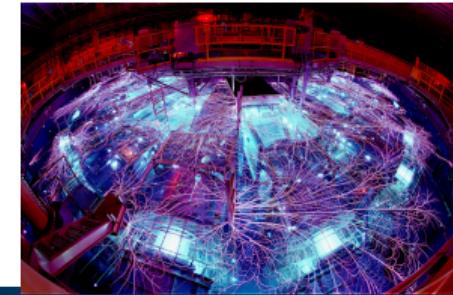


This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Exceptional service in the national interest



Iterative Solvers & Algebraic Multigrid (with Trilinos, Belos & MueLu)

Christian Glusa and Graham Harper {caglusa,gbharpe}@sandia.gov

This article has been authored by an employee of National Technology & Engineering Solutions of Sandia, LLC, U.S. Department of Energy (DOE). The employee owns all right, title and interest in and to the article and is solely responsible for the content. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this article, or allow others to do so, for U.S. Government purposes. The DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan available at <https://www.energy.gov/downloads/doe-public-access-plan>.

Discretization of partial differential equations gives rise to large linear systems of equations

$$\mathbf{A}\vec{x} = \vec{b},$$

where \mathbf{A} is sparse, i.e. only a few non-zero entries per row.

Example

2D Poisson equation:

$$\begin{aligned} -\Delta u &= f \text{ in } \Omega = [0, 1]^2, \\ u &= 0 \text{ on } \partial\Omega. \end{aligned}$$

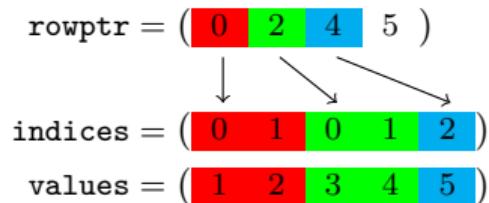
Central finite differences on a uniform mesh $\{x_{i,j}\}$:

$$\begin{aligned} 4u_{i,j} - u_{i,j+1} - u_{i,j-1} - u_{i+1,j} - u_{i-1,j} &= f(x_{i,j})\Delta x^2 & \text{if } x_{i,j} \notin \partial\Omega, \\ u_{i,j} &= 0 & \text{if } x_{i,j} \in \partial\Omega. \end{aligned}$$

→ 5 entries or less per row of \mathbf{A} .

Instead of dense format, keep matrix \mathbf{A} in a sparse format e.g. *compressed sparse row* (CSR):

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 0 \\ 3 & 4 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$

$$\begin{aligned} \text{rowptr} &= (\textcolor{red}{0} \textcolor{green}{2} \textcolor{blue}{4} \textcolor{blue}{5}) \\ \text{indices} &= (\textcolor{red}{0} \textcolor{red}{1} \textcolor{green}{0} \textcolor{red}{1} \textcolor{blue}{2}) \\ \text{values} &= (\textcolor{red}{1} \textcolor{red}{2} \textcolor{green}{3} \textcolor{red}{4} \textcolor{blue}{5}) \end{aligned}$$


Available solvers

Solve

$$\mathbf{A}\vec{x} = \vec{b}.$$

Option 1: Direct solvers (think Gaussian elimination), presentation by Sherry Li, and Pieter Ghysels this morning

- Factorisation scales as $\mathcal{O}(n^3)$.
- Factors are a lot denser than $\mathbf{A} \rightarrow$ memory cost.
- Parallel implementation not straightforward.
- Does not require a lot of information about the structure of \mathbf{A} .

Observation

\mathbf{A} has $\mathcal{O}(n)$ non-zero entries. \rightarrow Optimal complexity for a solve is $\mathcal{O}(n)$ operations.

Option 2: Iterative solvers

- Exploit an operation that has $\mathcal{O}(n)$ complexity: mat-vec.
- Easy to parallelize.
- Can have small memory footprint. (In the best case, we only need to keep a single vector.)
- Generally more restrictions on properties of \mathbf{A} .

Available solvers

Solve

$$\mathbf{A}\vec{x} = \vec{b}.$$

Option 1: Direct solvers (think Gaussian elimination), presentation by Sherry Li, and Pieter Ghysels this morning

- Factorisation scales as $\mathcal{O}(n^3)$.
- Factors are a lot denser than $\mathbf{A} \rightarrow$ memory cost.
- Parallel implementation not straightforward.
- Does not require a lot of information about the structure of \mathbf{A} .

Observation

\mathbf{A} has $\mathcal{O}(n)$ non-zero entries. \rightarrow Optimal complexity for a solve is $\mathcal{O}(n)$ operations.

Option 2: Iterative solvers

- Exploit an operation that has $\mathcal{O}(n)$ complexity: mat-vec.
- Easy to parallelize.
- Can have small memory footprint. (In the best case, we only need to keep a single vector.)
- Generally more restrictions on properties of \mathbf{A} .

Krylov methods

Based on mat-vecs, we can compute

$$\vec{y}^0 = \vec{x}^0 \quad (\text{"initial guess"})$$

$$\vec{y}^{k+1} = \vec{y}^k + \underbrace{(\vec{b} - \mathbf{A}\vec{y}^k)}_{\text{"residual"}}$$

and recombine in some smart way to obtain an approximate solution

$$\vec{x}^K = \sum_{k=0}^K \alpha_k \vec{y}^k.$$

Expressions for α_k typically involve inner products between vectors in the so-called *Krylov space* $\text{span}\{\vec{y}^k\} = \{\vec{x}^0, \mathbf{A}\vec{x}^0, \mathbf{A}^2\vec{x}^0, \mathbf{A}^3\vec{x}^0, \dots\}$.

- Keeping the entire Krylov space can be quite expensive.
- Computing inner products involves an all-reduce which can be costly at large scale.

Two particular Krylov methods:

- Conjugate gradient (CG)
 - Use a short recurrence, i.e. does not keep the whole Krylov space around.
 - Provably works for symmetric positive definite (spd) \mathbf{A} .
- Generalized Minimum Residual (GMRES, GMRES(K))
 - Works for nonsymmetric systems.
 - GMRES keeps the whole Krylov space around.
 - GMRES(K) discards the Krylov space after K iterations.

Convergence of Krylov methods

CG convergence result:

$$\|\vec{x}^K - \vec{x}\| \leq \left(1 - 1/\sqrt{\kappa(\mathbf{A})}\right)^K \|\vec{x}^0 - \vec{x}\|,$$

where $\kappa(\mathbf{A})$ is the *condition number* of \mathbf{A} :

$$\kappa(\mathbf{A}) = \|\mathbf{A}\| \|\mathbf{A}^{-1}\|.$$

A common theme with Krylov methods:

κ measures how hard it is to solve the system, i.e. how many iterations are required to reach a given tolerance.

Idea

Reduce the condition number ("Preconditioning").

Instead of solving

$$\mathbf{A}\vec{x} = \vec{b},$$

solve

$$\mathbf{P}\mathbf{A}\vec{x} = \mathbf{P}\vec{b}$$

or

$$\mathbf{A}\mathbf{P}\vec{z} = \vec{b}, \quad \vec{x} = \mathbf{P}\vec{z}$$

with *preconditioner* \mathbf{P} so that $\kappa(\mathbf{P}\mathbf{A}) \ll \kappa(\mathbf{A})$.

Two requirements that must be balanced:

- Multiplication with \mathbf{P} should be comparable in cost to \mathbf{A} .
- $\mathbf{P} \approx \mathbf{A}^{-1}$.

- Jacobi: $\mathbf{P} = \mathbf{D}^{-1}$, where \mathbf{D} is the diagonal of \mathbf{A} .
- Gauss-Seidel: $\mathbf{P} = (\mathbf{D} + \mathbf{L})^{-1}$, where \mathbf{L} is the lower or upper triangular part of \mathbf{A} .
- Polynomial preconditioners: $\mathbf{P} = p(\mathbf{A})$, where p is some carefully chosen polynomial.
- Incomplete factorizations such as ILU or Incomplete Cholesky.

Krylov methods and preconditioners: Packages in the Trilinos project

www.trilinos.org

- Support for hybrid (MPI+X) parallelism, $X \in \{\text{OpenMP, CUDA, HIP, ...}\}$
- C++, open source, primarily developed at Sandia National Labs

Belos - iterative linear solvers

- Standard methods:
 - Conjugate Gradients (CG), Generalized Minimal Residual (GMRES)
 - TFQMR, BiCGStab, MINRES, Richardson / fixed-point
- Advanced methods:
 - Block GMRES, block CG/BiCG
 - Hybrid GMRES, GCRODR (block recycling GMRES)
 - TSQR (tall skinny QR), LSQR
- Ongoing research:
 - Communication avoiding methods
 - Pipelined and s-step methods
 - Mixed precision methods

Ifpack2 - single-level solvers and preconditioners

- incomplete factorisations
 - ILUT
 - RILU(k)
- relaxation preconditioners
 - Jacobi
 - Gauss-Seidel (and a multithreaded variant)
 - Successive Over-Relaxation (SOR)
 - Symmetric versions of Gauss-Seidel and SOR
 - Chebyshev
- additive Schwarz domain decomposition

Hands-on: Krylov methods and preconditioning

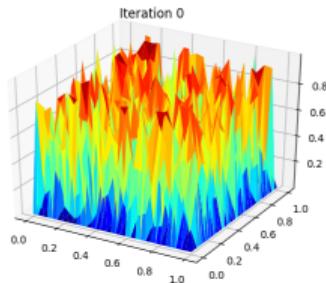
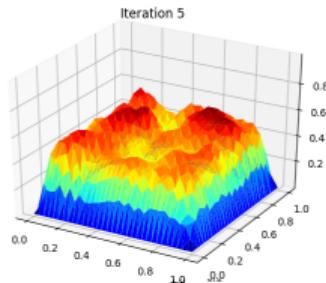
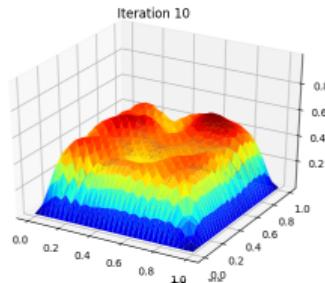
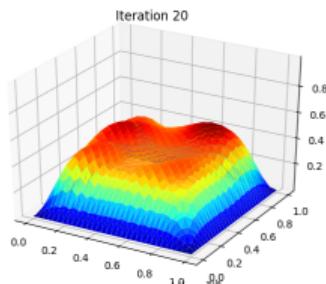
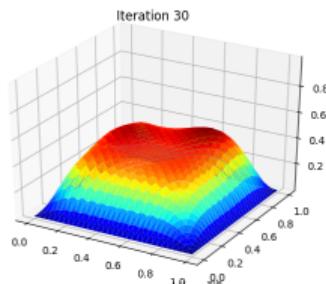
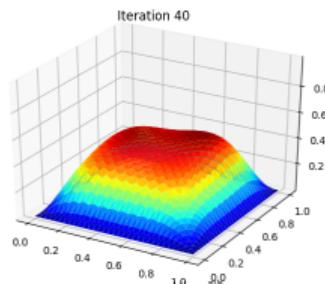
Go to https://xsdk-project.github.io/MathPackagesTraining2023/lessons/krylov_amg_muelu/
Sets 1 and 2
20 mins

Slack channel: #track5-numerical

Motivation for Multigrid methods

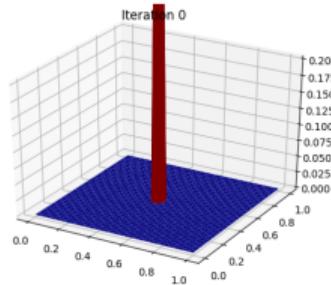
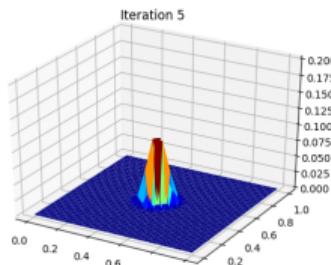
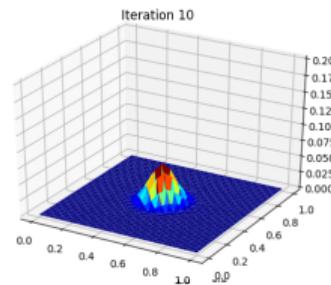
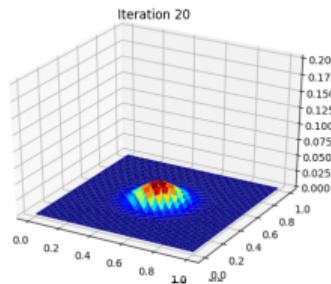
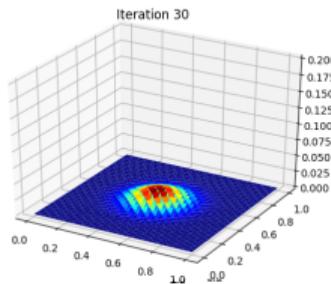
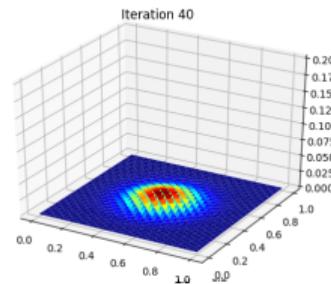
Convergence of Jacobi: $\vec{y}^{k+1} = \vec{y}^k + \mathbf{D}^{-1} \vec{r}^k$, $\vec{r}^k = \vec{b} - \mathbf{A} \vec{y}^k$

High frequency error is damped quickly, low frequency error slowly



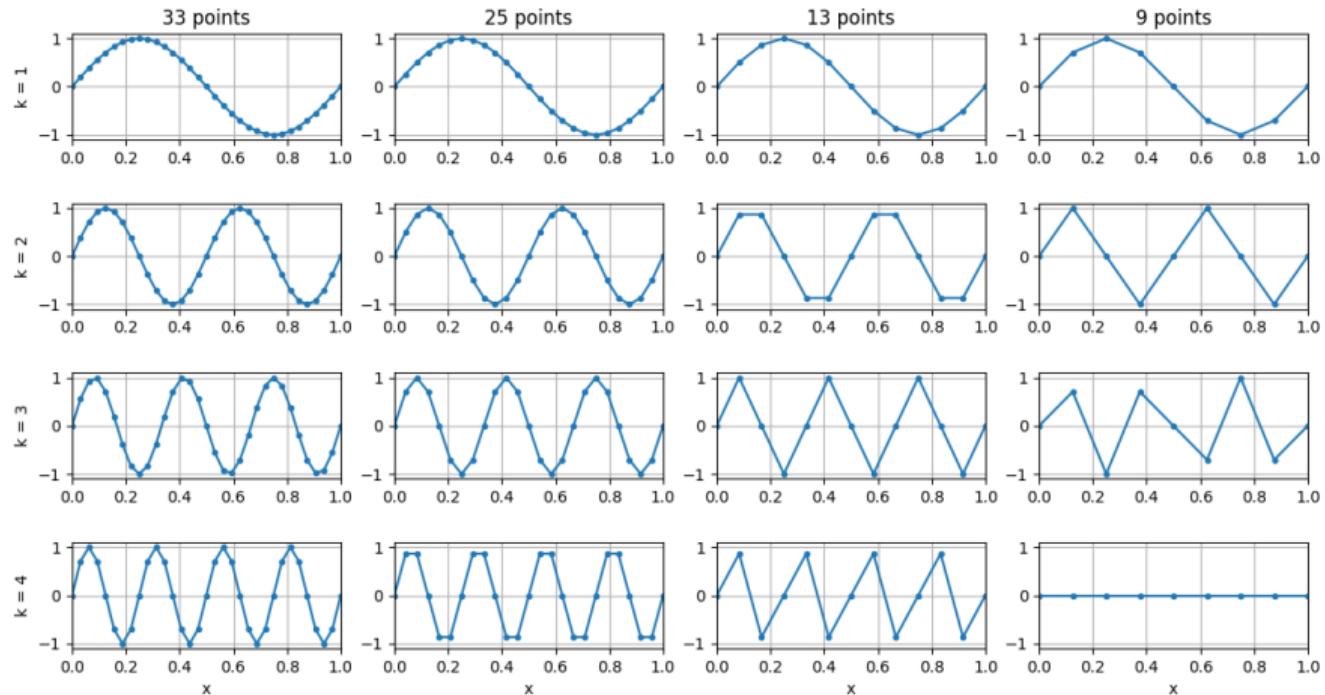
Motivation for Multigrid methods

Convergence of Jacobi:
Local transmission of information cannot result in a scalable method

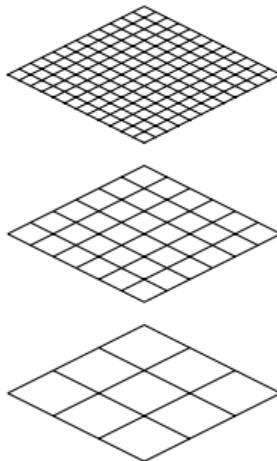


Motivation for Multigrid methods

Resolution affects observed frequency:



Idea: accelerate Jacobi convergence by reducing resolution!



- Main idea: accelerate solution of $\mathbf{A}\vec{x} = \vec{b}$ by using "hierarchy" of coarser problems
- Remove high-frequency error on fine mesh, where application matrix lives (using Jacobi or another cheap preconditioner),
- Move to coarser mesh
- Remove high-frequency error on coarser mesh by solving residual equation
- Move to coarser mesh
- \vdots
- Solve a small problem on a very coarse mesh.
- Move back up.

Repeat.

- *Geometric multigrid* requires coarse mesh information.
- *Algebraic multigrid* constructs coarser matrices on the fly based on fine-level matrix entries.

Software packages for Algebraic Multigrid

- Classical AMG (hypre)

Developed at Lawrence Livermore National Lab, **presentation by Sarah Osborn & Ulrike Yang this morning.**

- Smoothed Aggregation Multigrid (PETSc)

Developed by Mark Adams and the PETSc team.

- Smoothed Aggregation Multigrid (Trilinos)

Two multigrid packages in Trilinos:

- ML

C library, up to 2B unknowns, MPI only. (Maintained, but not under active development)

- MueLu

Templated C++ library with support for 2B+ unknowns and next-generation architectures (OpenMP, CUDA, HIP, ...)

The MueLu package

- Algebraic Multigrid package in Trilinos
Templated C++ library with support for 2B+ unknowns and next-generation architectures (OpenMP, CUDA, HIP, ...)
- Robust, scalable, portable AMG preconditioning is critical for many large-scale simulations
 - Multifluid plasma simulations
 - Shock physics
 - Magneto-hydrodynamics (MHD)
 - Low Mach computational fluid dynamics (CFD)
- Capabilities
 - Aggregation-based and structured coarsening
 - Smoothers: Jacobi, Gauss-Seidel, ℓ_1 Gauss-Seidel, multithreaded Gauss-Seidel, polynomial, ILU
 - Load balancing for good parallel performance
- Ongoing research
 - performance on next-generation architectures
 - AMG for multiphysics
 - Multigrid for coupled structured/unstructured problems
 - Algorithm selection via machine learning

www.trilinos.org

Hands-on: Algebraic Multigrid

Go to https://xsdk-project.github.io/MathPackagesTraining2023/lessons/krylov_amg_muelu/

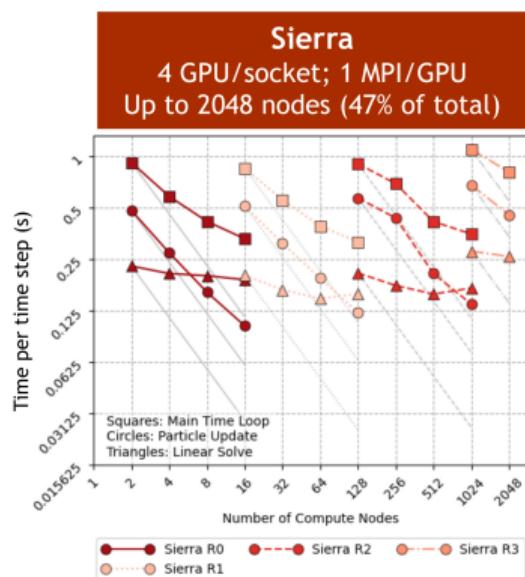
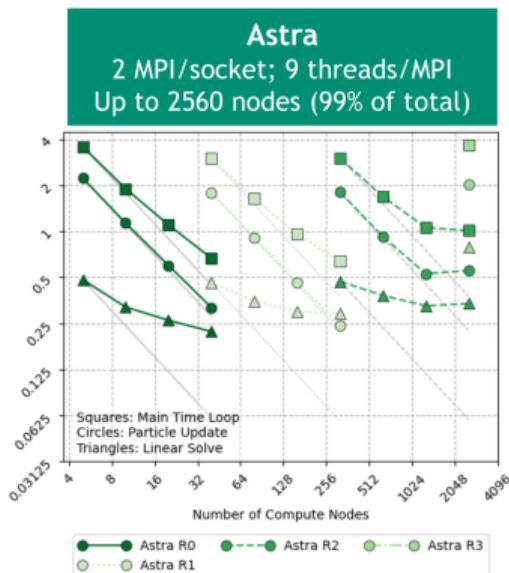
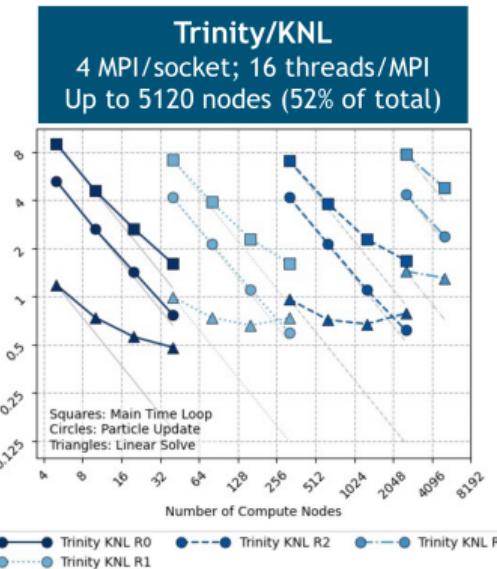
Set 3 & 4

20 mins

Slack channel: #track5-numerical

Strong & weak scaling results for EMPIRE (Maxwell + PIC)

- Specialized multigrid for curl-curl problem
- Largest problem to date: 34B unknowns



Mesh	Elements	Nodes	Edges	Particles
R0	3.7M	660k	4.4M	360M
R1	25M	4.4M	30M	2.4B
R2	200M	32M	240M	19B
R3	1.6B	270M	1.9B	160B

Ongoing work

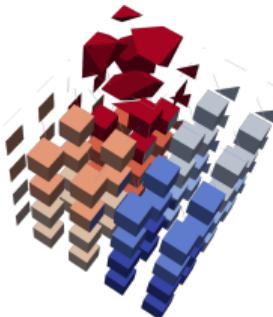
- Multiprecision (Krylov methods with mixed precision; lower precision preconditioning)
- Multigrid approaches for higher order discretizations
- Matrix-free multigrid
- Multigrid on semi-structured meshes
- Machine learning for AMG coarsening
- Preconditioning for multiphysics systems
- Multigrid for hierarchical matrices (boundary integral and nonlocal equations)

Algorithm 1 Iterative Refinement with GMRES Error Correction

```

1:  $r_0 = b - Ax_0$  [double]
2: for  $i = 1, 2, \dots$  until convergence: do
3:   Use GMRES( $m$ ) to solve  $Au_i = r_i$  for correction  $u_i$  [single]
4:    $x_{i+1} = x_i + u_i$  [double]
5:    $r_{i+1} = b - Ax_{i+1}$  [double]
6: end for

```



Take away messages

- CG works for spd matrix and preconditioner.
- GMRES works for unsymmetric systems, but requires more memory.
- Simple preconditioners can reduce the number of iterations, but often do not lead to a scalable solver.
- Multigrid (when applicable) has constant number of iterations, independent of the problem size.

Thank you for your attention!

Interested in working on Multigrid (and other topics) at a national lab?

We are always looking for motivated

- summer students ([LINK](#)),
- postdocs ([LINK](#)).
- Sustainable Research Pathways ([LINK](#))

Please contact us!