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Discretization of partial differential equations gives rise to large linear systems of equations
AR =b,

where A is sparse, i.e. only a few non-zero entries per row.

Example
2D Poisson equation: Central finite differences on a uniform mesh {x;;}:
—Au="finQ=[0,1]2, dujj — Ujjp1 — Uijo1 — Uip1j — ui—1j = F(xij)Ax? if x; & 09,
u =0 on O90. ujj =0 if x;; € 092.

— 5 entries or less per row of A.
Instead of dense format, keep matrix A in a sparse format e.g. compressed sparse row (CSR):

rovptr — (ENZNNEN 5 )
LN~

indices — (NEERORENNZN)
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values = (
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Available solvers

Solve

A% = b.

Option 1: Direct solvers (think Gaussian elimination), presentation by Sherry Li, and Pieter Ghysels this
morning

m Factorisation scales as O(n?).
m Factors are a lot denser than A — memory cost.
m Parallel implementation not straightforward.

m Does not require a lot of information about the structure of A.

Observation
A has O(n) non-zero entries. — Optimal complexity for a solve is O(n) operations.
Option 2: lterative solvers
m Exploit an operation that has O(n) complexity: mat-vec.
m Easy to parallelize.
m Can have small memory footprint. (In the best case, we only need to keep a single vector.)

m Generally more restrictions on properties of A.
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Krylov methods (=

Based on mat-vecs, we can compute
V=X (“initial guess"’)
FRHl — gk 4 <B— Ayk)
“residual”

and recombine in some smart way to obtain an approximate solution

K
oK -k
X" = E agy”.
k=0

Expressions for oy typically involve inner products between vectors in the so-called Krylov space
span {)7’(} = {x°,A%0, A2R0 A3R0 . }

m Keeping the entire Krylov space can be quite expensive.

m Computing inner products involves an all-reduce which can be costly at large scale.
Two particular Krylov methods:

m Conjugate gradient (CG) m Generalized Minimum Residual (GMRES,

m Use a short recurrence, i.e. does not keep the whole GMRES(K))
Krylov space around. m Works for nonsymmetric systems.

. -, - GMRES keeps the whole Krylov space around.
Provably works f t tive definite (spd - P yiov sp
" Arova y works for symmetric positive definite (spd) m GMRES(K) discards the Krylov space after K
’ iterations.
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Convergence of Krylov methods @i,
CG convergence result:

|7 -=| < (- 1/\/K(A))K %0 = %||,
where k(A) is the condition number of A:
K(A) = Al [A7].

A common theme with Krylov methods:
Kk measures how hard it is to solve the system, i.e. how many iterations are required to reach a given tolerance.

Idea
Reduce the condition number (“Preconditioning”).
Instead of solving

AX = b,
solve

PAX = Pb or AP

NL
Il
o
X1
Il
R
NL

with preconditioner P so that x(PA) < r(A).

Two requirements that must be balanced:
m Multiplication with P should be comparable in cost to A.
mP~AL
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Some simple preconditioners

m Jacobi: P = D™!, where D is the diagonal of A.
m Gauss-Seidel: P = (D + L)1, where L is the lower or upper triangular part of A.
m Polynomial preconditioners: P = p(A), where p is some carefully chosen polynomial.

m Incomplete factorizations such as ILU or Incomplete Cholesky.
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Krylov methods and preconditioners: Packages in the Trilinos project @

www.trilinos.org

Belos - iterative linear solvers

m Standard methods:
m Conjugate Gradients (CG), Generalized Minimal
Residual (GMRES)
m TFQMR, BiCGStab, MINRES, Richardson /
fixed-point
m Advanced methods:
m Block GMRES, block CG/BiCG
m Hybrid GMRES, GCRODR (block recycling GMRES)
m TSQR (tall skinny QR), LSQR
m Ongoing research:
m Communication avoiding methods
m Pipelined and s-step methods
m Mixed precision methods

Sanda
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m Support for hybrid (MPI+X) parallelism, X € {OpenMP, CUDA, HIP, ...}

m C++, open source, primarily developed at Sandia National Labs

Ifpack?2 - single-level solvers and preconditioners

m incomplete factorisations

ILuT
RILU(k)

m relaxation preconditioners

Jacobi

Gauss-Seidel (and a multithreaded variant)
Successive Over-Relaxation (SOR)
Symmetric versions of Gauss-Seidel and SOR
Chebyshev

m additive Schwarz domain decomposition
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www.trilinos.org

Hands-on: Krylov methods and preconditioning
Go to https://xsdk-project.github.io/MathPackagesTraining2023/
lessons/krylov_amg muelu/
Sets 1 and 2
20 mins
Slack channel: #track5-numerical
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https://xsdk-project.github.io/MathPackagesTraining2023/lessons/krylov_amg_muelu/
https://xsdk-project.github.io/MathPackagesTraining2023/lessons/krylov_amg_muelu/
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Motivation for Multigrid methods =

Convergence of Jacobi: ykt1 = yk 4 D=1pk 7k = b— Ayk
High frequency error is damped quickly, low frequency error slowly

Iteration 0 Iteration 5 Iteration 10

Iteration 20 Iteration 30 Iteration 40
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Motivation for Multigrid methods @

Convergence of Jacobi:
Local transmission of information cannot result in a scalable method

Iteration 5 Iteration 10

Iteration 20 Iteration 30 Iteration 40
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Motivation for Multigrid methods

Resolution affects observed frequency:

33 points 25 points 13 points. 9 points
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Idea: accelerate Jacobi convergence by reducing resolution!
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Multigrid ()=

® Main idea: accelerate solution of AX = b by using "hierarchy” of coarser
problems

m Remove high-frequency error on fine mesh, where application matrix lives
(using Jacobi or another cheap preconditioner),

m Move to coarser mesh
B Remove high-frequency error on coarser mesh by solving residual equation

m Move to coarser mesh

m Solve a small problem on a very coarse mesh.
m Move back up.
Repeat.

m Geometric multigrid requires coarse mesh information.

m Algebraic multigrid constructs coarser matrices on the fly based on fine-level matrix entries.
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Software packages for Algebraic Multigrid @

m Classical AMG (hypre)
Developed at Lawrence Livermore National Lab, presentation by Sarah Osborn & Ulrike Yang this

morning.

f1vore-

m Smoothed Aggregation Multigrid (PETSc)
Developed by Mark Adams and the PETSc team.

m Smoothed Aggregation Multigrid (Trilinos)
Two multigrid packages in Trilinos:

= ML
C library, up to 2B unknowns, MPI only. (Maintained, but not under active development)

® Muelu
Templated C++ library with support for 2B+ unknowns and next-generation architectures (OpenMP, CUDA, HIP, ...)
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The MuelLu package @E.

m Algebraic Multigrid package in Trilinos
Templated C++ library with support for 2B+ unknowns and
next-generation architectures (OpenMP, CUDA, HIP, ..)

m Robust, scalable, portable AMG preconditioning is critical for many
large-scale simulations
m Multifluid plasma simulations
m Shock physics
m Magneto-hydrodynamics (MHD)
m Low Mach computational fluid dynamics (CFD)
m Capabilities
m Aggregation-based and structured coarsening
m Smoothers: Jacobi, Gauss-Seidel, ¢1 Gauss-Seidel, multithreaded Gauss-Seidel,
polynomial, ILU
m Load balancing for good parallel performance

m Ongoing research
performance on next-generation architectures www.trilinos.org
AMG for multiphysics

Multigrid for coupled structured/unstructured problems

[ ]
[ ]
[ ]
m Algorithm selection via machine learning
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Hands-on: Algebraic Multigrid
Go to https://xsdk-project.github.io/MathPackagesTraining2023/
lessons/krylov_amg muelu/
Set 3& 4
20 mins
Slack channel: #track5-numerical
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https://xsdk-project.github.io/MathPackagesTraining2023/lessons/krylov_amg_muelu/
https://xsdk-project.github.io/MathPackagesTraining2023/lessons/krylov_amg_muelu/

Strong & weak scaling results for EMPIRE (Maxwell + PIC)

Time per time step (s)

m Specialized multigrid for curl-curl problem

m Largest problem to date: 34B unknowns

Sierra

4 GPU/socket; 1 MPI/GPU
Up to 2048 nodes (47% of total)

A QAT
o
Squares: Main Time Loop
Circles: Particle Update
Triangles: Linear Solve
T S S S TR R Y
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Number of Compute Nodes
@—@ SiemaR0  @---@ SiemaR2 @ —© SieraR3
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Astra
2 MPI/socket; 9 threads/MPI
Up to 2560 nodes (99% of total)
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Trinity/KNL
4 MPI/socket; 16 threads/MPI
Up to 5120 nodes (52% of total)

Squares: Main Time Loop
Circles: Particle Update
Triangles: Linear Solve

o Squares: Main Time Loop
Circles: Particle Update
4o 1 Tiangles: Linear Solve
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o O Astra R1
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> o ©—® Tinity KNLRO ~ @---@ Trinity KNLR2 ~ @--—® Trinity KNL R3
' ® @@ Trinity KNLR1
RO 3.7M 660k 4.4M 360M
R1 25M 4.4M 30M 2.48
R2 200M 32M 240M 198
R3 1.6B. 270M 1.98 160B
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Ongoing work ()=

Multiprecision (Krylov methods with mixed precision; lower precision preconditioning)
Multigrid approaches for higher order discretizations
Matrix-free multigrid

Multigrid on semi-structured meshes

Machine learning for AMG coarsening

Preconditioning for multiphysics systems

m Multigrid for hierarchical matrices (boundary integral and nonlocal equations)

6: end for
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Take away messages ()=

CG works for spd matrix and preconditioner.

m GMRES works for unsymmetric systems, but requires more memory.

Simple preconditioners can reduce the number of iterations, but often do not lead to a scalable solver.

Multigrid (when applicable) has constant number of iterations, independent of the problem size.

Thank you for your attention!

Interested in working on Multigrid (and other topics) at a national lab?
We are always looking for motivated

m summer students (LINK),

m postdocs (LINK).

m Sustainable Research Pathways (LINK)

Please contact us!
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https://cfwebprod.sandia.gov/cfdocs/CompResearch/templates/insert/summerprog.cfm
https://cg.sandia.gov/psp/applicant/EMPLOYEE/HRMS/c/HRS_HRAM_FL.HRS_CG_SEARCH_FL.GBL?Page=HRS_APP_JBPST_FL&Action=U&FOCUS=Applicant&SiteId=1&JobOpeningId=672078&PostingSeq=1
https://shinstitute.org/sustainable-research-pathways-2022/

