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Abstract

Accurate measurement of frequency response functions is essential for system identification, model updating,
and structural health monitoring. However, sensor noise and leakage cause variance and systematic errors in
estimated FRFs. Low-noise sensors, windowing techniques, and intelligent experiment design can mitigate these
effects but are often limited by practical considerations. This paper is a guide to implementation of local modeling
methods for FRF estimation, which have been extensively researched but are seldom used in practice. Theoretical
background is presented, and a procedure for automatically selecting a parameterization and model order is pro-
posed. Computational improvements are discussed that make local modeling feasible for systems with many input
and output channels. The methods discussed herein are validated on a simulation example and two experimental
examples: a multi-input, multi-output system with three inputs and 84 outputs and a nonlinear beam assembly.
They are shown to significantly outperform the traditional H1 and HSVD estimators.
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1 Introduction

Frequency response function (FRF) estimation is an essential step in characterization of dynamic systems. Traditional
estimators, including the H1, H2, HSVD (Hv), and HSVD-2, are fast and easy to implement [1]. However, their noise
rejection abilities are limited, and estimates are susceptible to leakage (also called transient) errors [8].

In recent years, local modeling techniques (also called nonparametric estimation) have been proposed in the
literature [3,7,9,14]. Local modeling (LM) models the system FRF and transient in bands centered at each frequency
of interest, which enables leakage removal and noise rejection. LM approaches generalize well to multi-input, multi-
output (MIMO) systems, but they are significantly more difficult to implement and require additional user interaction.
They are also more computationally expensive and can be prone to estimation instabilities and nonconvergence. This
paper seeks to mitigate these shortcomings and to make next-generation FRF estimation accessible to the dynamics
community.

Results included herein demonstrate that local modeling can significantly outperform traditional FRF estimation
techniques. Outperformance includes large MIMO systems and highly nonlinear systems. Local modeling is especially
useful when quality data is scarce or when leakage cannot be avoided. For example, in operational modal analysis,
the analyst has little control over input signals, so windowing must be used to avoid excessive leakage errors [8].
However, windowing distorts measured data and affects modal parameter estimation [8]. In other cases, only short
data records may be available. Even in a laboratory setting, averaging N panels (frames) of measured data or N
impacts only reduces error as O(

√
N). As a result, even the best measurement practices produce slow convergence,

and removing noise is tedious. Local modeling can significantly reduce noise’s impact on estimated FRFs.
Noise mitigation via averaging also sacrifices frequency resolution, which can be especially problematic near

resonances. LM requires no averaging and generates FRFs with full frequency resolution. Without averaging, there
is no need to, e.g., repeat random bursts, and a stationary random signal can be used. Without measuring free decay
periods in each burst-random realization, the effective signal-to-noise ratio (SNR) is also increased.

In nonlinear testing, different input levels generate different nonlinear FRFs. In this case, averaging can be
problematic. When conducting nonlinear characterization [11] using impact testing, it is thus helpful to generate
high-quality FRFs from single impacts. LM enables this, eliminating the need for binning impacts by force level and
averaging.

This paper is organized as follows. Section 2 presents a general theory of local modeling for MIMO systems
and several parameterizations for the local models. Section 3 describes the computational approach used for local
modeling and procedures for selecting a model and order. Section 4 demonstrates the approach’s effectiveness on
simulation data, and Section 5 demonstrates its effectiveness on a high-output MIMO system and on a nonlinear
system subject to hammer excitation.
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2 Theoretical Background

2.1 Problem formulation

Assume frequency-domain data (linear spectra) are available for a MIMO system with Nu input and Ny output
channels, with u (ωk) ∈ CNu as the input data and y (ωk) ∈ CNy as the output data. These vectors are hereafter
denoted uk and yk for each frequency bin ωk. The input-output relationship for the measured data is given by

yk = H0 (θ)uk + t0 (θ) + εk. (1)

Here H0 ∈ CNy×Nu is the parameterized frequency response matrix (FRM) at ωk, t0 is the parameterized transient
(leakage) vector at ωk, and ε is the error between modeled and measured response.

We seek to estimate H at each frequency bin via the parameter vector θ. Local modeling considers a band of
width Nb = 2R+1 centered at ωk, i.e., {ωk−R, ωk−R+1, . . . , ωk+R}, and chooses θ to minimize the error εk+r across
the band, −R ≤ r ≤ R. Yuen showed that stationary time-domain random processes are independent and Gaussian
in the freuqency domain [13]. Assuming known input and Gaussian output error yields

θ̂k = argmin
θ

R∑
r=−R

||yk+r −Hr (θ)uk+r − tr (θ)||2 ,

= argmin
θ

fk(θ).

(2)

The estimated FRM Ĥk at each frequency ωk is given by H0

(
θ̂k

)
. To distinguish between output caused by

the system input and by leakage, the frequency-domain input must be non-smooth [9], as is the case with random
excitation. In the case of a smooth input source (e.g., impact testing), leakage is typically negligible, and estimation
can proceed by setting tr to 0.

2.2 Parameterizations

This section addresses the task of defining parameterizations Hr (θ) and tr (θ). This paper uses the left matrix
fraction description (MFD) [14],

Hr (θ) = D−1
r (θ)Ar (θ) ,

tr (θ) = D−1
r (θ)br (θ) .

(3)

Voorhoeve presented several parameterizations of the denominator matrix D and FRF and transient numerator
matrices A and b as functions of r [14]. Values pd, pa, and pb represent the model order of D, A, and b respectively.
The “Parsimonious” parameterization takes one order input, p. In the parameterizations below, the components ds,
ds, Ds, As, and bs are direct rearrangements of the entries in θ. Denote by Ia the identity matrix in Ra×a.

Parameterization 1 (Common Denominator (CD))

Dr (θ) =

(
1 +

pd∑
s=1

ds(θ)r
s

)
INy , ds ∈ C,

Ar (θ) =

pa∑
s=0

As(θ)r
s, As ∈ CNy×Nu ,

br (θ) =

pb∑
s=0

bs(θ)r
s, bs ∈ CNy .

(4)

Parameterization 2 (Multi-input, single-output (MISO)) MISO is identical to the CD parameterization, ex-
cept for the denominator matrix:

Dr (θ) = 1 +

pd∑
s=1

(
INy

ds(θ)
)
rs, ds ∈ CNy . (5)

2



Parameterization 3 (Full MFD (FULL)) FULL is also identical to the CD and MISO parameterizations, except
for the denominator matrix:

Dr (θ) = 1 +

pd∑
s=1

Ds(θ)r
s, Ds ∈ CNy×Ny . (6)

Parameterization 4 (Parsimonious (PARS))

Dr (θ) =

[
Il 0
D0 INy−l

]
+

m−1∑
s=1

Ds(θ)r
s +

[
Dm 0
0 0

]
rm, D0 ∈ C(Ny−l)×l, Ds ∈ CNy×Ny, Dm ∈ Cl×l,

Ar (θ) =

m−1∑
s=0

As(θ)r
s +

[
Am

0

]
, As ∈ CNy×Nu , Am ∈ Cl×Nu ,

br (θ) =

m−1∑
s=0

bs(θ)r
s +

[
bm
0

]
, bs ∈ CNy , bm ∈ Cl,

m =

⌈
p

Ny

⌉
, l = p−Ny(1−m).

(7)

Table 1 gives the number of parameters, Np, to estimate for each model as a function of Nu, Ny, and the
model-order parameters.

Model Np, transient Np, no transient

CD pd +NyNu pa +Ny pb +Ny (Nu + 1) pd +NyNu pa +Ny (Nu + 1)

MISO Ny pd +NyNu pa +Ny pb +Ny (Nu + 1) Ny pd +NyNu pa +Ny (Nu + 1)

FULL NyNu pd +NyNu pa +Ny pb +Ny (Nu + 1) NyNu pd +NyNu pa +Ny (Nu + 1)

PARS (Nu +Ny + 1) p+Ny (Nu + 1) (Nu +Ny) p+Ny (Nu)

Table 1: Number of parameters to estimate for each parameterization with and without transient (leakage) removal.

2.3 Model Selection

Selection of an appropriate model (parameterization and order) is critical to avoid underfitting or overfitting. Model
selection is a major area of Bayesian research [12], and practical implementation requires a selection criterion that
is not too computationally demanding. A modified minimum description length (MDL) criterion has been proposed
by [9] for complex regression. It is expressed as

fk

(
θ̂k

)
Nb −Np

exp

(
Np ln(2Nb)

Nb −Np − 2

)
. (8)

At each frequency, estimates are computed for each model in a candidate set. The model is selected that minimizes
Eq. (8). Minimization requires computing the solution for each candidate model, which may be computationally
prohibitive in some applications. In this case, the analyst may simply specify a single reasonable model. Section 3.3
gives rules of thumb for selecting a candidate set and for selection of a single model to yield acceptable results.

3 Computation

This section presents the computational approach used to estimate each θ̂k. Section 3.1 presents an iterative linear
least-squares approach to estimation, and Section 3.2 describes a method for improving compute time for large MIMO
systems. Sections 3.3 and 3.4 describe the process of selecting a model and estimation bandwidth.

3.1 Iterative linear least squares

Minimizing the objective function in Eq. (2) is a nonlinear least-squares problem. The matrices Dr, Ar, and br can
each be described as a linear mapping of the parameter vector θ, but the inversion of the denominator matrices Dr

introduces nonlinearity. If desired, gradient-descent approaches could be applied to estimate θ̂k. However, when the
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number of input and ouput channels is high, the optimization dimensionality Np can be large (Table 1). Nonlinear
approaches are therefore susceptible to convergence to local minima, resulting in unreliable FRF estimates. Further,
optimization must be performed in each discrete frequency bin of interest: hence, the computational cost of nonlinear
optimization is unacceptable for many applications.

Sanathanan and Koerner (SK) proposed an iterative linear least-squares algorithm for problems of this form [10].

The estimate θ̂n
k in iteration n is given by

θ̂n
k = argmin

θ

∑
r

∣∣∣∣∣∣∣∣[Dr

(
θ̂n−1
k

)]−1

(Dr (θ)yk+r −Ar (θ)uk+r − br (θ))

∣∣∣∣∣∣∣∣2
= argmin

θ

∑
r

||Dpr
r (Xr θ + yk+r)||2 .

(9)

Linear mappings Xr for each parameterization are provided in Table 2. For convenience, the following notation is
used:

Xr =
[
Mr,1 −Mr,2 −Mr,3

]
, (10)

[r]
b
a =

[
ra ra+1 . . . rb

]
, (11)

[yr]
l
= yT

k+r

[
Il
0

]
. (12)

Minimization of Eq. (9) is computed in a single least-squares step by

θ̂n
k = [Ln]

+
qn, (13)

Ln =


Dpr

k−RXk−R

Dpr
k−R+1Xk−R+1

...
Dpr

k+RXk+R

 , qn = −


Dpr

k−Ryk−R

Dpr
k−R+1yk−R+1

...
Dpr

k+Ryk+R

 , (14)

where (◦)+ denotes the left pseudoinverse. Iterations continue until convergence is achieved or until a maximum
iteration count is reached. Algorithm 1 presents a basic implementation that captures nonconvergence to enhace
stability.

Algorithm 1 Sanathanan-Koerner linearized iterations

Initialize Dpr
r = 1, θ̂pr = 0, fmin = Inf

Compute Xr from Table 2

for n ∈ {1, 2, . . . , N +Nnc} do
Assemble L and q
Compute θ̂ = L+q ▷ Moore-Penrose pseudoinverse

if
∣∣∣∣∣∣(θ̂ − θ̂pr

)
⊘ θ̂pr

∣∣∣∣∣∣
∞

≤ threshold then ▷ check for convergence

Set θ̂k = θ̂
Exit loop

else

Assign Dpr
r =

[
Dr

(
θ̂
)]−1

end if

if n > N then ▷ protect against non-convergence

if fk

(
θ̂
)
< fmin then

Set θ̂k = θ̂

Set fmin = fk

(
θ̂
)

end if
end if

end for
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Model M1,r M2,r M3,r

CD yk+r [r]
pd

1

(
[r]

pa

0 ⊗ uT
k+r

)
⊗ INy [r]

pb

0 ⊗ INy

MISO [r]
pd

1 ⊗ diag (yk+r)
(
[r]

pa

0 ⊗ uT
k+r

)
⊗ INy

[r]
pb

0 ⊗ INy

FULL
(
[r]

pd

1 ⊗ yT
k+r

)
⊗ INy

(
[r]

pa

0 ⊗ uT
k+r

)
⊗ INy

[r]
pb

0 ⊗ INy

PARS

[yr]
l ⊗

 0

INy−l

 (
[r]

m−1
1 ⊗ yT

k+r

)
⊗ INy

. . . rm [yr]
l ⊗

Il
0



[(
[r]

m−1
0 ⊗ uT

k+r

)
⊗ INy

. . . rmuT
k+r ⊗

Il
0


[r]m−1

0 ⊗ INy rm

Il
0



Table 2: Components of linearized matrices Xj .

3.2 Reducing compute time for MISO configuration

In Eq. (13), Ln ∈ CNyNb×Np . Table 1 shows that Np = O (Ny) for large Ny. Hence, for many-output systems,
Ln has O

(
N2

y

)
elements. When the number of input channels, Nu, and the number of frequency bins in the local

bandwith, Nb, are also large, calculating the pseudoinverse [Ln]
+

dominates computation time. Because the SK
procedure requires multiple iterations, and estimation of Hk is performed at each frequency bin ωk, the linearized
procedure becomes computationally prohibitive even when bins are computed in parallel.

However, inspection of Eq. (5) and the MISO row of Table 2 reveals that equations relating the inputs u to
outputs y are uncoupled for the MISO configuration. Independence gives the option of computing each row of the
frequency response matrix individually, which reduces the dimensionality of the pseudoinversion to Ln

j ∈ CO(1) with
j = 1, 2, . . . , Ny. The FRM estimate at ωk is then a concatenation of the single-output estimates,

Ĥk =


H0

(
θ̂k,1

)
H0

(
θ̂k,2

)
...

H0

(
θ̂k,Ny

)

 (15)

The estimate θ̂n
k,j in SK iteration n is

θ̂n
k,j =

[
Ln
j

]+
qn
j , (16)

where Ln
j and qn

j are computed from Eq. (14) considering only output channel j. The least-squares solutions[
Ln
j

]+
qn
j can be computed without loss of efficiency by, e.g., stacking as a 3-D array over j and using a commercial

linear least-squares solver such as pagemldivide (MATLAB© 2023a).
The diagonal form of the MISO denominator matrices Dr also allows for element-wise inversion to produce the

SK correction matrices Dpr
r,j . This enables partial assembly of Ln

j and qn
j prior to the SK iterations and simple

element-wise division to update them in each iteration.

3.3 Model selction rules of thumb

3.3.1 Automatic selection

In multi-output configurations, the MISO parameterization should be preferred due to its computational efficiency.
For systems with fewer outputs, experience has shown that the CD and PARS parameterizations also generate
acceptable results, but the FULL parameterization is prone to overfitting. Denote, e.g., a model consisting of the
MISO parameterization with order pa = 1, pb = 2, and pd = 3 by MISO (1, 2, 3).

Fig. 1 shows examples of automatic model selection on the linear (Nu = 3, Ny = 84) and nonlinear (Nu = 1, Ny =
24) systems discussed in Sections 5.1 and 5.2. The selection set used is MISO with 1 ≤ pa, pb ≤ 3, 0 ≤ pd ≤ 3.
Smoothing bandwidths are 20 Hz in both cases, and estimation is performed on five 4-second bursts and a single
impact, respectively. Transient estimation is disabled for the impact tests. Denominator order tends to increase at
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Figure 1: Application of model selection to (a) linear and (b) nonlinear systems. Scatter plots show the selected
model order at each frequency bin analyzed (right axes), overlaid on the sum of all FRF magnitudes at each frequency
(left axes). In (a), the candidate set includes only orders where pa = pb.
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Figure 2: Example of overfitted FRF resulting from an excessive model order. This figure was generated by applying
the FULL (3, 3, 3) model with 10 Hz bandwidth to 10 seconds of random vibration from the simulation described in
Section 4.

resonances, and numerator order increases in the high-slope regions on either side of the resonances. The selection
procedure prefers higher model orders in the nonlinear case, where FRF geometry is more complicated.

3.3.2 Manual selection

When computation time is limited, best practice is to specify a small candidate set for automatic selection (e.g.,
{MISO (1, 1, 1) , MISO (2, 2, 2)}). However, intelligent selection of a single model can yield acceptable results. For
linear systems, minimum model orders for sufficient description are typically (1, 1, 0) at off-resonances and (1, 1, 1)
at resonances. For very lightly damped systems, selecting a model order that is too low results in underestimation
of the resonance peaks [9]. In such cases, setting pd = 2 can improve estimation. For nonlinear systems, complicated
behavior near resonances may require higher model orders to resolve their behavior. The red plot in Fig. 1 shows
sums of FRF magnitudes when selecting a single model. As can be seen in the zoomed portion of Fig. 1b, selecting
MISO (1, 1, 2) results in underfitting the nonlinear FRF.

When using manual selection, FRFs should be inspected for overfitting. An example is shown in Fig. 2. Over-
fitting yields larger errors than underfitting but can typically be identified by visual inspection of the estimated
FRF.
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3.4 Estimation bandwidth and step size

In the proposed formulation, the user selects the bandwith for local modeling. Larger bandwidths enhance noise
removal but require higher model orders to adequately desribe system behavior. The bandwidth should be set as
large as possible such that the candidate models can adequately describe FRF sctructure in each band. At minimum,
stability requires Nw Ny > Np so that the least-squares problem in Eqs. (2) and (13) is overdetermined. McQuarrie
suggested that Nw Ny > 10Np [5], but automatic model selection rejects overfitting, and experience shows that
acceptable estimates are generated by Nw Ny > 2Np, though the risk of instability increases. When automatic
selection is used, the bandwidth should be set to satisfy these requirements for the largest model in the candidate
set.

In many applications, computing FRFs at the full available frequency resolution is unnecessary. For example, a
40-second data record will generate a 0.025 Hz frequency bin width when a discrete Fourier transform is applied.
With traditional approaches, this record might be paneled and averaged to yield a 1 Hz bin width. Local modeling
still uses all the data but does so without averaging. If the analyst only desires a 1 Hz bin-width FRF, local modeling
can be computed using 1/40 of the bins (∆k = 40) at significant computational gain. Another option is to model in
bandwidths centered at a subset of ωk but to apply the local models to every bin as

Ĥk−∆k/2+1 = H−∆k/2+1

(
θ̂k

)
, . . . , Ĥk+∆k/2 = H∆k/2

(
θ̂k

)
. (17)

An outline of the entire estimation process is provided in Algorithm 2.

Algorithm 2 Estimation outline

Compute linear spectra u (ωk) ∈ CNu , y (ωk) ∈ CNy

Select estimation bandwidth and calculate Nb = 2R+ 1
Select a model candidate set (with or without transient)
Select step size ∆k

for each frequency ωR+1, ωR+1+∆k, . . . do
for each candidate model M do

Estimate θ̂M
k using Algorighthm 1

Compute MDLM using Eq. (8)
end for

Select model M∗ with minimum MDL

Assign Ĥ (ωk) = H0

(
θ̂M∗

k

)
end for

4 Simulation Demonstration

This section presents an application of local modeling to a simulation example, where the true FRM is known. The
simulation structure is a free-free Euler-Bernoulli beam with length 1 m, width 10 cm, and thickness 15 mm. The
density is 7700 kg/m3, and the Young’s modulus is 210 GPa. Bending mode shapes and natural frequencies are solved
analytically [2], and response to arbitrary excitation is solved via modal space, time-domain integration using the
Newmark-Beta algorithm. Excitation and response are synthesized at three input locations and six output locations
along the beam length.

A stationary, uncorrelated, 10-second white-noise random input is simulated at the three input locations. Without
additive noise, Fig. 3a shows that LM almost perfectly removes leakage effects that significantly affect the HSVD

estimate. Fig. 3b gives an example where noise was added with a 30 dB input signal-to-noise ratio (SNR) and 40
dB output SNR. For convenience of viewing, only a two output, one input sample of the FRM is shown. The local
model uses a 20 Hz estimation bandwidth and automatic selection from a candidate set including CD, MISO, and
PARS with 1 ≤ pa, pb ≤ 2, 0 ≤ pd ≤ 2, and 1 ≤ p ≤ 3. HSVD estimates [1, 6] are computed using ten rectangular
windows (Fig. 3a) and ten Hanning windows (Fig. 3b). Modal damping is assumed 1% of critical damping for all
modes.

In the presence of noise and leakage, local modeling yields better FRF estimates with far fewer data. Fig. 4
plots mean FRF error across all entries in the FRM versus length of simulated data record. The error metric used
is the Modified Frequency Response Assurance Criterion (MFRAC), given by multiplying the FRAC by the ratio of
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root-mean-square (RMS) values [4]. For a pair of single-input, single-output FRFs, HA and HB ,

MFRAC =
min {RMSA, RMSB}
max {RMSA, RMSB}

∣∣∣∑ωk

(
HA (ωk)

H
HB (ωk)

)∣∣∣2∑
ωk

(
HA (ωk)

H
HA (ωk)

)∑
ωk

(
HB (ωk)

H
HB (ωk)

) . (18)

In Fig. 4, data are simulated with 0.2% modal damping to demonstrate the ability to estimate lightly damped
resonance peaks. A 20 Hz estimation bandwidth is used. The HSVD estimates are computed using a number of
Hanning windows equal to the data-record length in seconds, resulting in a 1 Hz bin width.
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Figure 3: Demonstration of LM on a simulated Euler-Bernoulli beam with (a) no added noise and (b) 30 dB input
SNR and 40 dB output SNR.
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Figure 4: MFRAC performance of HSVD, manual LM, and automatic LM approaches versus data record length for
the simulation example with 0.2% modal damping.
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5 Experimental Demonstration

This section presents two experimental validations of the proposed methods. Section 5.1 demonstrates LM capabilities
on an approximately linear MIMO system subject to shaker excitation. Then, Section 5.2 demonstrates LM on impact
testing of a nonlinear beam assembly.

5.1 High-output MIMO system

The system considered in this section is a cylinder assembly with an internal cantilevered beam and is pictured in
Fig. 7. The structure is excited by three shakers instrumented with force gauges. Acceleration data is collected
from 28 triaxial accelerometers at 5 kHz and 4.1 kHz sampling rates for stationary-random and burst-random trials,
respectively. The “truth” FRM is estimated using HSVD on 144 repetitions of a 4-second random burst with 25%
force-input duration.

Fig. 5 shows a 3× 3 sample of the estimated FRM using HSVD and LM. Here, 15 seconds of random input with
the measured force-covariance structure 1.0 0.5e0.25π 0.5e0.12π

0.5e−0.25π 1.0 0.5e1.00π

0.5e−0.12π 0.5e−1.00π 1.0

 (19)

at each frequency bin between 10 and 2000 Hz is used for estimation. Because this case features a truncated signal
and correlated input structure, it represents a sub-optimal test configuration. HSVD is performed using 15 Hanning
windows, and LM is performed using a 30 Hz bandwidth and automatic selection from the set {MISO, 1 ≤ pa, bb ≤ 2,
0 ≤ pd ≤ 2}.

To demonstrate that local modeling improves FRF estimates even when best practices are used, this comparison
is repeated on 15 4-second uncorrelated bursts. Local modeling is computed as in the previous example, and resulting
estimates are shown in Fig. 6. With only 15 frames of data, the LM estimate appears superior to the HSVD estimate
with 144 frames.

Figure 7: MIMO experiment setup.
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Figure 5: Estimated FRF (a) magnitude and (b) phase for a three-ouptut sample of the MIMO experimental
confguration with 15 seconds of correlated-random input. MFRAC values for the entire FRM are 0.186 for HSVD

(gray) and 0.693 for LM (red) when compared with the “truth” estimate (black).
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Figure 6: Estimated FRF (a) magnitude and (b) phase for a three-ouptut sample of the MIMO experimental
confguration with 60 seconds of burst-random input. MFRAC values for the entire FRM are 0.785 for HSVD (gray)
and 0.868 for LM (red) when compared with the “truth” estimate (black).
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5.2 Nonlinear system

This section demonstrates local modeling on a nonlinear assembly (Fig. 8) featuring two beam components combined
via a bolted lap joint. The structure is excited by hammer impacts, and responses are measured at eight triaxial
accelerometers located along the length of the beam. Because the nonlinear FRM depends on input excitation, all
FRFs presented in this section are computed from single impacts. For each impact, 4 seconds of data are recorded.
Fig. 9 shows a sample nonlinear resonance profile constructed with HSVD and with the local modeling approach. Fig.
10 shows a sample FRF estimated from ten impacts at varying force levels. LM produces single-impact estimation
well below the apparent noise floor. Estimation bandwidth for LM is 20 Hz, and transient identification is disabled
because the system comes to rest before data collection is stopped, producing minimal leakage. The LM model in
Figs. 9 and 10 is manually set to MISO (3, 2).

Figure 8: Nonlinear experiment setup.
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Figure 9: Example of nonlinear characterization using (a) HSVD (b) LM with the MISO (3, 2) model (no transient)
and a 20 Hz estimation bandwidth.
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Figure 10: Representative FRF estimated with HSVD and LM with the MISO (3, 2) model (no transient) and a 20
Hz estimation bandwidth.
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6 Conclusion

This paper reviews the state-of-the-art in local modeling for FRF estimation and proposes updates to make the
procedure feasible for dynamic testing. It provides a theoretical framework, including several parameterizations of
the local models for MIMO systems. An iterative procedure for optimization of the least-squares objective function is
described, and computational improvements for the multi-input, single-output parameterization make local modeling
feasible for systems with a large number of output channels. An automatic model-selection procedure for selecting a
parameterization and order is proposed and validated. For cases when a model is manually selected, rules of thumb
are provided to help the analyst to choose an appropriate model and estimation bandwidth.

Effectiveness of local modeling is demonstrated in a simulation, a MIMO experiment with random excitation, and
a nonlinear experiment with impact excitation. To the authors’ knowledge, this work documents local estimation
on a MIMO system with the most output channels to date, and it is the first to perform the method on a highly
nonlinear mechanical system.
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