

Sandia
National
Laboratories

Exceptional service in the national interest

GLOBAL SENSITIVITY ANALYSIS IN MONTE CARLO RADIATION TRANSPORT

Kayla Clements^{1,2}, Gianluca Geraci², Aaron Olson²,
Todd Palmer¹

1. Oregon State University, Corvallis OR

2. Sandia National Laboratories, Albuquerque NM

Mathematics and Computational Methods Applied to Nuclear Science and Engineering 2023

OVERVIEW

Variance-based global sensitivity analysis

Quantify variance in model output and attribute it to different uncertainty sources

Stochastic computational models

Identical inputs produce different results

Variance deconvolution

Separate variance contributions from stochastic solver and uncertainty sources

BACKGROUND – GLOBAL SENSITIVITY ANALYSIS

- Consider $Q = Q(\xi_1, \xi_2, \xi_3)$, function of 3 uncertainty sources
- Statistics with respect to ξ
 - $\mathbb{E}_\xi[Q]$, mean
 - $\text{Var}_\xi[Q]$, variance

BACKGROUND – GLOBAL SENSITIVITY ANALYSIS

- Consider $Q = Q(\xi_1, \xi_2, \xi_3)$, function of 3 uncertainty sources
- Statistics with respect to ξ
 - $\mathbb{E}_\xi[Q]$, mean
 - $\mathbb{V}ar_\xi[Q]$, variance

Conditional statistics for ξ_1

- Fix ξ_1 as constant \rightarrow conditional mean $\mathbb{E}_{\xi_2, \xi_3}[Q | \xi_1 = \text{constant}]$

BACKGROUND – GLOBAL SENSITIVITY ANALYSIS

- Consider $Q = Q(\xi_1, \xi_2, \xi_3)$, function of 3 uncertainty sources
- Statistics with respect to ξ
 - $\mathbb{E}_\xi[Q]$, mean
 - $\text{Var}_\xi[Q]$, variance

Conditional statistics for ξ_1

- Fix ξ_1 as constant \rightarrow conditional mean $\mathbb{E}_{\xi_2, \xi_3}[Q | \xi_1 = \text{constant}]$
- Variance over all possible ξ_1 \rightarrow conditional variance $\text{Var}_{\xi_1} \left[\mathbb{E}_{\xi_2, \xi_3}[Q | \xi_1] \right] \stackrel{\text{def}}{=} \mathbb{V}_1$

BACKGROUND – GLOBAL SENSITIVITY ANALYSIS

- Consider $Q = Q(\xi_1, \xi_2, \xi_3)$, function of 3 uncertainty sources
- Statistics with respect to ξ
 - $\mathbb{E}_\xi[Q]$, mean
 - $\mathbb{V}ar_\xi[Q]$, variance

Conditional statistics for ξ_1

- Fix ξ_1 as constant \rightarrow conditional mean $\mathbb{E}_{\xi_2, \xi_3}[Q | \xi_1 = \text{constant}]$
- Variance over all possible $\xi_1 \rightarrow$ conditional variance $\mathbb{V}ar_{\xi_1} \left[\mathbb{E}_{\xi_2, \xi_3}[Q | \xi_1] \right] \stackrel{\text{def}}{=} \mathbb{V}_1$
- Effect of $\xi_1 \rightarrow$ first-order sensitivity index (SI) $\frac{\mathbb{V}_1}{\mathbb{V}_\xi[Q]} \stackrel{\text{def}}{=} S_1$

BACKGROUND – SENSITIVITY INDICES (SI)

General case

$$Q = Q(\xi_1, \xi_2, \dots, \xi_d)$$

Consider ξ_i and $\xi_{\sim i}$ not i

BACKGROUND – SENSITIVITY INDICES (SI)

General case

$$Q = Q(\xi_1, \xi_2, \dots, \xi_d)$$

Consider ξ_i and $\xi_{\sim i}$ not i

First-order sensitivity index (SI)

Fractional contribution of ξ_i

$$S_i = \frac{\text{Var}_{\xi_i} [\mathbb{E}_{\xi_{\sim i}}[Q|\xi_i]]}{\text{Var}_{\xi}[Q]} = \frac{\mathbb{V}_i}{\mathbb{V}_{\xi}[Q]}$$

BACKGROUND – SENSITIVITY INDICES (SI)

General case

$$Q = Q(\xi_1, \xi_2, \dots, \xi_d)$$

Consider ξ_i and $\xi_{\sim i}$

First-order sensitivity index (SI)

Fractional contribution of ξ_i

$$S_i = \frac{\text{Var}_{\xi_i} [\mathbb{E}_{\xi_{\sim i}}[Q|\xi_i]]}{\text{Var}_{\xi}[Q]} = \frac{\mathbb{V}_i}{\mathbb{V}_{\xi}[Q]}$$

Total sensitivity index (SI)

Fractional contribution of ξ_i and all of its interactions

$$T_i = 1 - \frac{\mathbb{V}_{\xi_{\sim i}} [\mathbb{E}_{\xi_i}[Q|\xi_{\sim i}]]}{\text{Var}_{\xi}[Q]} = 1 - \frac{\mathbb{V}_{\sim i}}{\mathbb{V}_{\xi}[Q]} \quad \text{not } i \quad \text{A blue box with a white border containing the text 'not i' with a blue arrow pointing to it from the text 'xi_{sim i}'." data-bbox="905 545 975 605"}$$

BACKGROUND – SALTELLI METHOD^(GSA PRIMER, 2008)

Sampling-based estimation for S_i and T_i

- Given $Q = Q(\xi_1, \xi_2, \dots, \xi_d)$, generate a $(N_\xi, 2d)$ matrix of independent input samples and define matrices A and B , each containing half of the sample

$$A = \begin{bmatrix} \xi_1^{(1)} & \dots & \xi_i^{(1)} & \dots & \xi_d^{(1)} \\ \vdots & & \ddots & & \vdots \\ \xi_1^{(N_\xi)} & \dots & \xi_i^{(N_\xi)} & \dots & \xi_d^{(N_\xi)} \end{bmatrix}, \quad B = \begin{bmatrix} \xi_{d+1}^{(1)} & \dots & \xi_{d+i}^{(1)} & \dots & \xi_{2d}^{(1)} \\ \vdots & & \ddots & & \vdots \\ \xi_{d+1}^{(N_\xi)} & \dots & \xi_{d+i}^{(N_\xi)} & \dots & \xi_{2d}^{(N_\xi)} \end{bmatrix}$$

BACKGROUND – SALTELLI METHOD^(GSA PRIMER, 2008)

Sampling-based estimation for S_i and T_i

- Given $Q = Q(\xi_1, \xi_2, \dots, \xi_d)$, generate a $(N_\xi, 2d)$ matrix of independent input samples and define matrices A and B , each containing half of the sample

$$A = \begin{bmatrix} \xi_1^{(1)} & \dots & \xi_i^{(1)} & \dots & \xi_d^{(1)} \\ \vdots & & \ddots & & \vdots \\ \xi_1^{(N_\xi)} & \dots & \xi_i^{(N_\xi)} & \dots & \xi_d^{(N_\xi)} \end{bmatrix}, \quad B = \begin{bmatrix} \xi_{d+1}^{(1)} & \dots & \xi_{d+i}^{(1)} & \dots & \xi_{2d}^{(1)} \\ \vdots & & \ddots & & \vdots \\ \xi_{d+1}^{(N_\xi)} & \dots & \xi_{d+i}^{(N_\xi)} & \dots & \xi_{2d}^{(N_\xi)} \end{bmatrix}$$

- For all d inputs, create matrix C_i using all columns of B except the i th column, which is from A

$$C_i = \begin{bmatrix} \xi_{d+1}^{(1)} & \dots & \xi_i^{(1)} & \dots & \xi_{2d}^{(1)} \\ \vdots & & \ddots & & \vdots \\ \xi_{d+1}^{(N_\xi)} & \dots & \xi_i^{(N_\xi)} & \dots & \xi_{2d}^{(N_\xi)} \end{bmatrix}$$

BACKGROUND – SALTELLI METHOD^(GSA PRIMER, 2008)

Sampling-based estimation for S_i and T_i

- Given $Q = Q(\xi_1, \xi_2, \dots, \xi_d)$, generate a $(N_\xi, 2d)$ matrix of independent input samples and define matrices A and B , each containing half of the sample

$$A = \begin{bmatrix} \xi_1^{(1)} & \dots & \xi_i^{(1)} & \dots & \xi_d^{(1)} \\ \vdots & & \ddots & & \vdots \\ \xi_1^{(N_\xi)} & \dots & \xi_i^{(N_\xi)} & \dots & \xi_d^{(N_\xi)} \end{bmatrix}, \quad B = \begin{bmatrix} \xi_{d+1}^{(1)} & \dots & \xi_{d+i}^{(1)} & \dots & \xi_{2d}^{(1)} \\ \vdots & & \ddots & & \vdots \\ \xi_{d+1}^{(N_\xi)} & \dots & \xi_{d+i}^{(N_\xi)} & \dots & \xi_{2d}^{(N_\xi)} \end{bmatrix}$$

- For all d inputs, create matrix C_i using all columns of B except the i th column, which is from A

$$C_i = \begin{bmatrix} \xi_{d+1}^{(1)} & \dots & \xi_i^{(1)} & \dots & \xi_{2d}^{(1)} \\ \vdots & & \ddots & & \vdots \\ \xi_{d+1}^{(N_\xi)} & \dots & \xi_i^{(N_\xi)} & \dots & \xi_{2d}^{(N_\xi)} \end{bmatrix}$$

- Compute model output vector y of dimension $(N_\xi, 1)$ for A , B , and all C_i

$$y_A = \begin{bmatrix} Q\left(\xi_1^{(1)}, \dots, \xi_i^{(1)}, \dots, \xi_d^{(1)}\right) \\ \vdots \\ Q\left(\xi_1^{(N_\xi)}, \dots, \xi_i^{(N_\xi)}, \dots, \xi_d^{(N_\xi)}\right) \end{bmatrix}$$

BACKGROUND – SALTELLI METHOD^(GSA PRIMER, 2008)

Sampling-based estimation for S_i and T_i

4. Use sampling estimators to estimate first-order and total SIs [1]

BACKGROUND – SALTELLI METHOD^(GSA PRIMER, 2008)

Sampling-based estimation for S_i and T_i

4. Use sampling estimators to estimate first-order and total SIs [1]

$$S_i = \frac{\mathbb{V}ar_{\xi_i} [\mathbb{E}_{\xi \sim i} [Q | \xi_i]]}{\mathbb{V}_{\xi} [Q]} \approx \frac{\frac{1}{N} \sum_{j=1}^N y_A^{(j)} y_{C_i}^{(j)} - \left(\frac{1}{N} \sum_{j=1}^N y_A^{(j)} \right)^2}{\frac{1}{N} \sum_{j=1}^N \left(y_A^{(j)} \right)^2 - \left(\frac{1}{N} \sum_{j=1}^N y_A^{(j)} \right)^2}, \quad y_A = \begin{bmatrix} y_A^{(1)} \\ \vdots \\ y_A^{(N)} \end{bmatrix}$$

BACKGROUND – SALTELLI METHOD^(GSA PRIMER, 2008)

Sampling-based estimation for S_i and T_i

4. Use sampling estimators to estimate first-order and total SIs [1]

$$S_i = \frac{\mathbb{V}ar_{\xi_i} [\mathbb{E}_{\xi \sim i} [Q | \xi_i]]}{\mathbb{V}_{\xi} [Q]} \approx \frac{\frac{1}{N} \sum_{j=1}^N y_A^{(j)} y_{C_i}^{(j)} - \left(\frac{1}{N} \sum_{j=1}^N y_A^{(j)} \right)^2}{\frac{1}{N} \sum_{j=1}^N \left(y_A^{(j)} \right)^2 - \left(\frac{1}{N} \sum_{j=1}^N y_A^{(j)} \right)^2}, \quad y_A = \begin{bmatrix} y_A^{(1)} \\ \vdots \\ y_A^{(N)} \end{bmatrix}$$

BACKGROUND – SALTELLI METHOD^(GSA PRIMER, 2008)

Sampling-based estimation for S_i and T_i

4. Use sampling estimators to estimate first-order and total SIs [1]

$$S_i = \frac{\mathbb{V}ar_{\xi_i} [\mathbb{E}_{\xi \sim i} [Q | \xi_i]]}{\mathbb{V}_{\xi} [Q]} \approx \frac{\frac{1}{N} \sum_{j=1}^N y_A^{(j)} y_{C_i}^{(j)} - \left(\frac{1}{N} \sum_{j=1}^N y_A^{(j)} \right)^2}{\frac{1}{N} \sum_{j=1}^N \left(y_A^{(j)} \right)^2 - \left(\frac{1}{N} \sum_{j=1}^N y_A^{(j)} \right)^2}, \quad y_A = \begin{bmatrix} y_A^{(1)} \\ \vdots \\ y_A^{(N)} \end{bmatrix}$$