
Iterative Solvers & Algebraic Multigrid (with Trilinos, Belos & MueLu)

Christian Glusa and Graham Harper {caglusa,gbharpe}@sandia.gov

August 8, 2023

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. SAND******

1 / 18

SAND2023-07418CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do
not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract
DE-NA0003525.

This article has been authored by an employee of National Technology & Engineering Solutions of Sandia, LLC under Contract No. DE-NA0003525 with the
U.S. Department of Energy (DOE). The employee owns all right, title and interest in and to the article and is solely responsible for its contents. The United
States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a
non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this article or allow others to do so, for United States
Government purposes. The DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan
https://www.energy.gov/downloads/doe-public-access-plan.

Discretization of partial differential equations gives rise to large linear systems of equations

A~x = ~b,

where A is sparse, i.e. only a few non-zero entries per row.

Example
2D Poisson equation:

−∆u = f in Ω = [0, 1]2,

u = 0 on ∂Ω.

Central finite differences on a uniform mesh {xi,j}:

4ui,j − ui,j+1 − ui,j−1 − ui+1,j − ui−1,j = f (xi,j)∆x2 if xi,j 6∈ ∂Ω,

ui,j = 0 if xi,j ∈ ∂Ω.

→ 5 entries or less per row of A.
Instead of dense format, keep matrix A in a sparse format e.g. compressed sparse row (CSR):

A =

 1 2 0
3 4 0
0 0 5


rowptr =

(
0 2 4 5

)
indices =

(
0 1 0 1 2

)
values =

(
1 2 3 4 5

)

2 / 18

Available solvers
Solve

A~x = ~b.

Option 1: Direct solvers (think Gaussian elimination), presentation by Sherry Li, and Pieter Ghysels this
morning

Factorisation scales as O(n3).
Factors are a lot denser than A → memory cost.
Parallel implementation not straightforward.
Does not require a lot of information about the structure of A.

Observation
A has O(n) non-zero entries. → Optimal complexity for a solve is O(n) operations.

Option 2: Iterative solvers
Exploit an operation that has O(n) complexity: mat-vec.
Easy to parallelize.
Can have small memory footprint. (In the best case, we only need to keep a single vector.)
Generally more restrictions on properties of A.

3 / 18

Available solvers
Solve

A~x = ~b.

Option 1: Direct solvers (think Gaussian elimination), presentation by Sherry Li, and Pieter Ghysels this
morning

Factorisation scales as O(n3).
Factors are a lot denser than A → memory cost.
Parallel implementation not straightforward.
Does not require a lot of information about the structure of A.

Observation
A has O(n) non-zero entries. → Optimal complexity for a solve is O(n) operations.

Option 2: Iterative solvers
Exploit an operation that has O(n) complexity: mat-vec.
Easy to parallelize.
Can have small memory footprint. (In the best case, we only need to keep a single vector.)
Generally more restrictions on properties of A.

3 / 18

Krylov methods
Based on mat-vecs, we can compute

~y0 = ~x0 (“initial guess”’)

~yk+1 = ~yk +
(
~b − A~yk

)
︸ ︷︷ ︸

“residual”

and recombine in some smart way to obtain an approximate solution

~xK =
K∑

k=0

αk~yk .

Expressions for αk typically involve inner products between vectors in the so-called Krylov space
span

{
~yk} =

{
~x0,A~x0,A2~x0,A3~x0, . . .

}
.

Keeping the entire Krylov space can be quite expensive.
Computing inner products involves an all-reduce which can be costly at large scale.

Two particular Krylov methods:
Conjugate gradient (CG)

Use a short recurrence, i.e. does not keep the whole
Krylov space around.
Provably works for symmetric positive definite (spd)
A.

Generalized Minimum Residual (GMRES,
GMRES(K))

Works for nonsymmetric systems.
GMRES keeps the whole Krylov space around.
GMRES(K) discards the Krylov space after K
iterations.

4 / 18

Convergence of Krylov methods
CG convergence result: ∣∣∣∣∣∣~xK − ~x

∣∣∣∣∣∣ ≤ (
1− 1/

√
κ(A)

)K ∣∣∣∣~x0 − ~x
∣∣∣∣ ,

where κ(A) is the condition number of A:

κ(A) = ||A||
∣∣∣∣A−1

∣∣∣∣ .
A common theme with Krylov methods:
κ measures how hard it is to solve the system, i.e. how many iterations are required to reach a given tolerance.

Idea
Reduce the condition number (“Preconditioning”).
Instead of solving

A~x = ~b,

solve

PA~x = P~b or AP~z = ~b, ~x = P~z

with preconditioner P so that κ(PA) � κ(A).
Two requirements that must be balanced:

Multiplication with P should be comparable in cost to A.
P ≈ A−1.

5 / 18

Some simple preconditioners

Jacobi: P = D−1, where D is the diagonal of A.
Gauss-Seidel: P = (D + L)−1, where L is the lower or upper triangular part of A.
Polynomial preconditioners: P = p(A), where p is some carefully chosen polynomial.
Incomplete factorizations such as ILU or Incomplete Cholesky.

6 / 18

Krylov methods and preconditioners: Packages in the Trilinos project

www.trilinos.org

Support for hybrid (MPI+X) parallelism, X ∈ {OpenMP, CUDA, HIP, . . . }
C++, open source, primarily developed at Sandia National Labs

Belos - iterative linear solvers Ifpack2 - single-level solvers and preconditioners

Standard methods:
Conjugate Gradients (CG), Generalized Minimal
Residual (GMRES)
TFQMR, BiCGStab, MINRES, Richardson /
fixed-point

Advanced methods:
Block GMRES, block CG/BiCG
Hybrid GMRES, GCRODR (block recycling GMRES)
TSQR (tall skinny QR), LSQR

Ongoing research:
Communication avoiding methods
Pipelined and s-step methods
Mixed precision methods

incomplete factorisations
ILUT
RILU(k)

relaxation preconditioners
Jacobi
Gauss-Seidel (and a multithreaded variant)
Successive Over-Relaxation (SOR)
Symmetric versions of Gauss-Seidel and SOR
Chebyshev

additive Schwarz domain decomposition

7 / 18

www.trilinos.org

Hands-on: Krylov methods and preconditioning
Go to https://xsdk-project.github.io/MathPackagesTraining2023/

lessons/krylov_amg_muelu/
Sets 1 and 2

20 mins
Slack channel: #track5-numerical

8 / 18

https://xsdk-project.github.io/MathPackagesTraining2023/lessons/krylov_amg_muelu/
https://xsdk-project.github.io/MathPackagesTraining2023/lessons/krylov_amg_muelu/

Motivation for Multigrid methods
Convergence of Jacobi: ~yk+1 = ~yk + D−1~rk , ~rk = ~b − A~yk

High frequency error is damped quickly, low frequency error slowly

9 / 18

Motivation for Multigrid methods
Convergence of Jacobi:
Local transmission of information cannot result in a scalable method

10 / 18

Motivation for Multigrid methods
Resolution affects observed frequency:

Idea: accelerate Jacobi convergence by reducing resolution!

11 / 18

Multigrid

Main idea: accelerate solution of A~x = ~b by using ”hierarchy” of coarser
problems

Remove high-frequency error on fine mesh, where application matrix lives
(using Jacobi or another cheap preconditioner),
Move to coarser mesh
Remove high-frequency error on coarser mesh by solving residual equation
Move to coarser mesh
...
Solve a small problem on a very coarse mesh.
Move back up.

Repeat.

Geometric multigrid requires coarse mesh information.
Algebraic multigrid constructs coarser matrices on the fly based on fine-level matrix entries.

12 / 18

Software packages for Algebraic Multigrid
Classical AMG (hypre)
Developed at Lawrence Livermore National Lab, presentation by Sarah Osborn & Ulrike Yang this
morning.

Smoothed Aggregation Multigrid (PETSc)
Developed by Mark Adams and the PETSc team.
Smoothed Aggregation Multigrid (Trilinos)
Two multigrid packages in Trilinos:

ML
C library, up to 2B unknowns, MPI only. (Maintained, but not under active development)
MueLu
Templated C++ library with support for 2B+ unknowns and next-generation architectures (OpenMP, CUDA, HIP, …)

13 / 18

The MueLu package

Algebraic Multigrid package in Trilinos
Templated C++ library with support for 2B+ unknowns and
next-generation architectures (OpenMP, CUDA, HIP, …)
Robust, scalable, portable AMG preconditioning is critical for many
large-scale simulations

Multifluid plasma simulations
Shock physics
Magneto-hydrodynamics (MHD)
Low Mach computational fluid dynamics (CFD)

Capabilities
Aggregation-based and structured coarsening
Smoothers: Jacobi, Gauss-Seidel, `1 Gauss-Seidel, multithreaded Gauss-Seidel,
polynomial, ILU
Load balancing for good parallel performance

Ongoing research
performance on next-generation architectures
AMG for multiphysics
Multigrid for coupled structured/unstructured problems
Algorithm selection via machine learning

www.trilinos.org

14 / 18

www.trilinos.org

Hands-on: Algebraic Multigrid
Go to https://xsdk-project.github.io/MathPackagesTraining2023/

lessons/krylov_amg_muelu/
Set 3 & 4
20 mins

Slack channel: #track5-numerical

15 / 18

https://xsdk-project.github.io/MathPackagesTraining2023/lessons/krylov_amg_muelu/
https://xsdk-project.github.io/MathPackagesTraining2023/lessons/krylov_amg_muelu/

Strong & weak scaling results for EMPIRE (Maxwell + PIC)
Specialized multigrid for curl-curl problem
Largest problem to date: 34B unknowns

16 / 18

Ongoing work

Multiprecision (Krylov methods with mixed precision; lower precision preconditioning)
Multigrid approaches for higher order discretizations
Matrix-free multigrid
Multigrid on semi-structured meshes
Machine learning for AMG coarsening
Preconditioning for multiphysics systems
Multigrid for hierarchical matrices (boundary integral and nonlocal equations)

17 / 18

Take away messages

CG works for spd matrix and preconditioner.
GMRES works for unsymmetric systems, but requires more memory.
Simple preconditioners can reduce the number of iterations, but often do not lead to a scalable solver.
Multigrid (when applicable) has constant number of iterations, independent of the problem size.

Thank you for your attention!

Interested in working on Multigrid (and other topics) at a national lab?
We are always looking for motivated

summer students (LINK),
postdocs (LINK).
Sustainable Research Pathways (LINK)

Please contact us!

18 / 18

https://cfwebprod.sandia.gov/cfdocs/CompResearch/templates/insert/summerprog.cfm
https://cg.sandia.gov/psp/applicant/EMPLOYEE/HRMS/c/HRS_HRAM_FL.HRS_CG_SEARCH_FL.GBL?Page=HRS_APP_JBPST_FL&Action=U&FOCUS=Applicant&SiteId=1&JobOpeningId=672078&PostingSeq=1
https://shinstitute.org/sustainable-research-pathways-2022/

