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Abstract.

There is growing interest to extend low-rank matrix decompositions to multi-way arrays, or tensors. One
fundamental low-rank tensor decomposition is the canonical polyadic decomposition (CPD). The challenge of
fitting a low-rank, nonnegative CPD model to Poisson-distributed count data is of particular interest. Several
popular algorithms use local search methods to approximate the global maximum likelihood estimator from local
minima. Simultaneously, a recent trend in theoretical computer science and numerical linear algebra leverages
randomization to solve very large, hard problems. The typical approach is to use randomization for a fast
approximation and determinism for refinement to yield effective algorithms with theoretical guarantees. Two
popular algorithms for Poisson CPD reflect that emergent dichotomy: CP Alternating Poisson Regression is a
deterministic algorithm and Generalized Canonical Polyadic decomposition makes use of stochastic algorithms
in several variants. This work extends recent work to develop two new methods that leverage randomized and
deterministic algorithms for improved accuracy and performance.
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1. Introduction. Low-rank tensor decompositions in general, and the canonical polyadic
decomposition (CPD) specifically, are becoming increasingly important for multi-way data
analysis. The challenge of fitting a low-rank, nonnegative CPD model to count data is of-
ten formulated as a nonlinear, nonconvex global optimization problem. When the data is
assumed to be Poisson-distributed, one approach is to determine the optimal Poisson parame-
ters that maximize the likelihood of the data via tensor maximum likelihood estimation. The
global optimizer to the optimization problem is the maximum likelihood estimator (MLE).
Since global optimization algorithms are often prohibitively expensive for tensor data, great
emphasis has been placed on developing efficient local methods for finding the Poisson CPD
parameters. In practice, local methods for solving global optimization problems are often
orchestrated in a multi-start strategy—i.e., computing a set of approximations from many
random starting points—to increase the probability that the model best approximating the
MLE has been found. However, this approach demands significant computational resources
when high-confidence solutions are required and may lead to excessive computations even for
small problems. To mitigate this issue, we examine the role of randomization and determinism
in Poisson CPD solvers.
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Our contributions are:

e two Poisson CPD methods that compute the MLE with higher probability than current
effective local search methods, and
e validation of our methods with open-source software on synthetic data.

Our first method is HYBRIDGC, which uses a two-stage hybrid strategy built from effec-
tive local methods. Generalized CP decomposition (GCP) [34,44] incorporates general loss
functions, including Poisson loss, and stochastic optimization methods. The first stage of
HyYBRIDGC uses GCP with stochastic optimization to form a quick approximation and helps
the method avoid local minima that are not the MLE. CP Alternating Poisson Regression
(CPAPR) [18] is a deterministic Poisson CPD method that alternates over a sequence of
convex Poisson loss subproblems iteratively. Previously, in [51], we showed that CPAPR is
performant and can compute accurate approximations to the MLE with higher probability
than GCP. The second stage uses CPAPR to refine the approximation from GCP to higher
accuracy.

Our second method is Restarted CPAPR with SVDROP, which is a variant of an effective
local method that computes a heuristic called SVDROP to detect convergence to a rank-
deficient solution. Rank-deficiency violates the assumptions of the Poisson CPD model and is
therefore unacceptable. Our experiments demonstrate empirically that there is a strong con-
nection between rank-deficiency and local minimizers that are not the MLE. When SVDROP
identifies such a solution, the local method is restarted from a random point in the feasible
domain.

In section 2, we introduce notation, provide the necessary background, and discuss related
work. In section 3, we formalize several metrics to compare CPD methods, some of which
we used previously in [51]. In section 4, we describe the data used in numerical experiments.
In section 5, we introduce Hybrid GCP-CPAPR (HYBRIDGC). In section 6, we introduce
Restarted CPAPR with SVDROP. In our experiments, we demonstrate that both methods
often improve the likelihood of convergence to the MLE, thereby reducing excessive compu-
tations when compared to multi-start where the local methods are standalone solvers. In
section 7, we propose future work.

2. Background and related work.

2.1. Notation and conventions. The set of real numbers and integers are denoted as
R and Z, respectively. The real numbers and integers restricted to nonnegative values are
denoted as Ry and Z., respectively. The order of a tensor is the number of dimensions or
ways. Each tensor dimension is called a mode. A scalar (tensor of order zero) is represented by
a lowercase letter, e.g., . A bold lowercase letter denotes a vector (tensor of order one), e.g., v.
A matrix (tensor of order two) is denoted by a bold capital letter, e.g., A € R™*™. Tensors of
order three and higher are expressed with a bold capital script letter, e.g., X € R™*"*P. Values
computed, approximated, or estimated are typically written with a hat—e.g., M € R™*"xP
may be a tensor model of parameters approximating the data tensor X.

The i-th entry of a vector v is denoted v;, the (7,7) entry of a matrix M is denoted m;j,
and the (4, j, k) entry of a three-way tensor X is denoted x;j;. Fibers are the higher-order
analogue of matrix rows and columns. Indices are integer values that range from 1 to a value
denoted by the capitalized version of the index variable, e.g., i = 1,...,I. We use MATLAB-
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style notation for subarrays formed from a subset of indices of a vector, matrix, or tensor
mode. We use the shorthand i;: i;, when the subset of indices forming a subarray is the range
ij,...,1. The special case of a colon : by itself indicates all elements of a mode, e.g., the j-th
column or mode-1 fiber of the matrix A is A(:,j) = A(i1: ir,7). We use the multi-index

(2.1) i= (i1, dg,...,iq) with ;€ {1,2,....I;} for j=1,...,d,

as a convenient shorthand for the (i,142,...,44) entry of a d-way tensor.

Superscript T denotes non-conjugate matrix transpose. We assume vectors u and v are
column vectors so that u’v is an inner product of vectors and uv’ is an outer product of
vectors. We also denote outer products of vectors as uov = uv’, which is especially useful
when describing the d-way outer products of d vectors for d > 2. The number of matrix or
tensor non-zero elements is denoted nnz(-); conversely, the number of zeros in a matrix or
tensor is denoted nz(-).

2.2. Matricization: transforming a tensor into a matrix. Matricization, as defined
in [43], also known as unfolding or flattening, is the process of reordering the elements of
a d-way array into a matrix. The mode-n matricization of a tensor X € RI1*/2x-xIa denoted
X (n), arranges the mode-n fibers to be the columns of the resulting matrix.

2.3. Canonical polyadic decomposition. The canonical polyadic decomposition (CPD)
represents a tensor as a finite sum of rank-one outer products, a generalization of the ma-
trix singular value decomposition (SVD) to tensors. One major distinction is that there are
no orthogonality constraints on the vectors of the CPD model. Thus we treat the matrix
SVD as a special case of the CPD. Nonetheless, low-rank CP decompositions are appealing
for reasons similar to those of the low-rank SVD, including dimensionality reduction, com-
pression, de-noising, and more. Interpretability of CP decompositions on real problems is
well-documented, with applications including exploratory temporal data analysis and link
prediction [19], chemometrics [50], neuroscience [4], and social network and web link analy-
sis [42,43].

One particular application of interest is when the tensor data are counts. In this case,
a common modeling choice is to assume that the data follow a Poisson distribution so that
statistical methods, like maximum likelihood estimation, can be applied to the analysis. One
key challenge for computing the Poisson CPD is that a low-rank CP tensor model of Poisson
parameters must satisfy certain nonnegativity and stochasticity constraints. In the next few
sections we cover the details of the low-rank CP tensor models of Poisson parameters and
decompositions which are the focus of this work.

2.4. Low-rank CP tensor model. Assume X is a d-way tensor of size I; x --- X I5. The
tensor X is rank-one if it can be expressed as the outer product of d vectors, each corresponding
to a mode in X, i.e.,

(2.2) X =ajoago---oay.

More broadly, the rank of a tensor X is the smallest number of rank-one tensors that generate
X as their sum [43]. We concentrate on the problem of approximating a tensor of data with
a low-rank CP tensor model, i.e., the sum of relatively few rank-one tensors.
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Let A = [A1, Ao, ..., \q] € R? be a vector of scalars and let A; € R0XE A, € REXE
A, € RI*E be matrices. The rank-R canonical polyadic (CP) tensor model of X [16,27] is:

R
(2.3) Xr~M=][XAq...,Ad] ::Z)\TAl(: ,r)o-—-oAy(:,r).
r=1

Each A, € R&*R is a factor matriz with Ij, rows and R columns. The j-th component
of the mode-k factor matrix is the column vector Ag(:,j). We refer to the form M =
[A; Ai,...,A4] as a Kruskal tensor.

2.5. Computing the Poisson CPD for count data. We focus on an application where all
of the entries in a data tensor are counts. For the remainder of this work, let X € Zﬁx'"“d
be a d-way tensor of nonnegative integers, let M be a CP tensor model of the form (2.3), and
assume the following about X:

1. each z; € X is sampled from a Poisson distribution with parameter m;,

2. the tensor X has low-rank structure,

3. the relationships between the entries in X can be modeled well using a multilinear

form, and

4. the rank of X is known a priori.
Chi and Kolda showed in [18] that under these assumptions a Poisson CP tensor model is an
effective low-rank approximation of X. The Poisson CP tensor model has shown to be valuable
in analyzing latent patterns and relationships in count data across many application areas,
including food production [15], network analysis [12,20], term-document analysis [17, 31],
email analysis [14], link prediction [19], geospatial analysis [22,30], web page analysis [41],
and phenotyping from electronic health records [29, 32, 33]

One numerical approach to fit a low-rank Poisson CP tensor model to data is tensor
mazximum likelihood estimation, which has proven to be successful. Computing the Poisson
CPD via tensor maximum likelihood estimation involves minimizing the following nonlinear,
nonconvex optimization problem:

(2.4) mj‘}(nf (X,M) = mlnz m; — xi log my,

1

where i is the multi-index (2.1), z; > 0 is an entry in X, and m; > 0 is a parameter in
the Poisson CP tensor model M. The function f(X,M) in (2.4) is the negative of the log-
likelihood of the Poisson distribution (omitting the constant ) ; log (x;!) term) [?]. We will
refer to it simply as Poisson loss.

In contrast to linear maximum likelihood estimation [53], where a single parameter is
estimated using multiple data instances, tensor maximum likelihood estimation fits a single
parameter in an approximate low-rank model to a single data instance. Within the tensor
context, low-rank structure means that multiple instances in the data are linked to a single
model parameter, a type of multilinear maximum likelihood estimation. This distinction is
not made anywhere else in the literature, to the best of our knowledge.

Much of the research associated with computing the low-rank Poisson CPD via tensor
maximum likelihood estimation has focused on local methods [18,26,34,44], particularly with
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respect to computational performance [8,9,11,47,52,55,59]. Many of the current local methods
for Poisson CPD can be classified as either an alternating [16,27] or an all-at-once [1,2,54]
optimization method.

Alternating local methods iteratively solve a series of subproblems by fitting each factor
matrix sequentially while the remaining factor matrices are held fixed. These methods are a
form of coordinate descent (CD) [62], where each factor matrix is a block of components that
is fit while the remaining component blocks (i.e., factor matrices) are left unchanged. Since
each block corresponds to a lower-dimensional problem, alternating tensor methods employ
block CD iteratively to solve a series of easier problems. CP Alternating Poisson Regression
(CPAPR) was introduced by Chi and Kolda in [18] as a nonlinear Gauss-Seidel approach
to block CD that uses a fixed-point majorization-minimization algorithm called Multiplica-
tive Updates (CPAPR-MU). At the highest level, the CPAPR algorithm performs an outer
iteration where optimizations are applied on each mode in an alternating fashion. An in-
ner iteration is an optimization using multiplicative updates applied to a subset of variables
corresponding to an individual mode. Inner iterations are performed until the convergence
criterion is satisfied for a mode or up to the maximum allowable number, [,,,.. Outer itera-
tions are performed until the convergence criterion is satisfied for the whole model or up to
the maximum allowable number, k... The convergence criterion is based on the Karush-
Kuhn-Tucker (KKT) conditions, necessary conditions for convergence to a local minimum in
nonlinear optimization. A local minimizer that satisfies the KKT conditions is called a KKT
point.

Hansen et al. in [26] presented two Newton-based, active set gradient projection methods
using up to second-order information, Projected Damped Newton (CPAPR-PDN) and Pro-
jected Quasi-Newton (CPAPR-PQN). Moreover, they provided extensions to these methods
where each component block of the CPAPR minimization can be further separated into in-
dependent, highly-parallelizable row-wise subproblems; these methods are Projected Damped
Newton for the Row subproblem (CPAPR-PDNR) and Projected Quasi-Newton for the Row
subproblem (CPAPR-PQNR).

One outer iteration of all-at-once optimization methods updates all optimization variables
simultaneously. The Generalized Canonical Polyadic decomposition algorithm (GCP) [34] is
a gradient descent method based on a generic formulation of first derivative information for
arbitrary loss functions to compute the CPD via tensor maximum likelihood estimation. The
original GCP method has two variants: 1) deterministic, which uses limited-memory quasi-
Newton optimization (L-BFGS) and 2) stochastic, which supports gradient descent (SGD),
AdaGrad [?], and Adam [39] optimizations. The stochastic variants perform loss function
and gradient computations on samples of the input data tensor so that the search path is
computed from estimates of these values. We focus here on GCP-Adam [44], which applies
Adam for scalability.

More generally, we focus on the GCP and CPAPR families of tensor maximum likelihood-
based local methods for Poisson CPD for the following reasons:

1. Emisting Theory: Method convergence, computational costs, and memory demands
are well-understood.
2. Awvailable Software: High-level MATLAB implementing both families is available in
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MATLAB Tensor Toolbox (TTB)! [6,7]. A Python version is available in pyttb.? High
performance C++ code that leverages the Kokkos hardware abstraction library [21] to
provide parallel computation on diverse computer architectures (e.g., x86-multicore,
GPU, etc.) is available with SparTen® for CPAPR [59] and Genten® for GCP [55].
Additional open-source software for MATLAB includes N-Way Toolbox [3] and Ten-
sorlab [61]. Commercial software includes ENSIGN Tensor Toolbox [10].

2.6. Related work. There are other approaches in the literature that seek to fit models
with other distributions in the exponential family or that use other algorithms to estimate
parameters. Alternating least squares methods are relatively easy to implement and effec-
tive when used with LASSO-type regularization [13,23]. The method of Ranadive et al. [57],
CP-POPT-DGN, is an all-at-once active set trust-region gradient-projection method. CP-
POPT-DGN is functionally very similar to CPAPR-PDN. Whereas CP-POPT-DGN computes
the search direction via preconditioned conjugate gradient (PCG), CPAPR-PDNR computes
the search direction via Cholesky factorization. The most significant differences are: 1) CP-
POPT-DGN is all-at-once whereas all CPAPR methods are alternating and 2) CPAPR can
take advantage of the separable row subproblem formulation to achieve more fine-grained
parallelism. The Generalized Gauss-Newton method of Vandecapelle et al. [60] follows the
GCP framework to fit arbitrary non-least squares loss via an all-at-once optimization and
trust-region-based Gauss-Newton approach. Hu et al. [35, 36] re-parameterized the Poisson
regression problem to leverage Gibbs sampling and variational Bayesian inference to account
for the inability of CPAPR to handle missing data. Other problem transformations include
probabilistic likelihood extensions via Expectation Maximization [37,56] and a Legendre de-
composition [58] instead of a CP decomposition.

2.7. Hyperparameter tuning. In prior work [51,52], we showed that both GCP and
CPAPR are sensitive to hyperparameters. The parameter space for GCP-Adam is espe-
cially large and tuning is difficult. In preliminary experiments on real data, we noted dismal
performance of GCP compared to CPAPR,”> which we attribute to the use of default soft-
ware parameters. In private correspondence,’ the authors of GCP discouraged using default
parameters. In these experiments and other preliminary work, we observed the number of
nonzero and zero entries sampled for function evaluations and gradient computations to be
especially impactful. For the experimental results presented in this work, we typically sample
at least 90% of nonzero and zero entries. The reason for this is two-fold. Firstly, we want
to understand the expected behavior of GCP as a standalone solver and as a subroutine of
HyYBRIDGC. By sampling a large number of nonzero and zero entries, we establish a heuris-
tic upper bound on algorithm effectiveness. Lastly, we are only concerned with the proof of

"https://gitlab.com/tensors/tensor_toolbox.

https://github.com /sandialabs /pyttb.

3https://github.com/sandialabs/sparten.

“https://gitlab.com/tensors/genten. Genten supports other algorithms, including CP Alternating Least
Squares, and other tensor factorizations, such as the Tucker decomposition.

’From 20 random starts, CPAPR computed solutions equal to the empirical MLE seven times (35%); the
median time to solution was 842 seconds. On the other hand, GCP worked 2.2x longer in the median case
(1,837 seconds), converging in zero instances.

5T.G. Kolda, email to author, March 8, 2021.
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concept of HYBRIDGC at present. We leave performance studies and optimizations to future
work.

One common approach to parameter tuning is exhaustive search through a discretized
grid of parameter values. This approach is reasonable for CPAPR since it has relatively few
tunable parameters. However, exhaustive search is infeasible for GCP. One practical option for
hyperparameter tuning is Latin hypercube sampling [28], which has not gained much attention
in the machine learning community. Since a proper investigation is beyond the scope of this
work, we leave this direction to future research.

3. Error in computing the CPD using multi-start. Local methods seek local minima. We
apply them to global optimization problems by using a multi-start strategy [25,49] where a set
of approximations are computed from many random starting points in the feasible domain of
the problem. Our methodology is to generate N random Poisson CP tensor models as initial
guesses and compute N rank-R Poisson CP tensor approximations starting from each initial
guess, which we refer to as multi-start. From this set, we choose the “best” local minimizer—
i.e., the approximation that minimizes (2.4)—as the approximation to the global optimizer.
In turn, the effectiveness of a given method is determined in part by the probability it will
converge to a solution approximating the global optimizer over all N starting points.

We define several tools that we will use to compare the effectiveness of a given method
in computing a model that minimizes (2.4). Let X be a d-way data tensor with dimensions

—~(1 —~(N
Ii,..., 15 Let § = {M( ), . ,M( )} be a set of rank-R Poisson CP tensor approximations
such that |S| = N. Let M* denote the mazimum likelihood estimator (MLE), i.e., the global
minimizer of (2.4). In general, it is unknown. As a result, we aim to recover the empirical

MLE, M : the rank-R Poisson CP tensor model that is the best approximation to M*. We

specify the empirical MLE restricted to S, i.e., 5\/\[; =M ¢S , as the best approximation to
the MLE from S:

j —~(k
(J)) < f(f)C,M( )

(3.1) Ms = (M7 e8| foeM k=1, |S],j <k}
The condition that j < k guarantees that the set is nonempty in the case of a tie. We write
S when every element in S was computed by algorithm A. This notation will be useful later

on when analyzing results from different algorithms.

3.1. An error estimator on the loss function. The probability that algorithm A converges
from any starting point in the feasible region of (2.4) to some 5\/\[(“) € S4 such that f(X, J/V\((n))

is within a ball of radius € > 0 of f(X, J/V\I*) is defined as

(n)

Py (|f<x,37t ) — F(0,M)] < e) , n=1,...,]84].

We estimate P4 as

~=(n) .

5 for which p,,

(32) P(SA,G): #M GSA|§)I"W ich p <€’
A
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where

e M) — poe, 30,

(¢, M)

(3.3) Pn =

is the relative error in Poisson loss. Equation (3.2) is a conservative estimator since it does

not account for solutions which may be closer to M* but are more than e-distance from M .
We omit Sy and write only P(e) when the method is clear from the context.

3.2. An error estimator on the algebraic structures. We define two measures of approx-
imation error quantifying the structural similarity between two Kruskal tensors based on their
algebraic properties called factor match score [18,44-46].

Factor match score (FMS). FMS is the maximum sum of cosine similarities over all per-
mutations of the column vectors of all the factor matrices between two Kruskal tensors,

= [[)\A; A1, . Ad]] and M2 [[)\ Bl,...,Bd]]Z

e LS (4 e G 7())"Bu(: . p(i))
- FMS(M“M”‘ﬂ»,p(.)R;(l max{sT,<T>H|A DB o
) d
where & = A2 JTIAACG 7)), CT:)\,]?'HHBn(:,r)H, and 6, € {0,1}.

n=1

The permutations 7(-) and p(-) reorder the columns of the factor matrices to maximize the
number of columns that are correctly identified. The boolean 9, is an activation function
specifying whether to use the A values in the calculation.” When we are interested in quan-
tifying the similarity of the low-rank bases between M; and My, i.e., the column vectors of
the factor matrices only, the A values are ignored. In all of our experiments, we set §, = 0 for
alr=1,... R.

An FMS of 1 indicates collinearity among the columns of all factor matrices and thus a
perfect match between the two Kruskal tensors. As in [48], we say My and My are similar if
FMS(My,Ms) > 0.85 and equal if FMS(My,Msz) > 0.95, which are common values used to
define acceptable matches in recent work [18,26,44]. FMS is a particularly useful measure of
the effectiveness of a method in relating the low-rank structure of an approximation to that
of a known model. Using FMS, we estimate the probability that a method computes models
with the same algebraic structure as the empirical MLE. We formalize this now.

Probability of similarity. For each computed solution 5\/\[(”) €S, n=1,...,|S|, define an

indicator function v, (M, J/V\[(n), t) that is 1 when the n-th model has FMS(M, J/V\[(n)) >t and
0 otherwise; i.e.,

1, if FMSOV, M

0, otherwise.

(3.5) VM 1) = { )=t

"See the MATLAB Tensor Toolbox score.m function with the optional ’1lambda_penalty’ name-value pair.
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We use (3.5) in our discussions below to quantify the fraction over N solves with FMS greater
than t,

S|
\I/M,S,t)zf g ¢n M7M 7ta
(3.6) ( N4 ( :

where 5\(\[(”) €S, vned{l,...,|S]}.

4. Data examples.

LowRankSmall. 4 x 6 x 8 synthetic count tensor, generated rank r = 3, 17 nonzeros (8.85%
dense). This tensor was designed to permit a large number of experiments where each method
had a nonzero chance of converging to a local minimizer other than the MLE. Experiments with
the LowRankSmall dataset involved 110,622 trials. Both the sparse tensor and the empirical
MLE from all trials are fully provided in Appendix A as Tensor 1 and Tensor 2, respectively.

MedRankLarge. 1,000 x 1,000 x 1,000 synthetic count tensor, generated rank r = 20,
98,026 nonzeros (0.009% dense). This tensor is sufficiently challenging for our methods—
in terms of size, sparsity, and low-rank structure—yet small enough to support reasonable
solution times. Experiments with the MedRankLarge dataset involved 10,100 trials.

5. Hybrid GCP-CPAPR. We present Hybrid GCP-CPAPR (HYBRIDGC), an algorithm
for Poisson CPD that estimates the solution of a nonlinear, nonconvex optimization problem
by approzimating a global optimization algorithm through the composition of local methods.
HYBRIDGC first uses stochasticity to compute a coarse-grained estimate of the model and
then refines the model with a deterministic method. Our numerical experiments demonstrate
the synergy of this hybrid approach: HYBRIDGC yields an effective algorithm that computes
an approximation to the MLE for Poisson CPD with higher accuracy than the methods it
leverages. The stochastic stage makes HYBRIDGC scalable to very large problems and the
deterministic stage allows the method to exploit convergence results in [18]. To the best of
our knowledge, this is the first work that extends similar approaches in the matrix case (for
example, [?]) to low-rank tensor decompositions in this way.

5.1. Intuition. Local methods are typically chosen to compute the Poisson CPD because
it can be shown that (2.4) has convex subproblems when restricted to individual factor matri-
ces. Thus computing an approximation to the global optimizer is amenable to a host of local
methods with well-understood convergence theory and computational costs. These algorithms
range from inexpensive—yet slowly converging—gradient-free methods to costly second-order
methods with asymptotic quadratic convergence. However, the convergence theory only ap-
plies to local minima, which motivates the use of multi-start.

Global methods are typically avoided for CPD due to their high, often prohibitive, cost
resulting from slow convergence. Nonetheless, they have proven to be effective for many other
global optimization problems. Simulated Annealing (SA) [38,40] is one such technique that
can handle high-dimensional, nonlinear cost functions with arbitrary boundary conditions
and constraints, where controlled, iterative improvements to the cost function are used in
the search for a better model. SA was inspired by a deep connection between statistical
mechanics and global optimization. The term annealing refers to the process of repeatedly
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heating a system and allowing it to cool slowly toward its ground energy state. The analogy
relates heating a system to random perturbation and cooling the system to deterministic
refinement. The qualifier simulated is computational. It refers to a temperature schedule for
the annealing process that controls the use of stochastic and deterministic optimization in
the search for a global optimum. What makes SA successful is that there exist annealing
schedules such that 1) all points in the feasible domain can be sampled in the limit and 2) it
is possible to escape from a local minimum. For these reasons, we propose HYBRIDGC, which
is inspired by SA.

5.2. HybridGC method. Like SA, HYBRIDGC leverages both stochastic and deterministic
optimizations to start from an initial guess, iterate according to a schedule, and converge to
solution approximating the global optimizer. Specifically, HYBRIDGC iterates from an initial
guess M via a two-stage optimization between stochastic and deterministic search to return a
Poisson CP tensor model M that is an estimate to M™. In the first stage, the stochastic search
method starts from Mg and iterates for j iterations to return an intermediate solution, Mj.
In contrast to SA, which uses random perturbation for the “heating” step, we use GCP-Adam
for structured stochastic optimization. In the second stage, deterministic search refines My
for k iterations to return My. We use CPAPR with Multiplicative Updates as our “cooling”
step. HYBRIDGC returns M = M as an estimate to the global optimizer, M*. The details
of HYBRIDGC are given below in Algorithm 5.1.

Presently, our analogue of the temperature schedule are the number of GCP outer iter-
ations (also called epochs) and CPAPR outer iterations. In further contrast to SA, we do
not include a notion of acceptance-rejection with respect to newly obtained states; we leave
this to future work. We only consider stochastic search followed by deterministic search and
not the opposite. This is because stochastic search directions are found using estimates of
the objective function from sample points. Thus it would be possible for the algorithm to
converge to a minimum yet remain marked as not converged if the objective function value
were only coarsely estimated. Thus it is likely that stochastic search would move away from
the optimum.

Algorithm 5.1 Hybrid GCP-CPAPR
function HYBRIDGC(tensor X, rank r, initial guess M)
Ml < GCP(DC, T, MO)
My CPAPR(X, r, Ml)
return model tensor M = M as estimate to M*

5.3. Numerical experiments. This section presents experiments that were designed to
evaluate the algorithm effectiveness of HYBRIDGC over a large number of trials and to contrast
it with GCP-Adam and CPAPR-MU as standalone solvers. We demonstrate this using two
synthetic low-rank Poisson multilinear datasets. In all experiments, GCP was run with the
Adam stochastic optimization and CPAPR was run with the Multiplicative Updates (MU)
deterministic solver. For the remainder of this work, we refer to GCP and CPAPR without
further specifying the optimization routine. We use Sg, S¢, and Sp to refer to the sets of
approximations computed with GCP, CPAPR, and HybridGC, respectively.
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We treat HYBRIDGC decompositions as those computed with 7 > 0 outer iterations of
GCP followed by k > 0 outer iterations of CPAPR.® Using the notation set above, we denote
the solutions that were computed with GCP, CPAPR, and HYBRIDGC as

Sg = {J/V\[j | J\/Rj computed by GCP};
Sc = {J\//\[] | j/\[j computed by CPAPRY}; and,
Sy = {J\//\[j | J\/Ej computed by HYBRIDGC}.

Procedure. Fix an input tensor X € R1**1d and a rank R. Specify a maximum work
budget W = Jpae + Kmae for all methods where J,0, > 0 and Kipq, > 0 are the maximum
allowable number of outer iterations for GCP and CPAPR, respectively. If J,,.. = 0 and
Kz = W, then HYBRIDGC is equivalent to CPAPR. Conversely, if Jyq = W and Kpee =
0, then HYBRIDGC is equivalent to GCP. In this way, HYBRIDGC generalizes both methods
by “interpolating” GCP and CPAPR when both J;,4, > 0 and Kj,q, > 0.

Starting from the same random initial guess, we computed j € (0,..., W) rank-R decom-
positions with GCP iterating for at most j outer iterations. GCP is considered converged when
the stochastic gradient learning rate « is decayed from 1073 (the default) to 10~1°. Next, start-
ing from each of the W + 1 iterates computed with GCP, we computed k € (W, W —1,...,0)
rank-R decompositions with CPAPR iterating for at most k outer iterations. CPAPR is con-
sidered converged when the KKT-based criterion is less than or equal to 107'°. Since each
HYBRIDGC trial produced W 4 1 decompositions, only the empirical MLE restricted to that
trial was chosen for comparison.

5.4. Comparison on the loss function. We now compare the effectiveness of HYBRIDGC
as an algorithm for solving a nonlinear, nonconvex optimization problem by considering the
Poisson loss (2.4) and the MLE-probability estimator based on it (3.2). The empirical MLE
is denoted M, with S = Sg U Sc U Sy

Figure la presents the traces in Poisson loss function value from one trial (among N =
110,266) where all methods computed approximations close to the empirical MLE when
started from the same initial guess for LowRankSmall. Figure 1b presents similar traces
except when only HYBRIDGC converged to the MLE and the standalone solvers, GCP and
CPAPR, converged to a different local minimum. Of all N = 110,266 trials, the empirical
MLE was computed by HYBRIDGC.

A few remarks:

e Our results demonstrate the benefit of performing some amount of stochastic search
followed by deterministic search. Owing to performing one outer iteration of stochastic
search, HYBRIDGC quickly identified the basin of attraction of the MLE and converged
before GCP and CPAPR in both trials, even in the case where the standalone method
converges to a local minimizer that is different from the MLE. The iteration histories
of GCP and CPAPR are consistent with results from prior work on small tensors [51].

8Quter iterations of GCP-Adam are also called epochs in the literature. For consistency, we will use outer
iteration to refer to 1) one GCP epoch and 2) one pass over all the factor matrices in CPAPR. We will use
inner iteration to refer to 1) one optimization step of all factor matrices in GCP and 2) one optimization of a
single factor matrix in CPAPR.
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Figure 1: Examples of two types of behaviors of traces of loss function values for GCP, CPAPR,
and HYBRIDGC on LowRankSmall.

A further research direction may study the effect of looser convergence tolerances on
the amount of computation or accuracy.

The shared behavior among all methods of making only incremental progress be-
fore finally converging is a feature of the theoretical convergence properties of each
method. Mathematically, CPAPR (in the case of MU) and the deterministic stage of
HyYBRIDGC converge sublinearly in the basin of attraction to the MLE; GCP (in the
case of Adam) converges only linearly at best. See [51, Table 1] for details. However,
the stagnation of HYBRIDGC in Figure 1b near the local minimizer is indicative of a
swamp [?]. We leave it to future work to compare HYBRIDGC with methods designed
to avoid swamps.

Table 1 presents average behavior about algorithm effectiveness as estimates of the prob-
ability that each method computed the empirical MLE with relative error (3.2) less than e for
LowRankSmall and MedRankLarge. Viewing the average behavior, we conclude the following:

e For the small dataset with low rank (LowRankSmall), HYBRIDGC and CPAPR had

comparable precision at all levels of accuracy. Additional work may be conducted to
determine if the differences are statistically significant.

HYBRIDGC was never worse than GCP or CPAPR, since it interpolates the two meth-
ods. At high accuracy on the large dataset with medium rank (MedRankLarge), Hy-
BRIDGC had a higher probability of getting close to the empirical MLE.

Even for small input tensors with low rank, GCP was virtually incapable of resolving
the MLE beyond a coarse-grain approximation. The situation was worse for larger
tensors with more components.

5.5. Comparison as algebraic structures. Next, we evaluate HYBRIDGC as a method
for computing an approximate low-rank basis to the global optimizer. We calculated the
fraction of trials with FMS greater than ¢ (3.6) for GCP and CPAPR, i.e., \I/(J/V\I;Sg, t) and
\1/(3\7(2,80, t), with ¢ € [0,1]. We repeated this calculation for HYBRIDGC, i.e., \Il(j\/(;, S, t),
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Table 1: Estimate of probability each method computes a solution within e-radius of approx-
imate global optimizer.

(a) LowRankSmall dataset (110K trials). (b) MedRankLarge dataset (100 trials).

€ CPAPR GCP HyYBRIDGC € CPAPR GCP HyYBRIDGC
1071 0.963 0.963 0.967 1071 1.00  1.00 1.00
1072 0.963 0.963 0.967 1072 0.46 0.04 0.46
1073 0.963 0.879 0.967 1073 0.03  0.00 0.17
104 0.963 0.003 0.967 1074 0.00  0.00 0.01

and grouped the results by the number of outer iterations taken by the first stage of Hy-
BRIDGC. Figure 2 presents these results for GCP, CPAPR, and HYBRIDGC (up to 10 outer
iterations of GCP). See Figure 8 in Appendix D for supplementary results. Since all curves
showed the same behavior for ¢ < 0.6, we report values for t € [0.6, 1].

HyYBRIDGC tended to have a higher likelihood than GCP or CPAPR in finding a low-
rank basis equal to the empirical MLE when FMS > 0.95, which is considered high accuracy.
This figure provides numerical evidence that HYBRIDGC—parameterized as a small amount
of stochastic search (~ 10 outer iterations) followed by deterministic search—was superior to
GCP and CPAPR by themselves in computing high accuracy models (solutions with FMS
greater than 0.95).

6. Restarted CPAPR with SVDrop. We observed in subsection 5.3 that there are situ-
ations where HYBRIDGC converges to the MLE but a standalone method like CPAPR does
not, and vice versa. The standalone method may converge to a minimizer far from the MLE
despite having started from the same point. The standalone method may also converge to the
MLE whereas HYBRIDGC converges to some other minimizer. Thus it is necessary to char-
acterize the situations that end in algorithm failure” so that we may explain these seemingly
conflicted outcomes. Since it is easier to reason about a deterministic search path, we focus
on sources of failure in CPAPR and leave a similar study of GCP for future work. CPAPR is
also interesting because of its high success rate, meaning it is sometimes feasible to examine
all failed trials exhaustively. Furthermore only a small number of parameters affect the search
path of CPAPR in [18, Alg. 3]. Another motivator for the work presented here is that CPAPR
is used to refine the solution in HYBRIDGC, thus understanding convergence properties is im-
portant. Taking these factors into account, CPAPR is a good candidate to analyze in order
to understand why and when local methods fail for Poisson CPD.

The starting point for our analysis is the use of standard linear algebra tools that are
well-understood to identify patterns that explain distinct convergence behaviors. We are
motivated by the following reasoning. Tensor decompositions are multilinear objects but the
algebraic operators and computational kernels that factorize tensors in popular CP algorithms

9By “success”, we mean convergence to the MLE. By “failure” we mean convergence to any other KKT
point or failure to converge to a KKT point.



14 J. M. MYERS AND D. M. DUNLAVY

oCPAPR
oGCP
HybridGC

o
o0

- 9]
A g
tﬁ -
I )

= 0.6 E
Ls wn
(@)

= 3
— o]
=04l F
E £
@ o
& 4

©
o

O | | | | |
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
t

Figure 2: Factor match scores between CP models computed with HYBRIDGC, CPAPR-MU,
and GCP-Adam and the approximate global optimizer, M g. The dash-dot gray vertical lines
and dotted black vertical lines denote the levels of “similar” and “equal” described in [48].

are linear, e.g., matricizations of tensor modes, objective function evaluation, gradient com-
putations, and so on. Examining the mode unfoldings of the model between inner iterations
could reveal latent patterns so that we may witness the action of the linear operators on the
entire multilinear object. In fact, Golub and Van Loan, in their seminal work Matriz Com-
putations [24], inadvertently foreshadowed this research direction when they wrote: “Hidden
structures within a tensor dataset can sometimes be revealed by discovering patterns within its
unfoldings”.

This work uncovers an unexplored connection between the convergence behavior of CPAPR
and the spectral properties of the mode unfoldings as the variables of the model change along
the search path. We demonstrate the utility of our analysis by showing empirically that spec-
tral information contained in mode unfoldings may reveal otherwise hidden patterns about
convergence to local minimizers that we observe to be rank-deficient. Specifically we define a
rank-deficient CPD solution to be one that is comprised of one or more factor matrices with
column rank less than the requested rank R.

6.1. Related work. Early work by Kruskal et al. [?] studied two-factor degeneracies
(2FD), where two components of a CPD model are highly correlated in all three modes.
Mitchell and Burdick introduced a test for 2FD in [?], which uses an early definition of FMS
to identify 2FD between successive iterates. More recent work [?] add constraints (e.g., or-
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thogonality constraints, ridge regression, SVD penalty) to the problem to avoid 2FD. To the
best of our knowledge, the connection between rank-deficient solutions (rather than 2FD)
and the spectra of mode unfoldings has never been studied with the goal of understanding
the convergence behavior of Poisson CPD algorithms specifically nor any CPD algorithms in
general.

6.2. Road map. We first motivate our analysis by observing a previously unreported
problem and reasoning as to its implications in subsection 6.3. In subsection 6.4, we charac-
terize this problem and demonstrate empirically that: 1) the problem occurs frequently when
computing the Poisson CPD for a small synthetic dataset and 2) it can be identified using
spectral information of the mode unfoldings. In subsection 6.5, we develop a heuristic called
SVDROP that leverages spectral information to identify this problem. We then present a novel
variant of the CPAPR algorithm called Restarted CPAPR with SVDRroOP (Algorithm 6.1) that
automatically restarts when a rank-deficient solution is detected. In subsection 6.6, we pres-
ent experimental evidence that Restarted CPAPR with SVDROP improves the probability of
convergence to the MLE with an acceptable increase in computational cost.

6.3. The drawback of extra (or too few) inner iterations. Chi and Kolda’s CPAPR
paper [18] included a section titled “the benefit of extra inner iterations”. Their conclusion was
that although the maximum allowable number of inner iterations l,,q; “does not significantly
impact accuracy... increasing l,,., can decrease the overall work and runtime”. They drew
their conclusion from the mean and median factor match score (FMS) between the model and
the “true solution”. However, this definition of accuracy is incomplete since it ignores error
estimators on the loss function. Instead, our definition of accuracy includes both the objective
function value and expected convergence behavior over many trials. Ultimately, we reach the
opposite conclusion: the maximum allowable number of inner iterations can significantly
impact algorithm accuracy. Subsequently, overall work and runtime are also affected. For
instance, we observed situations where, from one fixed starting point, CPAPR would converge
to different minima for increasing values of [,,,, in an alternating fashion: to the MLE for
some value of 4., then to a different minimizer for a larger value, and again to the MLE for
an even larger value of l,,,4,. In some cases, this alternating pattern repeated multiple times.
This behavior was not rare. In one trial from 3,677 starting points, we observed some type
of alternating convergence pattern in 3,180 instances (86.4%). In general, characterizing the
sensitivity of CPAPR to ;4. is complicated.

Figure 3 demonstrates one example empirically where the effect of extra inner iterations
counters Chi and Kolda’s claim. The upper plot shows the trace of the objective function
value over the total iteration history when l,,,, = 4. CPAPR converges to the MLE (black
dash-dot line) in 116 iterations. The lower plot is taken from the same initial point except
lmaz = 5. Surprisingly, CPAPR converges to a KKT point far from the MLE (black dotted
line) in 887 iterations. We will return to this case throughout the rest of this section, so we
will refer to it as the exemplar trial.

Incremental changes to this parameter can result in drastically different outcomes. In
experimentation, we frequently observe that, for the first several outer iterations, CPAPR
tends to max out the number of inner iterations in each mode without converging. This led
to the conclusion that early iterations are especially critical and sensitive to l,,q,. Figure 4



16 J. M. MYERS AND D. M. DUNLAVY

150‘ o lmaz:4
125« —— lmaa::5
== MLE
U%) 100 B B B B B B B Local min.
— ] Mode-1 iterations
g E Mode-2 iterations
@ 501 Mode-3 iterations
o
A 251
Ofene.... S ecsssssdiiincnve . .. ... 00..... .00 ... 0. 0. B .. 8. L.
—95 _._._._._._._._._._._._._._._._._._._V.'_".'L‘.‘S-
0 20 40 60 80 100
1501
1251
%z 1001
=
=) 75‘
o
Z 507
O
A 251
(IR S
) ettt ettt ettt i
0 20 40 60 80 100

Total iterations

Figure 3: Traces of objective function values for the exemplar trial: two decompositions
computed by CPAPR starting from the same initial guess but with different numbers of
maximum allowable inner iterations per mode. With [, = 4 maximum inner iterations
(top), CPAPR converges to the MLE, versus l,q; = 5 (bottom), which converges to a different
minimizer. The z-axis is given in terms of the total number of iterations, so optimizations by
mode are differentiated by vertical blocks of color. For clarity, the xz-axes in both plots are
sized to the total number of iterations of the top case (116). The bottom case continues up
to 887 total iterations and does not improve.

presents a conceptual model explaining the situation. The contour plot reflects the minima (in
blue) and maxima (in brown) of a d = 2 problem. Darker shades reflect more extreme values.
The z- and y-axes represents search paths in the directions of the second and first modes,
respectively. The green, magenta, and red lines represent the search paths of CPAPR from
the same initial starting point (yellow circle) but with different values for l,;,4,. The magenta
and red paths allow too many or too few inner iterations and converge to local minimizers.
The green path allows the “Goldilocks” amount—this choice leads to the MLE.'? We will

10The fairy tale of Goldilocks is about a girl named Goldilocks who enters a house belonging to three bears
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show that our novel analysis can differentiate between the green path and the magenta and
red paths at runtime.
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Figure 4: The contour plot illustrates how convergence depends on the number of inner itera-
tions in the search direction for a 2D problem. Blue represents minima and brown represents
maxima; darker shades are more extreme values than lighter shades. From the same start-
ing initialization, CPAPR is run with three different values for inner iterations l,q,: 1) the
“Goldilocks” amount that leads to the MLE; 2) too few or 3) too many inner iterations, which
both lead to different minimizers.

6.4. Spectral properties identify rank-deficient solutions. By analyzing the singular
values of each mode unfolding, we can see critical changes to the model tensor that are
otherwise hidden. In particular, we consider the R-th largest singular value when the requested
decomposition rank is R. Figure 5a shows the values of the third largest singular value (since
R = 3) of each of the mode unfoldings over the iteration history. The solid lines are when
lmaz = 4; they correspond to the case when CPAPR converges to the MLE. The dotted lines
are when [, = 5; they correspond to the case when CPAPR converges to a different local
minimizer. Both trials iterated from the same initial guess. The critical observation is that
the R-th singular value in mode-1 when [, = 5 inner iterations are taken per outer iteration
(blue dotted line) is driven below machine precision, resulting in a rank-deficient solution.
The rank-deficient solution is a KKT point, but it is not the MLE. Ceteris paribus, the search
path that leads to it is determined by I,,4z-

and tries out their belongings to find one that suits her best. Each item belonging to one of the three bears
that she samples is either “too many”, “too few”, or “just right”. Allusions to the Goldilocks fairy tale are
also used by astronomers to describe the zone of habitable exoplanets around a star.


https://exoplanets.nasa.gov/resources/323/goldilocks-zone/
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At present this analysis of success versus failure is only possible by examining the singular
values of the mode unfoldings. By contrast, the values of the tensor model factor weights A
in (2.3) show no obvious link between the search path and convergence behavior.!! Figure 5b
displays the A values of the CP model at each iteration for both values of l,,,4, in the exemplar
trial. The A1 and A3 values (blue and yellow, respectively) became nearly identical when the
number of inner iterations taken per outer iteration was l;,.; = 5. This occurred at nearly
the same time the mode-1 R-th singular value started to drop drastically. It remains unclear
whether this behavior may indicate convergence to a rank-deficient solution or if it is just a
coincidence. We did not observe a similar pattern in the A weights in a sample of other trials
with similar behaviors in the singular values. The behavior also is not explained by standard
techniques in optimization, e.g., unsatisfied convergence criteria, or machine learning, e.g.,
large gradient norms. The R-th largest singular value of the mode-1 unfolding is a pronounced
indicator of convergence to a rank-deficient solution.
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(a) Analyzing the R-th largest singular value of (b) Tt is unclear whether the A-weights provide
each mode yields an explicit signal indicating con- a useful heuristic for determining convergence
vergence to a rank-deficient solution. to the MLE versus a rank-deficient solution.

Figure 5: Traces of singular values and A weights for the exemplar trial on LowRankSmall.
Figure 5a: R = 3-rd largest singular value of each mode unfolding after each update. Fig-
ure bb: the R A-values maintained by CPAPR in each iteration.

We observed this behavior in most cases. Recall from Table 1a that CPAPR converged to
the MLE in 106,215 of 110,266 trials (P(e = 10~4) = 0.963). For a random sample of 10,000 of
these trials,'? the Poisson CP models were not rank-deficient: the R-th largest singular value
when CPAPR terminated was typically far from machine precision (4.449 on average). By
contrast, in 4,020 of the 4,051 trials (99.235%) where CPAPR converged to a different KKT
point, we found that the R-th largest singular value in mode-1 when CPAPR terminated was
on the order of double precision machine epsilon (i.e., ~ 2.2204 x 107!¢). Thus we describe

171t is tempting to think of the CPD A weights as generalizations of matrix singular values since they are used
to scale the rank-one outer products in both decompositions. However, they are defined in different norms: the
singular values are defined in the ¢? norm whereas the A weights are typically scaled in the ¢! norm. Additional
considerations include the orthogonality constraints on the factor matrices in the SVD and that CPD models
are typically computed with respect to the Frobenius norm.

12Computing this statistic for all random starts was prohibitively expensive.
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these models as rank-deficient: when the R-th largest singular value in one or more modes is
numerically close to 0 (i.e., near or below machine precision) so that the column rank of these
mode unfoldings is less than R. We can reasonably conclude that there is a strong connection
between rank-deficient solutions and KKT pointers that are not the MLE.

6.5. Restarted CPAPR with the SVDrop heuristic. Upon closer examination of the
traces from the rank-deficient search path in Figure 5a, we notice that the R-th largest singular
value in mode-1 drops dramatically between the 29th and 30th iteration. (In this case, lyar =
5, so the 30th total iteration is the first inner iteration on mode-1 of the 3rd outer iteration.)
To be precise, the gap ratio of the R-th largest singular value from the mode-1 unfolding
between iterations 29 and 30 is 0(1)[R](29)/0(1)[R](30) ~ 3.6 x 10!, Considering all of the
failed trials, the maximum gap ratio was 1.55 x 10'2 on average, the median of the maximum
gap ratios was 2.95 x 109, and the median iterate where it was observed was the 30th iteration.
Analogous to the indication of numerical instability by large condition number, we interpret
a large gap ratio between successive iterates as indicative of a search path that will converge
to a rank-deficient solution. Therefore, large gap ratio may serve as a reliable heuristic to
determine whether the current search path should be accepted or rejected. This observation
informs our solution in Algorithm 6.1. Before we present the method in full, two core concepts
remain to be discussed: 1) the SVDROP heuristic and 2) Restarted CPAPR.

Regardless of the method chosen to compute the spectral properties of the tensor mode
unfoldings, calculating the gap ratio between successive iterates will add non-trivial costs due
to the SVD computation. Additionally, it is not even clear whether the gap ratio needs to be
computed after every update. To mitigate incurring excessive computational cost, we propose
the SVDROP heuristic in a new subproblem for an extended CPAPR algorithm.

Procedure. The inputs to the subproblem algorithm are:

1. the maximum number of inner iterations, ly,q. € N<g;

2. the number of SVDROP inner iterations between successive models for computation
of their spectral properties, T € Z; and,

3. a maximum threshold for the gap ratio indicating an acceptable search path, v € R,..

While the model is not converged, we compute a rank-R decomposition with CPAPR and
improve the model fit with multiplicative updates. Every 7 inner iterations, we compute the
spectral properties of the current model (i.e., the singular values of the mode unfoldings). If the
gap ratio between the current model and the checkpointed model, computed from their spectral
properties, is smaller than , then we accept the search path, checkpoint the model, and
continue iterating. When the gap ratio is greater than ~, the SVDROP heuristic indicates that
the search path will converge to a rank-deficient solution and we reject it, since to otherwise
continue likely will waste a great deal of computation, as seen in Figure 1 and Figure 5. A
simple option is to restart: discard the work done up to now, randomly choose a new starting
point in the feasible domain of the optimization problem, and recompute. Restarting, taken
together with the SVDROP heuristic, is the idea behind our new method, Restarted CPAPR
with SVDROP, presented in Algorithm 6.1 and Algorithm 6.2. The exposition follows the
template of the ideal version of CPAPR [18, Algs. 1-2].

Additional considerations. First, we reset the counter of SVDROP inner iterations before
the first inner iteration of a mode, since we observed that the singular values of the unfoldings
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of the modes that are held fixed change very little between iterations.'> A consequence is
that the number of SVDROP inner iterations should always be less than or equal to the
maximum number of inner iterations, i.e., 7 <[4, Second, the gap ratio tolerance v should
be sufficiently large. We used v = 10% in our numerical experiments but it is unknown if this
value generalizes to other problems. Third, the update step Line 10 in Algorithm 6.2 is for
exposition; it can be performed implicitly on M efficiently in software.

Algorithm 6.1 Restarted CPAPR algorithm with SVDROPSUBPROBLEM).

Let X be a tensor of size I; X --- X Ig.
User input:
e RR: Number of components in low-rank approximation
® lnaz: Maximum number of inner iterations per outer iteration
e 7: Number of SVDROP inner iterations to perform
e 7: Tolerance for identifying rank-deficiencies (e.g., 109)

1: restart < true

2: repeat {SVDRroPr}

3 if (restart) then

4 M < GENERATERANDOMGUESS([[1, ..., 4], R)

5: repeat {OUTERITERATION}

6: forn=1,...,d do

7 I — (A(d)@...@A("'H)@A(n—l)Q...QA(1)>T

8 [B, restart] < SVDROPSUBPROBLEM(M, IL, R, n, lymaz, T,7)
9: if (restart) then

10: break > Break out of {OUTERITERATION}.
11: A«—elB

12: A « BA™!

13: until convergence { OUTERITERATION }

14: until convergence {SVDRoOP}

6.6. Numerical experiments. To evaluate Restarted CPAPR with SVDROP, we selected
14,051 random initializations for LowRankSmall from the experiments in subsection 5.3: the
random sample of 10,000 starts where CPAPR converged to the MLE that we mentioned
previously plus the 4,051 starts where CPAPR converged to a different KKT point. We
computed rank R = 3 CP decompositions using CPAPR with Multiplicative Updates starting
from each point. We increased the number of SVDROP inner iterations as 7 € {0,...,10}
but kept all other parameters identical to the experiments in subsection 5.3. A value 7 = 0
indicates that SVDROP was not used and that CPAPR was not restarted at any iteration.

6.6.1. Probability of convergence. In the previous experiments using CPAPR, without
any restarts, the total number of trials that did not converge to the MLE at the level of

131t is possible that the singular values of the mode unfoldings held fixed may change. However, this was
beyond the scope of this work.
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Algorithm 6.2 Subproblem solver for Algorithm 6.1 with SVDROP heuristic.

1: function SVDROPSUBPROBLEM(M, IL, 7, k, lynaz, T, 7Y)

2 t+0

3 o < svd(My,)[r] > r-th largest singular value of My).
1: B+ AWA

5: forl=1,..., 154 do

6 t—t+1

7 ® + (X © (BI) II"

8 B+~Bx®

9: if (t =7) then

10: A—e'B, A®)  BA™! > Update M with B.
1 ol svd(M )]

12: if (ar/a,(ﬂl) > «) then

13: return [B, true] > rank(M) < r; forces a restart in Algorithm 6.1.
14: Op < 0'1(})

15: t+0

16: return [B, false] > rank(M) = r; does not force a restart in Algorithm 6.1.

e =10~ was 4,051 of 110,266 (1 — Pyre(107%) = 0.037; see Table 1a). Table 2 reports the
total number of trials that: 1) converged to the MLE, 2) converged to some other KKT point,
or 3) did not converge to any KKT point using this set of 4,051 initial starts. Convergence was
calculated as in (3.2) at the level of ¢ = 10~ for each value of 7.'* Of these, 3,905 converged to
some other KKT point and 146 did not converge to any KKT point when 7 = 0. Our method
improved on this in all cases. It is interesting to note that the probabilities of convergence
to a different KKT point and failure to converge to any KKT point were higher when 7 > 6.
We defer further discussion on this point to subsection 6.7 since we will provide additional
results that will help us reason about this behavior and allow us to make suggestions with
more context.

In the best case, when the number of SVDROP inner iterations was 7 = 2, Restarted
CPAPR with SVDROP recovered the MLE in all but two trials (Pyzz(107%) = 0.9995). In
these cases, SVDROP did not converge to a KKT point. Instead CPAPR oscillated near some
other local minimizer—perhaps a saddle point. Figure 6 demonstrates that the failure of
SVDROP in these two instances was due to setting the gap ratio tolerance 7 too large (red
curves). In both plots, the gap ratio was always less than the choice of the tolerance in our
experiments (7 = 10%). When set appropriately, e.g., v = 8 x 10? (blue curves), Restarted
CPAPR with SVDROP converged. Note that the traces for the red and blue curves were
identical until the gap tolerance has been exceeded in the blue case. This triggered a restart,
so that the iteration histories diverged. Observe that the trial on the right restarted twice
when v = 8 x 103. Algorithm 6.1 will always restart until convergence to a KKT point that

M QOur results hold to the level of € = 1078 but we report € = 10™% to make comparison with the previous
experiments with HYBRIDGC without any restarts.
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is not rank-deficient.

Table 2: Convergence results of Restarted CPAPR with SVDROP: the number of trials
that converged to the MLE, converged to some other KKT point, or did not converge to
a KKT point. The initial guesses were the set of starts from previous experiments where
CPAPR without restarting (i.e., 7 = 0) did not converge to the MLE (number of starts
N = 4051). Converged means the solution satisfied the KKT-based CPAPR convergence
criterion to tolerance 10719

SVDROP inner iterations 7

Converged Minimizer 0 1 2 3 4 5 6 7 8 9 10
Yes MLE 0 4024 4049 4035 4028 4029 3906 3970 3983 3990 3998
Yes Other KKT point 3905 0 0 0 0 0 102 43 31 24 20
No - 146 27 2 16 23 22 43 38 37 37 33
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Figure 6: Two trials demonstrating the sensitivity of SVDROP to «. Starting from points
where CPAPR without restarting (i.e., 7 = 0) was known to converge to the MLE, SVDRrRoOP
failed to converge to any KKT point when + was set too large (red). When ~ is too large,
SVDROP may fail to recognize rank deficiency and CPAPR may stagnate near a local min-
imizer that is not a KKT point. When set appropriately (blue), SVDROP converged to the
MLE.

6.6.2. Computational cost. The formulae to compute computational costs in FLOPS are
provided in Appendix B. In the best case (7 = 2), the cost of Restarted CPAPR with SVDroOP
was 7.04x higher than CPAPR without restarting (7 = 0).!°> Although the cost of converging
to the MLE using Restarted CPAPR with SVDROP was more expensive than CPAPR without
restarting, it may be p0551ble to converge to the MLE with higher probabﬂlty—PM Le(1074) =
0.9995 versus PMLE(lo 1) = 0.963—with the extra work.

15Tt is unsurprising that SVDROP is much more expensive, since computing the singular values of a dense
m X n matrix, m > n, which is required to calculate the gap ratios, incurs a cost of 4mn? — %n3 FLOPS with
the current fastest direct methods [24].
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Figure 7: For trials that were known to converge to the MLE without using SVDROP, this
figure reflects the estimated probabilities that SVDROP would trigger an unwanted restart for
a range of gap ratios ~.

6.6.3. Caveats. Although our results were promising, we caution that our approach may
not always improve on CPAPR without restarting. There appears to be a “Goldilocks” range
for the gap ratio: too large v may decrease the probability that rank-deficient solutions are
identified and too small v may trigger unwanted restarts.

Choosing ~ too large. Starting from the random sample of 10,000 points where CPAPR
without restarting converged to the MLE in previous experiments, SVDROP occasionally
performed worse. When the number of SVDROP inner iterations was 7 = 1, 34 trials did not
converge to a KKT point. When the number of SVDROP inner iterations was 7 = 8, one trial
converged to a KKT point that was not the MLE. In that trial, a restart was triggered when
the gap ratio was greater than 10°. However, two gap ratios, which were large (> 2 x 10%)
but below the threshold, were missed due to the tolerance having been set too large.

Choosing ~ too small. When starting from points known to converge to the MLE without
restarting (i.e., 7 = 0), it is possible that SVDROP could misclassify a solution as rank-deficient
and restart from a new initial guess, which might needlessly increase the work expended. We
consider this unwanted behavior since minimal computational cost, in addition to accuracy, is
a desired characteristic of our algorithm. Figure 7 shows estimated probabilities that SVDROP
would trigger an unwanted restart for a range of gap ratios v. The implication is that choosing
~ to be too small may hurt performance.
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6.7. Discussion. The results for SVDROP presented here are limited to a small exemplar.
We discuss below several questions that should be addressed before conclusions about the
general efficacy of SVDROP can be considered.

Connections between 7, v, and l,q.. 1t is possible that the number of SVDROP steps should
be bounded by half the number of inner iterations, 7 < |l4:/2]. The reason being that there
is a correspondence between 7T, Iy, and the number of times the gap ratio is computed per
set of inner iterations. To see this, suppose lyq = 10 and 7 = 6. If not converged when [ = 6,
then the gap ratio would be computed only once for that mode; any additional changes to the
model variables beyond that inner iteration would not be captured by SVDROP. Since rank-
deficiency might only be indicated by the singular values of only one mode, as we observed
in Figure 5a, it may not be apparent that the model had been driven even closer to a rank-
deficient solution while the remaining modes were being optimized. If 7 = 5, then the gap
ratio would be computed twice: first when [ = 5 and again when [ = 10. In this case, we
would not miss critical changes. Thus it is possible that the gap ratio should be computed
at least twice per set of inner iterations. Two possible options are to set 7 = |lnas/2] or to
compute v when | = l;4,. On the other hand, Figure 7 shows that the estimated probability
of unwanted restarts is less when 7 > 6 than when 7 < 5. We speculate that choices of 7 and
~ are highly-coupled when considering both the probability of convergence to the MLE and
the probability of unwanted restarting. We leave this investigation to future work.

Swamps. In future work, we will explore rank-deficiency more systematically for local
minimizers of Poisson CPD problems to better understand the general applicability of our
SVDRoP approach. For example, in Figure 3, the CP model appears to be in a swamp'®
close to some local minimizer before emerging to converge to the MLE. One direction open to
future work is to compare SVDROP with methods for avoiding 2FD such as those in [?].

Efficient computation of gap ratios. Black-box solvers, e.g., those built on LAPACK xGES#*D
[5], compute all of the singular values of the matrix. Iterative methods, such as subspace
iteration or Krylov methods, may be a more practical choice for computing the gap ratio due
to the (relatively) small number of nonzero entries in each unfolding (This is a consequence
of the CPAPR algorithm design that drives elements toward zero.) Iterative methods are also
useful when only a small number of singular values are needed and are amenable to sparse
data structures. While it is less straightforward to characterize the computational costs and
other trade-offs of iterative methods, it is worth investigating their role in future work.

7. Conclusions. We presented two new methods for Poisson canonical polyadic decom-
position: HYBRIDGC and Restarted CPAPR with SVDRoP.

HyYBRIDGC. Our method can minimize low-rank approximation error with high accu-
racy relative to GCP-Adam and CPAPR-MU while reducing computational costs. Since
HYBRIDGC was run in our experiments with a far stricter computational budget than GCP-
Adam and CPAPR-MU, we argue that HYBRIDGC can be more computationally efficient. The
implication is that the performance gain allows even more multi-starts, and subsequently, a

18The term swamp was introduced by Mitchell and Burdick in [?]. A swamp is a phenomenon... in which a
[CP] sequence spends a long time in the vicinity of an inferior resolution before emerging and converging to an
acceptable resolution. Here we take “acceptable resolution” to be the MLE and an “inferior resolution” to be
some other local minimizer.
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greater number of high accuracy approximations. Furthermore, our contribution is a new
method that interpolates two very different algorithms.

Restarted CPAPR with SVDROP. Our method identifies rank-deficient solutions with near-
perfect accuracy and has the highest likelihood of finding the MLE in our experiments. A
corollary is that our algorithm almost always avoids an entire class of minimizers that are
different from the MLE. Our experimental results demonstrate this empirically with conser-
vative budgets for both restarting and total iteration, alongside other untuned parameters.
Provided more generous allotments and proper tuning, we expect SVDROP to always identify
rank-deficient solutions in the limit of multi-starts.

Parameter tuning. Unlike SVDROP, HYBRIDGC lacks a mechanism for changing its search
path. Assuming a pattern behavior exists, it is essential that further algorithm development
uncovers a diagnostic to identify it. Otherwise, HYBRIDGC will remain reliant on costly ad
hoc parameter tuning by the user. Convergence and the computational cost of Restarted
CPAPR with SVDROP both depend on the complex interplay of search parameters, which is
not well-understood. Although we provided sensible values and rationalized upper bounds on
some parameters, it remains an open question as to how sensitive SVDROP is to parameter
variability. It is essential to better understand this interplay since SVDROP can be prohibi-
tively expensive when it does fail. Fortunately, this is rare.
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Appendix A. LowRankSmall synthetic data tensor and empirical maximum likelihood
estimator from numerical experiments.

Sparse Tensor 1: Synthetic data tensor LowRankSmall used in experiments in subsection 5.3.

sptensor 4% temsor type

3 7% number of dimensions
468 7 stizes of dimensions
17 7 mumber of monzeros
1411 7% start of sparse tensor data: <mode-1-indexz> <mode-2-index> <mode-3-index> <value>
1465

1479

1661

1671

2126

2145

2183

2441

2521

2626

26438

26383

4184

4211

4282

4581

MLE Kruskal Tensor 2: Kruskal tensor empirical maximum likelihood estimator (MLE)
of Tensor 1 computed in experiments in subsection 5.3. The empirical MLE is the solution
with the smallest Poisson loss from among 110,226 random starts.

ktensor 4% temsor type

3 7% number of dimensions
468 7 sizes of dimensions
3 7 number of components
3.2999999999999986e+001 1.7000000000000004e+001 8.0000000000000000e+000 7% lambda values
matrix 4% 1st factor matriz

2 7% number of dimensions
43 /% stizes of dimensions
0.0000000000000000e+000 1.0000000000000000e+000 0.0000000000000000e+000 7 start of data
1.0000000000000000e+000 0.0000000000000000e+000 7.7243827424339032e-017

0.0000000000000000e+000 0.0000000000000000e+000 0.0000000000000000e+000

9.1691651618349857e-046 0.0000000000000000e+000 1.0000000000000000e+000

matrix A% 2nd factor matriz

2 7 number of dimensions
6 3 7 sizes of dimensions
4.2424242424242420e-001 0.0000000000000000e+000 5.0000000000000033e-001 7% start of data
9.8952534188649872e-233 0.0000000000000000e+000 3.7499999999999983e-001

0.0000000000000000e+000 0.0000000000000000e+000 0.0000000000000000e+000

3.0303030303030307e-002 8.8235294117647056e-001 0.0000000000000000e+000

3.0303030303030307e-002 0.0000000000000000e+000 1.2499999999999993e-001

5.1515151515151525e-001 1.1764705882352941e-001 8.6248456937576744e-133

matrix 4% 3rd factor matriz

2 7 nmumber of dimensions
8 3 /% sizes of dimensions
0.0000000000000000e+000 5.8823529411764705e-002 1.2499999999999992e-001 7% start of data
3.9393939393939398e-001 0.0000000000000000e+000 3.8294555981328405e-118

0.0000000000000000e+000 0.0000000000000000e+000 0.0000000000000000e+000

4.2424242424242437e-001 0.0000000000000000e+000 1.2073880062159344e-131

0.0000000000000000e+000 0.0000000000000000e+000 0.0000000000000000e+000

0.0000000000000000e+000 3.5294117647058826e-001 0.0000000000000000e+000

0.0000000000000000e+000 5.8823529411764708e-001 0.0000000000000000e+000

1.8181818181818168e-001 0.0000000000000000e+000 8.7500000000000011e-001
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Appendix B. Computational cost derivations.

B.1. CPAPR-MU operation count. CPAPR-MU was the first algorithm developed for
Poisson CPD and it is important to assess its cost in terms of the number of floating point
operations (FLOPS) required. We are only interested in sparse tensor computations, so we
do not consider the costs of operations for dense tensors.

The work in an iteration of CPAPR-MU is dominated by the following operations:

1. Sequence of Khatri-Rao products: IT <+ (A(d) oA o A D o A(l))T

2. Implicit MTTKRP: @ « (X @ (BII)) II"

3. Multiplicative update: B «+ B x ®

The first line is a sequence of Khatri-Rao products, where the binary operator ® denotes
the Khatri-Rao product between matrices. The Khatri-Rao product is a primary component
of the matricized tensor times Khatri-Rao product (MTTKRP), a key computational kernel
in many tensor algorithms, not just CPD. Improving performance of the MTTKRP is a very
active research area. For our purposes, we treat Khatri-Rao product as a black box and do
not count its costs.

The second line computes the ® matrix used in the multiplicative update. Note that B
is simply the n-th factor matrix A(™ scaled by the A weights, i.e., B = A(™ diag(X). We
write that it is an implicit MTTKRP since 1) and 2) together are mathematically equivalent
to MTTKRP. The MTTKRP is efficient because it can be done without forming dense arrays
and the implicit MTTKRP can be performed even more efficiently due to the special struc-
ture of the matricized tensor in minimizing the Poisson loss for sparse tensors. The matrix
multiplication BII requires O(R szl I;) arithmetic. The elementwise division X () @ (BIT)
depends on the number of nonzeros in X; thus it requires nnz(X) operations. Lastly, the
product (X @ (BII)) TI7 requires O(R Hi:l Ii;) arithmetic.

The elementwise multiplication in the third line, B x ®, requires RI, multiplications in
the n-th mode. All together, the number of FLOPS required per inner iteration for the n-th
mode is

d
(B.1) ~mnz(X) + rI,, + 2R | | I, FLOPS.
k=1

Note: we ignored the following computations with negligible costs (with corresponding
line numbers from [18, Alg. 3]):

1. inadmissible zero avoidance (Line 4);
2. the shift of weights from A to mode-n and vice versa (Lines 5, 15, 16); and,
3. the check for convergence (Line 9).

Appendix C. Cyclic GCP-CPAPR.

We develop Cyclic GCP-CPAPR (CycLicGC), a generalized form of HYBRIDGC that
cycles between a stochastic method to compute a model approximation and a deterministic
method to resolve the model to the best accuracy possible at scale. In our formulation, Hy-
BRIDGC is CycLIcGC with a single cycle. We define parameterizations and cycle strategies,
which prescribe how CycLICGC iterates in each cycle.

Let L € N be a number of cycles. Define strategy to be the L-length array of structures,
strat, specifying the following for each cycle I € {1,...,L}:
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e S opts: stochastic search parameterization, including solver and search budget, j,
measured in outer iterations.
e D_opts: deterministic search parameterization, including solver and search budget, k,
measured in outer iterations.
CycLIicGC iterates from an initial guess MO via a two-stage alternation between stochastic
and deterministic search for L cycles to return a Poisson CP tensor approximation M as
an estimate to M*. In the first stage of the [-th cycle, the stochastic solver iterates from
MED for J outer iterations, parameterized by strat(l).S_opts to return an intermediate
solution, MO, In the second stage, the deterministic solver refines MO for k outer iterations,
parameterized by strat(1l) .D_opts, to return the [-th iterate, M(Z), overwriting the output
from the previous stage.

Algorithm C.1 Cyclic GCP-CPAPR

1: function CycrLicGC(tensor X, rank r, initial guess MO number of cycles L, L-array
of structures strat defining L strategies.)

2 for/=1,...,L do

3: MO GCP(X, r, MUY strat (1) .S_opts)

4: MY « CPAPR(X, r, M), strat(1) .D_opts)

5

return model tensor 5\/\[ — M®) as estimate to M*
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Appendix D. Supplemental numerical results.
This section presents additional numerical results that are supplementary to those in
subsection 5.3.
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Figure 8: Factor match scores between CP models computed with HybridGC, CPAPR-MU,
and GCP-Adam and the approximate global optimizer, M. s- The dash-dot gray vertical lines
and dotted black vertical lines denote the levels of “similar” and “equal” described in [48].
Colormaps scaled for clarity.
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