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Abstract: We designed a 935 nm repump beam path for use in a Ytterbium ion based optical clock. This state of the art clock work makes use multiple ensembles of ions trapped in separate RF
potentials. Separate beams are amplified for coupling into the chip’s integrated waveguides for precision pumping of ions out of dark states.

The board acts as both a switch and modulation board. The pump beam is frequency locked to a wavemeter. Two beams are amplified and coupled into the integrated waveguides. The other two
beams will be used for free space light delivery.

Optical Atomic Clocks: Current atomic cesium clocks count in the range of microwave frequencies with uncertainties approaching 10−16[1]. Optical atomic clocks based on ultra-stable laser
addressing of narrow atomic linewidths achieve frequency uncertainties of ~10−18[2]. These advanced clocks will impact technologies which rely on precision time keeping such as GPS, computing,
and communication.

Repump Beam Design Objective
➢ Design a compact modulation board for

delivering light to the ensemble of ions in the
testing apparatus

➢ Fit all the components of the switch board on
a 18 x 24 breadboard

➢ Design parameters
➢ 1 beam to frequency lock
➢ 2 beams to be amplified for coupling into

waveguides
➢ 2 beams to address ensembles through

free space
➢ 935 nm beam addresses dark states which

can occur during cooling
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Robust Optical Clock Network (ROCkN)
Size, Weight, and Power (SWaP)
➢ 200 L total package – including:
➢ Optics
➢ Ion pump
➢ Technology on chip
➢ Ultra-high vacuum chamber

Performance
➢ Clock instability of ≤ 10−15/ 𝜏

Multi-ensemble interrogation scheme
➢ Clocks with less than 1 ns per year error
➢ Multi-ensemble approach reduces dead time and the need for cavity

stabilization of laser (improved coherence times)

Optical Sources
➢ Clock transition beam: 871 nm diode laser is doubled to 435.5 nm
➢ Repump beam: using custom 935 nm laser

➢ Used to address dark states
➢ Cooling beam: 369.5 nm laser used for doppler cooling
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Repump beam switchboard design parameters
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Frequency Instability
State of the Art Optical Clocks ~10−18

CSAC ~10−10

Volume
State of the Art in Lab 11,000 L
CSAC 0.017 L

➢ Address 4 different ensembles
➢ Acousto-optical modulators used for switching
➢ Fiber coupled amplifiers require polarization matching
➢ ~0.1 mW power for free space addressing
➢ ~20 mW power for integrated waveguides due to loss

➢ Fit all components on 18”x24” optical breadboard

Ion Surface Traps
➢ Atomic ion’s are trapped 

in RF potentials can be 
swapped and shuttled to 
precise locations. 
➢ Fabricated at Sandia’s 

MESA facility
➢ Integrated Alumina and 

SiN waveguides allow 
delivery of light to the 
ions [3]
➢ Delivered light is 

used for cooling, 
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General Design
➢ Simplified beam path 

diagram
➢ Depicts the overall design 

parameters
➢ Redesign fulfills need for 

addressing more 
ensembles

Challenges in implementation
➢ Source power input is on same side as the 

beam output
➢ 18”x24” is very small for this many 

components
➢ 9 total fiber coupling assemblies are bulky 

and require space for fibers
➢ 7 input and 2 outputs

➢ AOMs are bulky and require precise 
alignment
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