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Optimal experimental design (OED) predicts a-priori what data is 
most informative to collect 
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Sensor placement

Training surrogate model† 

† F. Leclercq. Bayesian optimization for likelihood-free cosmological inference. 2018 ‡T. Filkin, N. Sliusar, M. Ritzowski, and M. Huber-Humer. Unmanned aerial vehicles for operational monitoring of landfills.  2021

• Data is expensive

• Limited resources

Important tool in 
model development



Bayesian optimal experimental design (OED) relies on physics-based 
models to predict what data is informative
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† F. Leclercq. Bayesian optimization for likelihood-free cosmological inference. 2018 ‡T. Filkin, N. Sliusar, M. Ritzowski, and M. Huber-Humer. Unmanned aerial vehicles for operational monitoring of landfills.  2021

Data model:

Uncertain model 
parameters

The experimental 
design

depends on
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† F. Leclercq. Bayesian optimization for likelihood-free cosmological inference. 2018 ‡T. Filkin, N. Sliusar, M. Ritzowski, and M. Huber-Humer. Unmanned aerial vehicles for operational monitoring of landfills.  2021

Data model:

Uncertain model 
parameters

The experimental 
design

depends on

• Where to place sensors

• What frequency ranges 
to interrogate a system

• Where input loads to 
provide a system



Bayesian optimal experimental design minimizes uncertainty 
associated with the posterior distribution 
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Bayes’ Rule

prior

posterior

Standard OED problem

minimize 
uncertainty 

Likelihood Prior



Bayesian optimal experimental design minimizes uncertainty 
associated with the posterior distribution 
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Bayes’ Rule

prior

posterior

Standard OED problem

minimize 
uncertainty 

Likelihood

Experimental Data



Goal-oriented approaches minimize uncertainty directly in 
quantities-of-interest
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prior

posterior

Goal-oriented OED problem

minimize 
uncertainty 



Goal-oriented OED allows us to introduce the notion of risk in 
experimental design 
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Which design is optimal for reducing prediction uncertainty?



Goal-oriented OED allows us to introduce the notion of risk in 
experimental design 
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Which design is optimal for reducing prediction uncertainty?

High uncertainties = poor model predictions

It depends on how much risk you are willing to take



Goal-oriented OED allows us to introduce the notion of risk in 
experimental design 
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Classical approaches offer two choices: 
minimize 

 Average uncertainty  Worst-case uncertainty 



Our goal is to create a more flexible framework for accounting for 
risk preferences in nonlinear Bayesian OED problems 
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1. Introduce risk measures 

2. Show how risk measures are used in Bayesian OED

3. Computational examples



9 The average-value-at-risk (AVaR) measures tail statistics 

p-quantile 

Rockafellar, R.T, and Uryasev, S., The fundamental risk quadrangle in risk management, optimization and statistical estimation, Surveys in Operations Research and Management Science, 2013

AVaR:
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9 The average-value-at-risk (AVaR) measures tail statistics 

p-quantile 

AVaR:

Expected deviations

Nonlinear interpolation between minimizing 
the average versus worst-case prediction 

uncertainty across the domain 

Kouri, Drew P., John D. Jakeman, and J. Gabriel Huerta. “Risk-Adapted Optimal Experimental Design.” SIAM/ASA Journal on 
Uncertainty Quantification 10, no. 2 (June 30, 2022): 687–716. https://doi.org/10.1137/20M1357615.

https://doi.org/10.1137/20M1357615


Risk measures provided alternative statistics to compute 
experimental design objective functions 
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Optimal design 

Optimal design Objective function 



Risk measures provided alternative statistics to compute 
experimental design objective functions 
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OED objective function



Risk measures provided alternative statistics to compute 
experimental design objective functions 
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OED objective function

Vector valued quantify-of-interest

• Model prediction at 
every point in a 
domain 



Risk measures provided alternative statistics to compute 
experimental design objective functions 
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OED objective function

Measure of uncertainty of deviation 

• Variance 
• KL-divergence



Risk measures provided alternative statistics to compute 
experimental design objective functions 
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OED objective function

Expectation with respect to the likely data 



Risk measures provided alternative statistics to compute 
experimental design objective functions 
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OED objective function

Average over the domain 



Risk measures provided alternative statistics to compute 
experimental design objective functions 
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OED objective function

Statistics that can be replaced with risk 
measures



Risk measures provided alternative statistics to compute 
experimental design objective functions 
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OED objective function

Replace average prediction uncertainty 
with the average-value-at-risk 



Numerical example: Modeling the concentration of a contaminant 
over a 2D domain
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Steady state advection-diffusion:
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Steady state advection-diffusion:

Numerical example: Modeling the concentration of a contaminant 
over a 2D domain
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Diffusion

Steady state advection-diffusion:

Numerical example: Modeling the concentration of a contaminant 
over a 2D domain
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Diffusion

Steady state advection-diffusion:

Numerical example: Modeling the concentration of a contaminant 
over a 2D domain

Quantify-of-interest – concentration across the domain



12 The optimal experimental design problem



12 The optimal experimental design problem

Design 



12 The optimal experimental design problem

Design Compare  

Vs.  



Using the average-value-at-risk reduces max prediction variance 
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Optimal designs and corresponding prediction variances

current 
optimal

previous 
optimal

(L) 1st optimal sensor (R) 1st & 2nd optimal sensors



Risk measures provided alternative statistics to compute 
experimental design objective functions 
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OED objective function

Replace 

1. average prediction uncertainty
2. Average over the likely data
3. Deviation measure 

With the average-value-at-risk measures and 
deviations



Numerical example: Modeling a thermally activated battery15



Numerical example: Modeling a thermally activated battery15

The eigenvalues and eigenfunctions – derived from Fredholm integral 
equations



Numerical example: Modeling a thermally activated battery16

Quantify-of-interest – temperature in the electrolyte 
domain averaged across the three times



Numerical example: Modeling a thermally activated battery17

Plot of the expected deviations across the electrolyte 
domain and the optimal sensor location 

Risk neutral Risk averse



Conclusions and future work18

• Risk measures provide a more 
flexible experimental design 
framework

• Goal-oriented approaches are 
beneficial

• Accounting for risk 
preferences changes the 
optimal experimental design 

Future research

§ Efficient computation for 
large-scale, nonlinear 
problems

R. White, J. Jakeman, A. Alexanderian, D. Kouri, 
and B. van Bloemen Waanders. A Bayesian 
approach to risk-averse optimal experimental 
design. In-progress

Publication


