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,  Optimal experimental design (OED) predicts a-priori what data is L
most informative to collect

Important tool in
model development

- Data is expensive

 Limited resources

Training surrogate model'

Sensor placement

T F. Leclercq. Bayesian optimization for likelihood-free cosmological inference. 2018 iT. Filkin, N. Sliusar, M. Ritzowski, and M. Huber-Humer. Unmanned aerial vehicles for operational monitoring of landfills. 2021



. Bayesian optimal experimental design (OED) relies on physics-based @
models to predict what data is informative

Data model:

y = model + noise

=f @ + noise

\ J
|

l depends on

Uncertain model The experimental
parameters design

T F. Leclercq. Bayesian optimization for likelihood-free cosmological inference. 2018 iT. Filkin, N. Sliusar, M. Ritzowski, and M. Huber-Humer. Unmanned aerial vehicles for operational monitoring of landfills. 2021



. Bayesian optimal experimental design (OED) relies on physics-based @
models to predict what data is informative

Data model: + Where to place sensors
y = model + noise

« What frequency ranges

=f 6 + noise to interrogate a system

\ J
|

l depends on * Where input loads to
provide a system

Uncertain model The experimental
parameters design

T F. Leclercq. Bayesian optimization for likelihood-free cosmological inference. 2018 iT. Filkin, N. Sliusar, M. Ritzowski, and M. Huber-Humer. Unmanned aerial vehicles for operational monitoring of landfills. 2021



Bayesian optimal experimental design minimizes uncertainty
associated with the posterior distribution

Standard OED problem

(governing PDES)

N ] Bayes' Rule

A CIVRES 0 ) ?Tpri(f?),

. N \
Input parameters \_Y_’ |

Likelihood Prior

inverse problem]

posterior

data

[ experimental design ]




4

Bayesian optimal experimental design minimizes uncertainty
associated with the posterior distribution

Standard OED problem

input parameters

model
(governing PDES)

inverse problem]

posterior

data

[ experimental design ]

Bayes' Rule

m(0]y) «m(y |60) myi(6)

Likelihood

1
n(y16) «exp (-~ (6) - yl?)

Experimental Data



5

Goal-oriented approaches minimize uncertainty directly in

quantities-of-interest

Goal-oriented OED problem

input param eters

posterior

model
(governing PDES)

inverse problem]

data

[ experimental design J

prediction quantities




¢ Goal-oriented OED allows us to introduce the notion of risk In
experimental design

Prediction Uncertainty Prediction Uncertainty

Which design is optimal for reducing prediction uncertainty?
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Goal—priented OE_D allows us to introduce the notion of risk in
experimental design High uncertainties = poor model predictions

/

Prediction Uncertaj Prediction Uncertainty

Which design is optimal for reducing prediction uncertainty?

It depends on how much risk you are willing to take




- Goal-oriented OED allows us to introduce the notion of risk in
experimental design

Classical approaches offer two choices:
minimize

PN

Average uncertainty Worst-case uncertainty




s Our goal is to create a more flexible framework for accounting for @
risk preferences in nonlinear Bayesian OED problems

1. Introduce risk measures

2. Show how risk measures are used in Bayesian OED

3. Computational examples




o The average-value-at-risk (AVaR) measures tail statistics L

AVaR:

R[X] := AVaR,|X] = 1_ip x m(x)dx

p-quantile

Rockafellar, R.T, and Uryaseyv, S., The fundamental risk quadrangle in risk management, optimization and statistical estimation, Surveys in Operations Research and Management Science, 2013



o The average-value-at-risk (AVaR) measures tail statistics 0

AVaR:
1 00
RIX] = AVaR,[X] = — | xm(x)dx
p-quantile

Expected deviations



o The average-value-at-risk (AVaR) measures tail statistics 0

AVaR:
1 00
R[X] = AVaR,|X] =—— | xm(x)dx
1—0p 4
p-quantile
p =0 =E[X]

p—1 =sup[X]

Expected deviations



o The average-value-at-risk (AVaR) measures tail statistics 0

AVaR:
1 00
RIX] = AVaR,[X] = — | xm(x)dx
p-quantile

p =0 =E|X]
p—1 =sup[X]

Nonlinear interpolation between minimizing
the average versus worst-case prediction
uncertainty across the domain

Kouri, Drew P., John D. Jakeman, and J. Gabriel Huerta. “Risk-Adapted Optimal Experimental Design.” SIAM/ASA Journal on <
Uncertainty Quantification 10, no. 2 (June 30, 2022): 687-716. https://doi.org/10.1137/20M1357615. Expected deviations
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10 Risk measures provided alternative statistics to compute
experimental design objective functions

Optimal design

§* = mgnU(€)
- e

Optimal design  Objective function
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Risk measures provided alternative statistics to compute
experimental design objective functions

OED objective function

U & =E[E,olq x,0 |
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Risk measures provided alternative statistics to compute
experimental design objective functions

OED objective function
U¢ = ]:'[1:'}, olg(x, 0) |

Vector valued quantify-of-interest

« Model prediction at
every pointin a
domain
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Risk measures provided alternative statistics to compute
experimental design objective functions

OED objective function

U & =E[E,olq x,0 |

Measure of uncertainty of deviation

» Variance
« KL-divergence
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Risk measures provided alternative statistics to compute
experimental design objective functions

OED objective function

U & =E[E,olq x,0 |

Expectation with respect to the likely data

* y = f(0) + noise
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Risk measures provided alternative statistics to compute
experimental design objective functions

OED objective function

U & =E[E,olq x,0 |

Average over the domain

x e}




10 Risk measures provided alternative statistics to compute
experimental design objective functions

OED objective function

U & =E[E, olqx,6 |

\ J
|

Statistics that can be replaced with risk
EENIEES




10 Risk measures provided alternative statistics to compute
experimental design objective functions

OED objective function

Ué =E[E, olqg x,0 |

Replace average prediction uncertainty
with the average-value-at-risk
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Numerical example: Modeling the concentration of a contaminant
over a 2D domain

Steady state advection-diffusion:
V- ax,0Vu +bVu=finQ= 0,1 U[0,1]
ux =0, onl)

Vu x ZO{;JHFN:F-IUFzUFE




11 Numerical example: Modeling the concentration of a contaminant @
over a 2D domain

Steady state advection-diffusion:
—~V:- ax,®Vu +bVu=finQ= 0,1 U|[0,1]
u X = 0, on FD

Vu x :&)nFN:FIUFEUFS




11 Numerical example: Modeling the concentration of a contaminant @
over a 2D domain

Steady state advection-diffusion:
~ V- alx,0)Vu +bVu=finQ= 0,1 U[0,1]
u X = 0, on FD
Vu x :&)nFN:Fl UFEUFS

Diffusion

a(x,0) = exp|6; sin(x,7) sin(x,m)
+ 6,co0s(3/2xym) cos(3/2x,m)]




11 Numerical example: Modeling the concentration of a contaminant @
over a 2D domain

Steady state advection-diffusion:
~ V- alx,0)Vu +bVu=finQ= 0,1 U[0,1]
u X = 0, on FD
Vu x :&)nFN:Fl UFEUFS

Diffusion

a(x,0) = exp|6; sin(x,7) sin(x,m)
+ 6,co0s(3/2xym) cos(3/2x,m)]

Quantify-of-interest - concentration across the domain

gx,0 =ux0, xel




12 The optimal experimental design problem

Determine optimal sensor locations ¢ to measure the contaminant
concentration u(x, ) to minimize uncertainty in the quantity-of-interest q(x, 8)




12 The optimal experimental design problem

Determine optimal sensor locations ¢ to measure the contaminant
concentration u(x, ) to minimize uncertainty in the quantity-of-interest q(x, 8)

Design

= x; €[0,1] U [0, 1] - Fixed
spatial design candidates

= w; € {0,1} - Binary weights

= > w; = N - Budget




12 The optimal experimental design problem L

Determine optimal sensor locations ¢ to measure the contaminant
concentration u(x, ) to minimize uncertainty in the quantity-of-interest q(x, 8)

Design

= x; €[0,1] U [0, 1] - Fixed
spatial design candidates

= w; € {0,1} - Binary weights

= > w; = N - Budget

Compare

Ué =E[E, olqg x,0 |
Vs.

U 6 — AVHRU_Q5 lh‘y ﬂ_lq X, V) |



Using the average-value-at-risk reduces max prediction variance @

Optimal designs and corresponding prediction variances
(L) 1st optimal sensor (R) 15t & 2nd optimal sensors

13

(top)

R = E|prediction variance]

(bottom)
R = AVaR,_( gs[prediction
variance]

® current

optimal

® previous
optimal



14 Risk measures provided alternative statistics to compute
experimental design objective functions

OED objective function
Ué =E[E, olqg x,0 ]

Replace

1. average prediction uncertainty
2. Average over the likely data
3. Deviation measure

With the average-value-at-risk measures and
deviations




s Numerical example: Modeling a thermally activated battery

-V kx6 VT x,t =f(x) in 0=0,U0,U0Q3UQ,UQ5

1
k x,0 VT x,t ‘n 10Tx,t ~T, on 0Q

r,
100, x €{} ), Thermal pellets
1, X € (), 1, Anode

5
k(x, 6) = 4 exp (Z }ldd)d(x)ﬁd ),x (S 9.3
d=1
1 X € .Q.4

()5 Thermal pellets




s Numerical example: Modeling a thermally activated battery

-V kx,60 VI x,t =f(x) in Q=0,U0Q,UQ;UQ,UQ5
1
kx,ﬂFTx,t-?;,:lOTx,t —T, on 0f
(
100, X € {}y ()1 Thermal pellets
L i x € {1 0, Anode
k(x, 6) = 4 exp (Z Adqbd(x)ﬁd ),x (S 9.3
d=1
1, X € .Q.4
\ 100, x € {15 1, Cathode
(5 Thermal pellets

The eigenvalues and eigenfunctions - derived from Fredholm integral
equations



16 Numerical example: Modeling a thermally activated battery h

Candidate sensor locations - along the boundary of the
electrolyte domain at times t = 3.2,5.4,10.8 seconds

Quantify-of-interest - temperature in the electrolyte
domain averaged across the three times

q(x,0) :=T(x,0), xE€Q;3

Temperature T'

10
Time ¢




17 Numerical example: Modeling a thermally activated battery h

Plot of the expected deviations across the electrolyte
domain and the optimal sensor location

—0.99502
—0.98507
—0.97511
—0.96516
—0.95520

—0.94524
—0.93529
—0.92533
—0.91538
—0.90542

Risk neutral Risk averse

U § =E[Eyolq x,0 ] U § =R[Ry Rolq %,6 ]



e Conclusions and future work

 Risk measures provide a more Future research
flexible experimental design
framework = Efficient computation for
large-scale, nonlinear
problems

« Accounting for risk
preferences changes the
optimal experimental design

Publication
» Goal-oriented approaChes are R. White, J. Jakeman, A. Alexanderian, D. Kouri,
beneficial and B. van Bloemen Waanders. A Bayesian

approach to risk-averse optimal experimental
design. In-progress




