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Outline

Overview of Z machine and MagLIF
* One-Dimensional Imager of Neutrons (ODIN)
* Image Reconstruction Methodology
* ODIN Data Image Reconstruction




Overview of Z
machine and MagLIF
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D. B. Sinars et al., “Review of pulsed power-driven high energy density

physics research on z at sandia,” Physics of Plasmas., vol. 27, no. 7, 20




/"« Magnetization stage applies a
magnetic field around the target
to reduce radial thermal
conduction loss

* Laser Preheat stage raises the
fuel temperature to reduce the
required compression for fusion
conditions

« Compression stage implodes
the target from the magnetic
field of the electrical pulse

/" Magnetized Liner Inertial Fusion (MagLIF)

Laser Preheat

Magnetization

D+D —3He (0.8 MeV)+ n(2.45 MeV) 50%
- p(3.02 MeV) + T(1.01 MeV) 50%

D+T - a (3.6 MeV) +n(14.1 MeV)

Compression

P. F. Knapp et al., “Effects of magnetization on fusion product trapping

and secondary neutron spectra,” Physics of Plasmas., vol. 22, no. 5, 2015.‘



One-Dimensional
Imager of Neutrons
(ODIN)




ensional Imager of Neutrons (ODIN)

P/One-Dim

il = —

Primary
Detector

Detector

*Images neutrons emitted by MagLIF experiments on the Z facility

*Yields range from ~1X10'? to ~1X10'3from ~1cm tall target which are recorded as tracks on
CR-39 pieces

David J. Ampleford, et al. "One dimensional imager of neutrons on the
Z machine", Review of Scientific Instruments 89, 101132 (2018)



/Forward Model: Neutrons from source through aperture to detector
74
/ z

Mot to Scale z
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N

*Rays from source points are generated towards interaction points along the detector plane

*Neutrons can attenuate through the tungsten or pass freely through the aperture




: Rolled edge and mounting location

*The aperture is 10 cm long, with a nominal spacing of 250 um




IN: Detector package configuration

CR-39 CR-39 CR-39 D.P.E. (CR-39
A HDPE 06-088 HDPE 06-089 HDPE 06090 CD; 06-091
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Imager Detector Package (wrapped insingle layer Al foil)

*DD Neutrons elastically scatter and produce recoil protons which leave destructive tracks
*High density polyethylene is placed in front of the CR-39 to increase the detection efficiency

*Microscope scans provide information on track location, diameter, contrast, and eccentricity for
discrimination of incident neutrons B. Lahmann et al. “CR-39 nuclear track detector response to inertial

confinement fusion relevant ions,” Rev Sci Instrum 1 May 2020; 91 (5):
053502. https://doi.org/10.1063/5.0004129 n
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/" 73289 ODIN data

 Non-incident neutrons are
filtered out, data rebinned to
ODIN's resolution

 Data is integrated along the
resolving axis to produce an
axial detector measurement

* A subset of the data is used to
remove the pinholes and tag
number
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S. A .Ricketts et al. “Neutron source reconstruction of one-dimensional imager of neutron images through

maximum likelihood methods,” Conference presentation, APS Division of Plasma Physics Meeting, 2022




/" ODIN Previous Analysis

/ (a) Scanned CR-39 (b) Rebinned data
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*No further reconstruction has been attempted

(a) 2D x-ray image (b) Axial Neutron/x-ray structure
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*Objective: Use image reconstruction methods to improve imaging of the spatial
distribution of neutron emissions from the stagnation column

David J. Ampleford, et al. "One dimensional imager of neutrons on the Z machine",
Review of Scientific Instruments 89, 101132 (2018)



Image Reconstruction
Methodology
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Fredholm Integral Equation of the First Kind

(7 K(x,9)Go(y)dy = Ny (x),c < x < d
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%105 Point Spread Functions
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/ Instrument Response Function from Forward Model
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*Fluence amplitude is in agreement with Monte Carlo N-Particle Transport Code (MCNP)
simulations (J. D. Vaughan et al.)

*For a uniform source ~635 tracks/cm? (D. ). Ampleford et al. ~650 tracks/cm?)
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/Fredholm Integral Equation of the First Kind: Solving for neutron source
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P Image Reconstruction Methods Investigated

* Least Squares Fit
» Selects a solution which minimizes the square of the residual

* Non-Negative Least Squares Fit
* Implements non-negativity constraint for Least Squares Fit

 Maximum Likelihood Estimation (MLE)

* Iterative algorithm which converges to a solution that maximizes a likelihood
function

 Can factor in the type of noise (Gaussian or Poissonian)
* Poissonian has non-negativity constraint

 Generalized Expectation Maximization (GEM)

* Iterative algorithm with a regularization parameter 1/ which implements a
smoothing to the solution

» Low [3 smooths the solution
* Large B has no smoothing and approaches Maximum Likelihood Poissonian




Generating Detector Response using Synthetic Data
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J_,/Maximum Likelihood Reconstruction: Gaussian and Poissonian
- noise models.

Recovered Source Profile
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/" Let's change up the source, lower frequency source profile
4

Z 4 Recovered Source Profile
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// Generalized Expectation Maximization (GEM) with varying
regularization parameter, .

Recovered Source Profile
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/" GEM method with low frequency source profile
4
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Recovered Source Profile
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How do we pick B in an ill-posed problem?
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/" Usual methods for choosing 3

* Have some understanding of
what the source should look

like

* This will vary from shot to shot

* L curve is a common method

* The non-negativity constraint
does not allow high
frequencies to enter the

negative space

 So there is no upper region to

the L curve

Stops here
with non-
negativity
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P K-Fold Cross Validation for a chosen 3

Randomize order of data

points
Split data into k folds Test Train
First fold becomes testing 2 5;2 . .

data points for goodness of

fit, remaining folds train the Data 1 /2 34 5 6 7 8!9 10 11 12
model fit

4. Iterate through each k fold

o Allows each data point to be
part of training and testing

5. Repeat over a range of 3
values
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/" Method of choosing 3, low

frequency source profile
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profile

/ Method of choosing 3, low
and high frequency source
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ODIN Data Image
Reconstruction




< Result: Z3289 Reconstructed Source Profile
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*How can we check if this solution makes sense?

* A background subtraction was implemented in these results




Check: Reconstruction Forward Fit Against Experimental Data
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4(perimental Validation: Reconstructed Source Compared to Time
Integrated Pinhole Camera (TIPC) x-ray Emission
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*Max peak has been used to spatially align data sets




Questions?




P Future Work

» Publication of this work coming soon

» Determine a method for calculating a distribution of optimal Beta values
» Uncertainty quantification

» Deeper comparison with other diagnostics

 2D-imaging diagnostic




rd

7

rd

o References

[1] M. R. Gomez et al., “Demonstration of thermonuclear conditions in magnetized liner
inertial fusion experiments,” Phys. Plasmas, vol. 22, no. 5, 2015, doi: 10.1063/1.4919394.

[2] D. ). Ampleford et al., “One dimensional imager of neutrons on the Z machine,” Rev.
Sci. Instrum., vol. 89, no. 10, 2018, doi: 10.1063/1.5038118.

[3] J. A. Frenje et al., "Absolute measurements of neutron yields from DD and DT
implosions at the OMEGA laser facility usiné CR-39 track detectors,” Rev. Sci. Instrum., vol. 73,
no. 7, p. 2597, 2002, doi: 10.1063/1.1487889.

[4] V. l. Gelfgat, E. L. Kosarev, and E. R. Podolyak, “Programs for signal recovery from
noisy data using the maximum likelihood principle,” Computer Physics Communications. pp.
335-348, 1993,

[5] P. Volegov et al., “Neutron source reconstruction from pinhole imaging at national
ignition facility,” Rev. Sci. Instrum., vol. 85, no. 2, 2014, doi: 10.1063/1.4865456.
[6] J. D. Vaughan et al., “Modeling the one-dimensional imager of neutrons (ODIN) for

neutron response functions at the Sandia Z facility,” Rev. Sci. Instrum., vol. 89, no. 10, 2018, doi:
10.1063/1.5039366.




o References
‘4

[7] D. B. Sinars et al., “Review of pulsed power-driven high energy density physics
research on z at sandia,” Physics of Plasmas., vol. 27, no. 7, 2020.

rd

[8] P. F. Knapp et al., “Effects of magnetization on fusion product trapping and secondary
neutron spectra,” Physics of Plasmas., vol. 22, no. 5, 2015.




