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Background & Motivation
Ab-initio methods
§ High accuracy
§ Spatial and temporal restrictions

Molecular dynamics (MD)
§ Classical – lower accuracy
§ ML-IAPs can improve accuracy

§ SNAP, GAP, ACE, etc.

§ ML-IAPs often limited to small 
temperature/pressure range

§ Challenges can arise …
§ Magnetism, phase changes, electron 

excitations, etc.

Ability to build transferable MD-IAPs highly 
desirable
§ Enables examination of complex 

material/engineering problems
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ML Framework for ⍺-Fe

Additional details available in article:
"Data-driven magneto-elastic 

predictions with scalable classical 
spin-lattice dynamics." , NPJ
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Magneto-Static Results for ⍺-Fe
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Example Results ⍺-Fe (Fixed Magnetic 
Moment)

• Thermal conductivities (ᵰ� ) calculated 
up to Curie temperature

• From Fulkerson et al.
– ᵰ� T = ᵰ� l + ᵰ� e

– ᵰ� l = ᵰ� p + ᵰ� m

– Using ᵰ� T, exp from Fulkerson ᵰ� MSD,e  
can be inferred as: ᵰ� MSD,e = 
ᵰ� T, exp - ᵰ� MSD,p - ᵰ� MSD,m

• Inferred electronic conductivity in 
good agreement with DFT

• Shear moduli & magnetostrictive 
coefficient high temperature behavior 
reproduced Magneto-Elastic Coupling Shear Moduli 

Curie Temperature

MSD
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MSD Shock Model: Longitudinal Spin 
Fluctuations

†Gambino, Davide, et al. "Longitudinal spin fluctuations in bcc and liquid Fe at high temperature 
and pressure calculated with a supercell approach." Physical Review B 102.1 (2020): 014402.
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• Deforming box quasistatically in x-
direction

• Increases in pressure lower BCC 
magnetic moments

• Once bcc-hcp transition starts 
magnetic moment distribution 
splits
– Inducing associated changes in 

pressure

• Once material is fully in hcp 
regime (at higher pressures) 
magnetic moments are driven to 
zero

Alpha-Epsilon Transition: Longitudinal Spin 
Fluctuations

1000K
800K
300K

6



Alpha-Epsilon Transition: 
Longitudinal Spin Fluctuations

• Examined magnon/phonon 
spectra throughout the alpha-
epsilon transition

• As transition to hcp state 
progresses acoustic/optical peaks 
shift to the right

• For magnon spectra the signal 
becomes significantly deteriorated 
as BCC frac. decreases
– Due to weakening exchange 

interactions
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MSD Shock: Magnetic Response
• Examining angular velocity profiles

– In fixed magnetic moment case shock drastically increases ωz  (Only pathway for high energy spin states)

– LSFs weaken exchange interactions, decreasing ωz (Some shock energy used to compress magnetic spin vectors)

• Measurable differences in pressure profile, ~5-30 Gpa
–  Observed in both elastic and plastic fronts
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MSD Shock: Magnetic 
Response

0.5 kmps (up to ~17 GPa)

0.6 kmps (up to ~25 Gpa) 

0.8 kmps (up to ~32 GPa)

• Tested multiple shock speeds 
near onset of ⍺-ᵰ�  transformation 
front
– Lower magnetic moments observed 

near hcp / fcc phases
– At lower shock speeds phase 

boundary tends to be more 
heterogeneous

– Magnetic moments decrease in both 
elastic and plastic / transformation 
fronts
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MSD Shock: Phase Diagram
• Can recreate a shock phase diagram

– Bin regions behind shock front and measure 
local T/Ps along with phase fraction

– Allows us to probe Earth-core T/Ps
– LSF model allows us to capture more 

accurate melt boundary

2.8 km/s shock
(removing liquid regions)
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• Examined P-wave velocities in 9.5-13.5 g/cc 
range
– Near liquid-solid transition 2M & 16K cell results vary
– Good agreement with PREM and liquid DFT data

• Adiabatic bulk modulus 
– Results within approx. 5-10% of EOS/PREM data

• IAP results slightly stiffer

• Metastable bcc phase observed during melting

MSD Shock: Earth-Core 
Properties

16K

2M
Solid polycrystal Melting from metastable bcc 

state
Liquid state
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Copper Model Development: IAP Trained 
Using EOS Model Data

• Built new multi-phase EOS model for 
copper
– Including electrical conductivity model
– Based on existing experimental data 

and PBEsol DFT calculations 
– Resulting EOS tables tabulated in 

uTri format
– Quantifying table uncertainty
– Good agreement with exp. / DFT
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Copper EOS Model: Vapor 

• DFT calculations carried out for low-
density gaseous states
– 7000 - 30,000 Kelvin
– 0.1 – 6 g / cc

• Examined energy / pressure difference 
between DFT & EOS model
– Good agreement with DFT 

calculations
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Copper EOS Model: Electrical Conductivity

• TD-DFT calculations used to measure 
electrical conductivities 

• Electrical conductivity isobars based on 
exp. data

• Good agreement for both exp. / DFT data
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• Training SNAP interatomic potential(IAP) 
using nonlinear GA optimization

• DFT dataset range: 
– Density from 0.1-27 g/cc
– Temperatures from 300-30,000K

• Goal: Develop a transferable interatomic 
potential for copper
– Transferable → solid-liquid-vapor

• Main challenge:
– Large changes in local environment
– SNAP does not do well at very low 

densities

8000K & 0.8 g/cc
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Carried out quadratic SNAP fitting 
procedure with single objective function 
genetic algorithm
§ Using reference potentials:
§ ZBL (short-range repulsion)
§ Morse (long-range interactions)

§ Used ~20 groups with a population size 
of 1,000

§ Ran genetic algorithm to approx. 40,000 
candidates

Obtained interatomic potential that was 
stable in solid-liquid-vapor phases

~2.5 kmps shock
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Copper Interatomic Potential Fitting

Main outcome: 
§ Good transferability and phase stability 

achieved

Noteworthy issue:
§ Difficult to capture vapor dome properties 

& high compression behavior with high 
degree of fidelity

Conclusion
§ Extra flexibility needed in the long-range 

model

Analysis & next steps:
§ Using best Cu SNAP potential the impact 

of Morse parameters were examined 
using Sobol sensitivity analysis
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Copper Interatomic Potential Fitting
Interatomic spacing

Interatomic spacing
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Changing switching 
function location

Changing transition 
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Copper Interatomic Potential Fitting

Nonlinear Dakota GA optimization
§ Using adjusted Morse potential
§ Using additional objective functions
§ 0K elastic properties
§ Cold curve
§ DAC data
§ Hugoniot points (both in solid/liquid regimes)
§ Cohesive energy
§ Check: FCC more stable than BCC
§ FCC/BCC energy difference ~ 0.02-0.1 

eV/atom

Tested cold-curve agreement up to 
approx. 2TPa

§ Good agreement with exp. data
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Copper Interatomic Potential Fitting

• Reasonable shock stability 
observed up to 8.6 km/s with latest 
potentials
§ Validation done using multi-scale shock 

technique (MSST) in LAMMPS

• Current efforts
§ Expanding shock stability to higher 

pressures
§ Up to 3 TPa

§ Gauging vapor stability for shock-stable 
potentials
§ Vapor dome calculations too costly for 

objective functions
§ Vapor calculations done in post-

processing for best shock IAP 
potentials

◦ Varying long-range Morse 
parameters
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Conclusion

7.3 km/s MSST shock

Piston hitting Cu nano-slab
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• Illustrated framework for building transferable 
IAP from ab-initio / exp. / EOS data
– Complications from magnetics / long-range 

interactions
– Incorporated longitudinal spin fluctuations

• Examined shock response of both Cu & Fe
• Fe shock stability up to Earth-core conditions
• Cu shock stability up to ~1.2 TPa

3 km/s piston shock


