’re connected to

• Backend Developers will write code that converts a generic graph to a HW
graph

More About Bricks
• Bricks should be standalone and represent ‘one job’

• Bricks have some defining characteristics, and all bricks should exhibit these
qualities

• Bricks should build their network (neurons, synapses) procedurally

• Bricks should maintain compatibility by using standard input/output codings

Workflow and Features

Example Classifier
(Not all these bricks exist)

In this example, we have data and a pre-trained MLP.

We want to classify after some preprocessing using the pre-trained MLP.

Operations are

1. Preprocessing:

2. Apply MLP to

xi ∈ X

xi

f(x) =
x − 108

255

f(x)

Scaffold
Input

Divide by 256

Subtract 108

MLP

Output

User defines a scaffold
Scaffold

Scaffold is built

Scaffold.lay_bricks()

Dimensionality

Scaffold.graph

Neurons Synapses

Loihi Backend
Backend

Parameters
HW

Graph

Loihi HW

User defines a backend
Loihi Backend

Backend
Parameters

User compiles Scaffold

with a Backend

User runs a scaffold

via a backend

Output

Spikes

#User defines a scaffold

scaffold = Scaffold()

scaffold.add_brick(Vector_Input(array), ‘input’)

scaffold.add_brick(Subtract(108))

scaffold.add_brick(Divide(256))

scaffold.add_brick(MLP(model_file), output=True)

scaffold.lay_bricks() #Scaffold is built

backend = loihi_Backend() #User defines a backend

backend.compile(scaffold) #User compiles Scaffold

#User runs a Scaffold

output_spikes = backend.run(time steps)

Rough Example of Code

What is supported?
Neurons and Synapses
• For best compatibility, we choose a very simple neuron model:

where is the potential of neuron , is an injection current, is a weight matrix, is a spike history,
is the threshold, is the spike probability, is a decay constant* and is a random uniform draw

• Synapses have a weight and an integer delay.

• Spikes persist for a single tilmestep and increase the post-synaptic potential by the weight value.

̂xi,t+1 = xi,t + Ii + Wi ⋅ St−1

St,i = {1 if ̂xi,t > Ti and a < pi

0 otherwise

xi,t+1 = {(1 − mi) ⋅ ̂xi,t if St,i = 0
0 otherwise

xi i Ii Wi S Ti
pi mi a

* Correct at the time of presentation. Fred is looking to update this and will notify if there are changes.

What about learning?
• For now, Fugu is designed for non-learning or offline learning algorithms

• A learned component can be fed to a brick at instantiation

• In the future, we would like to support learning in the same manner as other
hardware-specific features

• As features become common, they can be moved into the fugu base neuron

Reports HW
Features

HW
Requests HW

Features Scaffold

HW-Aware Graph

IR GraphBrick

HW-Dependent
Brick

Schematic for HW-specific features

How to Interact with Fugu
We are always looking for collaborators!
• End User - Works with bricks, scaffolds and backends

• Should clone Fugu repository and import fugu.

• New code should go in its own project-specific repository

• Brick/Backend Builder - Creates new Bricks/Backends for End User

• If the code is generally applicable, create a feature branch from Fugu, write code, merge request.
Recommended to e-mail wg-fugu@sandia.gov to coordinate and collaborate first.

• If the code is project-specific or sensitive, create your own repository and inherit from Brick /
Backend

• Core Fugu - Modifies Core parts of Fugu

• Create a feature branch from Fugu, create code, merge request. Recommended to e-mail wg-
fugu@sandia.gov to coordinate and collaborate first.

• Large suggestions/collaborations will require discussions with wg-fugu@sandia.gov

https://github.com/sandialabs/Fugu

If you use Fugu for research, please
cite our ICONS paper: Aimone,

Severa, Vineyard. Composing neural
algorithms with Fugu, 2019.

mailto:wg-fugu@sandia.gov
mailto:wg-fugu@sandia.gov
mailto:wg-fugu@sandia.gov
https://github.com/sandialabs/Fugu

Building a Basic Scaffold

• The main entry point for using Fugu

• Should represent an application

• Could represent an algorithm

• But Bricks also use an algorithm, so that’s
a little confusing

• Spikes in, spikes out

Scaffolds

I.e. what to worry about
• The computation we want to do

• Scaffolds are directed acyclic graphs

• Think of each node as a function that operates on
data

• Input spikes and dimensionality

• Scaffolds accept an input spike raster (numpy
array)

• Future bricks could handle spike generation
automatically

Necessary Components

Scaffold
Input

Divide by 256

Subtract 108

MLP

Output

LookUp Table

Equality

Rolling Mean

Built-in conversions
to/from spikes soon!

Fibonacci Example

examples/FibonacciTutorial.ipynb

Setup
This notebook shows how Fugu can be used to generate more complex arithmetic circuits from basic streaming arithmetic
functions such as addition. The goal of this notebook is to show how more complex arithmetic functions can be simply composed
from Fugu bricks.

Step 0: Setup
First, we need to import Fugu and other relevant libraries. Here, we will include the adder bricks and basic setup.

import networkx as nx
import numpy as np
import fugu
from fugu import Scaffold, Brick
from fugu.bricks import Vector_Input
from fugu.backends import snn_Backend
from fugu.bricks import streaming_adder, temporal_shift
#A function to plot spike rasters:
def plot_spike_raster(scaffold, results):
 import matplotlib.pyplot as plot
 num_elements=scaffold.graph.number_of_nodes()
 print('Number of neurons: ', num_elements)
 results.plot.scatter(x='time', y='neuron_number', title="Spike Raster")
 plot.show()

#A function to compute the value from LEIT coded neurons
def compute_value(result):
 for i in range(0,8):
 add_element=12+9*i
 last_adder_begin=np.sum(result.query('neuron_number=='+str(add_element)+'-6')['time'])
 query_str=str(last_adder_begin)+' <= time and neuron_number ==' +str(add_element-1)
 f10=np.sum(2**(result.query(query_str)['time']-last_adder_begin))
 print('Fibonacci ' + str(i+3) + ' '+ str(f10) +' at neuron ' + str(add_element-1))

Brute Force Circuit
The goal of this circuit is to implement the Fibonacci sequence by brute force; if we want to go 10 layers, we will have 10 adders.

First we instantiate an empty scaffold, and we prep some input data.

The input data might seem strange; The examples in this notebook describe circuits that use inputs which are encoded using a little-
endian-in-time (LEIT) coding scheme. LEIT coding is simple - think of a binary description of a number (19 = 10011), flip it around so the
least significant bit is first (19 => 11001), and then have the input neuron spike at the first, second, and fifth timesteps.

scaffold = Scaffold()

#Input values
F_1=[0,0]
F_2=[1,0]
shift_length_total = 2

Brute Force Circuit
Specifying Input Bricks
We'll now add input bricks to represent the first and second values. We add a brick to a scaffold like this:

scaffold.add_brick(brick_function, input_nodes=[], metadata=None, name=None, output=False)

•brick_function is the brick itself.
•input_nodes is a list of inputs nodes. In this case, they are inputs so we have the special case of 'input', or equivalently ['input'].
•metadata is used to include extra information about a node. Previously this had some functionality, but now is mostly just for

taking notes and is usually unused.
•ouput set to True if this is an output for the network. Generally, only output bricks are recorded.

We use Vector_Input as our input brick type. This type of input brick is useful for loading a numpy array (or anything that can be
cast to a numpy array) as a spike train.

Creating a Vector_Input looks like this:

Vector_Input(spikes, time_dimension = False, coding='Undefined', batchable=True,
name='VectorInput')

scaffold.add_brick(Vector_Input(np.array([F_1]), coding='binary-L', name='F1', time_dimension=True), 'input') #0
scaffold.add_brick(Vector_Input(np.array([F_2]), coding='binary-L', name='F2', time_dimension=True), 'input') #1

Brute Force Circuit
More addition
Let's repeat the process to build more sums. We could've (and should've) use a for loop for this.

One thing to note, bricks transfer spikes to the next brick as soon as possible.

In this example, that matters because (for example): F1 + F2 = F3 (via brick add_12_)

F2 + F3 = F4 (via brick add_23_)

But F2 will send its spikes to add_23_ as soon as they are available. But, add_12_ takes time to compute. It takes
precisely 2 timesteps. So, we add an additional brick, temporal_shift to delay the spikes from F2. This way all
the information arrives at add_23_ at the same time.

The second adder adds a time-delayed version (2 timesteps) of F2 and F3. This output is F4
scaffold.add_brick(temporal_shift(name='shift_2_', shift_length=shift_length_total), [(1,0)], output=True) #3
scaffold.add_brick(streaming_adder(name='add_23_'), [(2,0), (3,0)], output=True)

The third adder adds a time-delayed version of F3 and F4. This output is F5
scaffold.add_brick(temporal_shift(name='shift_3_', shift_length=shift_length_total), [(2,0)], output=True) #5
scaffold.add_brick(streaming_adder(name='add_34_'), [(4,0), (5,0)], output=True)

The fourth adder adds a time-delayed version of F4 and F5. This output is F6
scaffold.add_brick(temporal_shift(name='shift_4_', shift_length=shift_length_total), [(4,0)], output=True) #7
scaffold.add_brick(streaming_adder(name='add_45_'), [(6,0), (7,0)], output=True)

Building a Basic Brick

How Do Bricks Communicate?
• Bricks use a predefined set of codings to

represent input/output values

• We need better definition of what a coding
means

• Bricks also define ‘control neurons’ which are
used to send extra signals such as

• When a brick should start processing

• When a brick has finished processing

Name Description

unary-B Unary coding, large values first

unary-L Unary, small values first

binary-B Binary, large values first

binary-L Binary, small values first

temporal-B Temporal, large values first

temporal-L Temporal, small values first

Raster Grid-like array

Population # active represents value

Rate Rate coded neurons

Undefined Neurons without a coding

Current Used for pre-threshold
computation

Coding types are soon to be redefined and defined
more concretely and more formally!

How are Bricks built?
• Bricks are built by iterating over the

Scaffold.circuit

• Each brick is responsible for

• Building a portion, i.e. its part, of the

neuron graph

• Providing indexed output neurons

• Connecting Control Nodes

• Each brick is provided

• Indexed input neurons from incoming

bricks

• Incoming Control Nodes

• Any Brick-specific parameters

80-20 Example

examples/EightTwentyTutorial.ipynb

80-20 Example
Networks with 80 percent excitatory and 20 percent inhibitory connectivity are common and can be used, for example,
as a liquid in a reservoir computing method (e.g. LSM). This tutorial builds a quick bricks for such a network.

To try to avoid confusion and overloading of terms, we'll refer to neurons within our 80-20 network to be 'liquid
neurons' or 'neurons in the liquid,' etc. First, some imports:
import numpy as np
np.random.seed(0)
import networkx as nx
import fugu
from fugu import Scaffold, Brick
from fugu.bricks import Vector_Input
from fugu.backends import snn_Backend

def plot_spike_raster(scaffold, results):
 import matplotlib.pyplot as plot
 num_elements=scaffold.graph.number_of_nodes()
 print('Number of neurons: ', num_elements)
 results.plot.scatter(x='time', y='neuron_number', title="Spike Raster")
 plot.show()

def plot_scaffold_graph(scaffold):
 edge_weights = [scaffold.graph.edges[v]['weight'] for v in scaffold.graph.edges()]
 nx.draw_networkx(scaffold.graph,
 with_labels = False,
 pos = nx.spring_layout(scaffold.graph),
 edge_color = edge_weights,
 node_size = 100)

80-20 Example
Inherit from Brick
• All bricks should inherit from the Brick class.

• Bricks that are listed as input bricks should instead inherit from InputBrick, which is beyond the scope

of this tutorial.

• The construction of most brick types is similar; constructing a brick that takes input coding "current" (see

below) is a bit different and is beyond the scope of this tutorial.

The Brick class provides the framework for the a scaffold to build a neural graph. Subclasses of Brick
should provide the actual code that will generate the nodes and edges on a graph. The graph construction
should take place within the build method. Let's look at the definition of the parent class Brick.

80-20 Example
The first line class Brick(ABC) defines the abstract class of
Brick. Brick objects inherit from ABC which just means that
Brick is an abstract class that cannot be instantiated on its
own; only subclasses may be instantiated.

The __init__ method contains standard instantiation code.
All bricks are expected to have a member property self.name
that is unique to the brick. The uniqueness needs to be
determined by the scaffold, not by the brick.

The property self.is_built is a boolean that is True if the
brick has been built (added to the graph).

The property self.supported_codings is a list of input
codings (strings) that the brick supports. Since you have the full
use of python when you are defining your brick, you can
support multiple coding types completely transparent to the
user. A full list of coding types can be found at
fugu.input_coding_types.

class Brick(ABC):

 def __init__(self):

 self.name = "Empty Brick"

 self.supported_codings = []

 @abstractmethod

 def build(self, graph,

 metadata,

 complete_node,

 input_lists,

 input_codings):

 pass

Better and more formal coding
definitions are being developed!

80-20 Example
The method build will be called by the scaffold when the graph is to be
built. Arguments are:

• graph: The graph object that we are building onto.

• metadata: A dictionary of shapes and parameters. This will likely be

modified in future implementations, so don't rely on it.

• control_nodes: A dict of lists of nodes that transmit a control

information. The most common is control_nodes['complete']
which carries a list of 'finished' spikes from input bricks. If your brick
has one input, then this will be a list of a single node. The only other
currently used key is control_nodes['begin'] which is used for
temporally coded bricks (and outside the scope of this tutorial)

• input_lists: A list of lists of nodes that correspond to input neurons.
The outermost list contains a list of neurons, one for each input on the
scaffold.

• input_codings: A list of input coding types. The list contains one
coding type per input on the scaffold.

Each brick is responsible for throwing the appropriate errors/warnings if
the inputs are not compatible with the brick.

class Brick(ABC):

 def __init__(self):

 self.name = "Empty Brick"

 self.supported_codings = []

 @abstractmethod

 def build(self, graph,

 metadata,

 complete_node,

 input_lists,

 input_codings):

 pass

Brick-to-brick
communication is being

redesigned!

Introduction to Backend Design

Why do we need backends?
• Backends provide an interface with an execution platform (Hardware or

Simulator)

• This allows Fugu networks to run on multiple platforms

• Decoupling network design and network execution is an incredibly

useful idea!

• From the user perspective:

• You should not need to worry about hardware details

• Anything you write will work on new hardware once a backend exists

• From the HW perspective:

• Experts in the HW are the ones that are interfacing with HW

• Anything previously written in Fugu is available as soon as you write a

backend

NetworkX DiGraph

Backend Lifetime

Backend.__init__ Backend.compile Backend.run

+Compile Args

Neurons = nodes, neuron
properties are node properties

Synapses = edges, synapse
properties are edge properties

• Return should be a
sparse DataFrame
where each record is
a spike (time,
neuron)

• Backend is an
abstract class

• Instantiates the
backend and any
HW initialization or
environment
variables

• Converts generic IR
to platform-specific
representation

• Backend owns a
platform-specific
copy of the graph

• Executes or
simulates the
network graph

+ Runtime

Pandas DataFrame

Input Spike
Generator

Benefits and Challenges for Backend Design
Benefits

• Experts in a particular execution
platform (hardware) write platform-
specific code

• Common hardware limitations can be
abstracted from algorithm design

• Platform-specific optimizations and best
practices are easy to use

• Backend designers do not need to worry
about spiking algorithms

Challenges
• Backend must support general SNN

(arbitrary graph, specific neuron model)

• Dynamic range in weights, potentials
may be large

• Currently no clear backend testing
regimen

• Network graph must fit entirely in
memory

Guidelines for (ranges and precision) for neuron and
synapse properties! Backend testing program!

Wrap up

 Fugu Motivation

 Workflow

 Scaffold

 Brick

 Backend Overview

August 3rd16:45-17:00 Presentation:

Neuromorphic Population Evaluation using the Fugu
Framework.

William Severa, Suma Cardwell, Michael Krygier, Fredrick
Rothganger and Craig Vineyard.

