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STOCHASTIC MEDIA TRANSPORT

LINEAR KINETIC In stochastic media (SM) transport,
THEQRY /AN
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STOGHASTIC « Accuracy
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 Efficiency

A | d-C. Porsiiing

We also want

« Higher-order results (e.g., variance, PDFs)
« Trade-offs (accuracy and efficiency)

« Simplicity (for developers and analysts)




LANDSCAPE OF SM TRANSPORT MODELS - PRE-COPS

Deterministic Monte Carlo \
AM < » AM
LP closure < Markovian §, (| S
various methods various methods
(LRP, PBS, etc.)
Ensembles « »Ensembles




LANDSCAPE OF SM TRANSPORT MODELS - W/ COPS CoPs h
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WHY HAVE A WOODCOCK-BASED METHOD? N

[ Surface Tracker ] [ Woodcock Tracker J\

Real collision Rejected collision

Crosses surface Ignores surface
Non-physical events:  « Boundary crossing * Rejected pseudo-collisions
Tracking: « More efficient + Less efficient (usually)
Tallies: - More efficient * Less efficient (usually) &

Lewis, E., and W. Miller Jr.
Computational Methods of Neutron Transport.
American Nuclear Society, Inc., 1993.




WHY HAVE A WOODCOCK-BASED METHOD? N
[ Surface Tracker ] [ Woodcock Tracker J\

Real collision Rejected collision

Crosses surface Ilgnores surface

Memory of
sampled features

o | e ,.,o
Accurate ///// 7 6

conditional sampling

High accuracy
+

Beyond means

77

How to sample new
features based on
previous samples??
(continuous)

Can samples new

features based on
previous samples!!
(discrete)




WHY HAVE A WOODCOCK-BASED METHOD?

Non-physical events:

Tracking:
Tallies:

SM Alg. Accuracy:
SM Alg. Results:

SM Alg. Flexibility:
B

[

Surface Tracker }

Real collision

Crosses surface

Boundary crossing

More efficient
More efficient

Moderate accuracy
Mean only
Some flexibility

AN

[ Woodcock Tracker ]\

N

Rejected collision

Ilgnores surface

Rejected pseudo-collisions

Less efficient (usually)

CHEETAH

High accuracy
Mean, variance, PDFs, etc.
Adaptability and hierarchy
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LANDSCAPE OF SM TRANSPORT MODELS - W/ MF COPS  coPS N
Deterministic Monte Carlo \
Surface Tracking | Woodcock Tracking
|
AM < - AM | AM
LP closure « Markovian §, (| S : various
' CoPSp-N;
various methods various methods : p: # used CoPS
(LRP, PBS, etc.) : N: # stored
|
|

1D Markovian

Ensembles « > Ensembles«—:»COPSBPO-oo Ensembles




WHY DOES MULTI-FIDELITY COPS MATTER? Cops \
AN
Practical considerations: Who good for? \

* One computational framework developers )

* One conceptual framework developers & analysts)

* One user interface developers & analysts)

(
(
(
(

* Problem-specific accuracy/efficiency tradeoff analysts)

Formal multi-fidelity (MF) methods:
« Many cheap calculations + Few accurate calculations = Accurate answer efficiently

* Recent advances, e.g.,
- B. Peherstorfer, et al. (2016) "Optimal model management for multifidelity Monte Carlo estimation."
38(5): A3163-A3194,

« @G. Geraci, et al. (2023) "Multifidelity UQ methods for Monte Carlo radiation applications and
stochastic media." USNCCM17




THE MULTI-FIDELITY BEHAVIOR OF COPS CoPS h
N\
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DOES COPS PROVIDE OPTIONS EQUIVALENT TO AM AND CLS? N
CoPS .
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LANDSCAPE OF SM TRANSPORT MODELS - W/ MF, MATCHED COPS? h
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Deterministic Monte Carlo \

Surface Tracking Woodcock Tracking

27?7

AM < > AM < » CoPSp-0 AM
LP closure « Markovian §, (C|S < Z »CoPSp-1
various methods various methods various p, N«7CoPS

(LRP, PBS, etc.)

I
|
|
|
I
|
|
|
I
|
|
|
: (CoPSp-N)
|

|

1D Markovian

Ensembles « > Ensembles«—:+COP53PO-oo Ensembles
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WHAT ARE BE THE BENEFITS OF SHOWING EQUIVALENCY?  ¢cops
AN

Research benefits:

« Emulation:  AM, CLS, or Ensemble methods emulate CoPS, and vice versal!

* Theory: New theoretical beachhead, e.g., point-based deterministic formulation?

« Accessibility: Mechanics and results analogous to accepted methods

Application benefits:
« Emulation: Know what accuracy other methods would provide
- Simplicity:  One implementation provide variety of accuracy/efficiency fidelity options

13




APPROACH TO SHOWING EQUIVALENCY N
[ Surface Tracker ] [ Woodcock Tracker J\

Real collision

AN

Rejected collision

Crosses surface Ilgnores surface

Non-physical events:  « Boundary crossing » Rejected pseudo-collisions
AM/CLS CoPS

: , »*
Equivalent if: 7 ............
/// ’ “““““
// a

e [ [

Distribution of physical [ . .
= ing: Rejected pseudo-collision:
events the same Interface crossing: J P
[i(@)de = pu(a) S0, oxp [_ /‘” dgj,,zt(xn)} . |Simulated, but not physical Simulated, but not physical

B 14
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APPROACH TO SHOWING EQUIVALENCY - AM VS. COPSP-0 h
b N\
oP$S \
AM CoPSp-0 AN
Stream based on (X;) = Y p;Z;; » Stream based on Z; = max(Z;;)
Sample collision material based on 224! * Sample local material based on p;

(Z¢)

. . . . " E -
+ Accept collision in material i based on =
t

CoPSp-0: a way to perform AM with Woodcock tracking

filx)dx = p;Xy i exp [— (X)) (x — )] da

f(x)de = (X;) exp [— (X)) (x — 2')] dx

15
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APPROACH TO SHOWING EQUIVALENCY - CLS VS. COPSP-1 h

CoPS \'~
CLS CoPSp-0
» Incorporate stochastic mixing via d; » Incorporate stochastic mixing via f(k,r)
Sampled distance to material interface « Sampled number of material interfaces k on r
« Markov property: » Markov property:
*  Only current material affects d; « Only current material affects f(k,r)

CLS and CoPSp-1: two ways to account for memoryless interface crossing

Nmat_l

fi(x)dr = p;i(x — 2") 5, ; exp {—/ dz” Z (pi(2" — 2")8y;) | da

1=0
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AM VS. COPSP-0 COLLISION DISTRIBUTIONS

Problem Descriptions:

» Problem 1:
* A(),/l*l,/’lz - 1.0, 1.4‘5, 1.9 (p(],p],pz — 9.70/0, 37.8%,52.5%)
. %055, =3.0,1.0 ,1.5

* Problem 2:
¢ AO'AIJAZ == 10, 145, 1.9
« 25,24,2,=1.01.0,1.0

Numerical Experiment:

1. Source particle in purely scattering material

2. Simulate until second physically real collision
3. Tally distances to collisions and material types
4. Process tallies into collision distributions

Problem 1

Problem 2

AM and CoPSp-0

Eq. (3)
L1 AM
CoPSp-0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Distance x

(a) AM and CoPSp-0: Collision
following instantiation or collision

AM and CoPSp-0

Ay -~ Eq.(3)
] AM

[ CoPSp-0

Collision Likelihood

CoPS

00 05 1.0 15 20 25 3.0
Distance x

17




CLS VS. COPSP-1 COLLISION DISTRIBUTIONS

First collision Second collision

18




CLS VS. COPSP-1 COLLISION DISTRIBUTIONS

Problem 1

’ Problem 2

Collision Likelihood

Collision Likelihood

First collision

CLS and CoPSp-1: First Collision

1 CLs
Mat. 2 [ CoPSp-1
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0.5

04
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0.2

0.1

0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Distance x

(b) CLS and CoPSp-1: First
collision after instantiation

CLS and CoPSp-1: First Collision

0.5 —Mat. 2 ] CLS
[ CoPSp-1

0.4

0.3

0.2

0.1

0.0

00 05 10 15 20 25 30
Distance x

CLS and CoPSp-1: Following Material 0

Collision Likelihood
= | N
[=] (%] o

=
u

1 CLs
[ CoPSp-1

Mat. 0

Mat. 2

Collision Likelihood

05 10 15 2.0 25
Distance x

(c¢) CLS and CoPSp-1: Previous

collision in Material 0

CLS and CoPSp-1: Following Material O

Collision Likelihood

CLsS
[ CoPSp-1
Mat. 0
Mat. 2
Mat. 1

05 10 15 20 25
Distance x

- s :’ ““““ \

PR

b

Second collision

CLS and CoPSp-1: Following Material 1

CoPS

CLS and CoPSp-1: Following Material 2

1.0
1 cLs 1.4 [ CLS
0.8 [ CoPSp-1 - 1.2 [ CoPSp-1
=]
[=]
£10-
0.6 o
v
at. 1 = 081
=
0.4 G 06
v
35 0.4-
2] © 0.2
Mat. 2 . Mat. 1
Mat, 0 i
0.0 ; Q.0 7
0.0 05 1.0 15 2.0 55 30 0.0 0.5 1.0 1.5 2.0 25 3.0
Distance x Distance x

Collision Likelihood

(d) CLS and CoPSp-1: Previous

collision in Material 1

CLS and CoPSp-1: Following Material 1

(e) CLS and CoPSp-1: Previous

collision in Material 2

CLS and CoPSp-1: Following Material 2

12 1.0
1 CLs 1 CLS
1.01 1 CoPSp-1 | o8] [ CoPSp-1
Q
o
0.8 1 £
@ 0.6
X
0.6 |
Mat. 1 c
S 0.44
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S
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FULL-ALGORITHM - BINARY MIXTURES CoPS

Reflectance Transmittance
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LANDSCAPE OF SM TRANSPORT MODELS - W/ MF, MATCHED COPS h
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Deterministic Monte Carlo \

Surface Tracking Woodcock Tracking
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CONCLUSIONS AND FUTURE WORK CoPS

Conclusions:

* CoPSp-0 produces AM quantities

« CoPSp-1 produces CLS quantities (in 1D, Markovian media)

« Equivalencies enable emulation, accessibility, simplicity, and a new theoretical beachhead

Future work:

« Mathematical proof of equivalency

* Runtime comparisons

« Examination of LRP-like version of CoPS
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