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Background & Motivation

Ab-initio methods
= High accuracy
= Spatial and temporal restrictions

Molecular dynamics (MD)
= Classical — lower accuracy

= ML-IAPs can improve accuracy
= SNAP, GAP, ACE, etc.

= ML-IAPs often limited to small
temperature/pressure range
= Challenges can arise ...

= Magnetism, phase changes, electron
excitations, etc.

Ability to build transferable MD-IAPs highly
desirable

= Enables examination of complex
material/engineering problems
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ML Framework for a-Fe

1) Generate ab-initio dataset for Fe (VASP)
=  Fe data generated for 0 - 7000K and 0 - 400 Gpa
=  Spin spiral data generated for different degrees of compression

2) Use genetic algorithm (GA) to parameterize spin
Hamiltonian using spin spiral data

3) Subtract magnetic energies/forces/stress from DFT Fe data
and train interatomic potential, U(R), using GA
=  U(R) built using spectral neighbor analysis potential (SNAP)

*  E{yap= Bo+B - B and F"" =g - 3] —]

4) Evaluate candidate on predetermined set of objective
functions (OFs)
= Using candidate SNAP potential and parameterized spin Hamiltonian

5) Continue GA until desired OFs accuracy is reached
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Magneto-Static Results for a-Fe

Spin-spiral energy comparison
between ab-initio calculations
(VASP) and SNAP-Spin model

- sj=sin(8) cos(q - Ryj) x +
sin(8) sin(q . Roj) y + cos(0)z

— Compression along I point and also
I'H and P high symmetry lines

— DFT calculations ran using frozen
magnon approach

*  10x10x10 k-point grid used
« 320 eV energy cutoff with 224 bands

Good agreement between
Molecular-Spin model and ab-
initio calculations
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Example Results a-Fe (Fixed Magnetic

Thermal conductivities (k) calculated
up to Curie temperature

From Fulkerson et al.

- K=Ktk

— K=K, t K,

p
Using k1, exp from Fulkerson rygp .

can be inferred as: Kygp =

KT, exp ™ KMsD,p = KMSD,m
Inferred electronic conductivity in
good agreement with DFT

Shear moduli & magnetostrictive
coefficient high temperature behavior
reproduced
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|
‘MSD Shock Model: Longitudinal Spin @!
Fluctuations S B

3
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Alpha-Epsilon Transition: Longitudinal Spin

Fluctuations

Deforming box quasistatically in x-
direction

Increases in pressure lower BCC
magnetic moments

Once bcc-hep transition starts
magnetic moment distribution
splits

— Inducing associated changes in
pressure

Once material is fully in hcp
regime (at higher pressures)
magnetic moments are driven to
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Alpha-Epsilon Transition:

Longitudinal Spin Fluctuations

Examined magnon/phonon
spectra throughout the alpha-
epsilon transition

As transition to hcp state
progresses acoustic/optical peaks
shift to the right

For magnon spectra the signal
becomes significantly deteriorated
as BCC frac. decreases

— Due to weakening exchange
interactions
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MSD Shock: Magnetic Response

« Examining angular velocity profiles

— In fixed magnetic moment case shock drastically increases w, (Only pathway for high energy spin states)

— LSFs weaken exchange interactions, decreasing w, (Some shock energy used to compress magnetic spin vectors)

 Measurable differences in pressure profile, ~5-30 Gpa

— Observed in both elastic and plastic fronts
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MSD Shock: Magnetic
Response

« Tested multiple shock speeds
near onset of a-s transformation
front

— Lower magnetic moments observed
near hcp / fcc phases

— At lower shock speeds phase
boundary tends to be more
heterogeneous

— Magnetic moments decrease in both
elastic and plastic / transformation
fronts
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- u & leffrey === FM melt-line = Morard
MSD Shock: Phase Diagrar CBom  ismene o+ oo
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« Can recreate a shock phase diagram

i - a)
— Bin regions behind shock front and measure ] | ;
local T/Ps along with phase fraction £ 60000 A
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2M

IMSD Shock: Earth-Core
Properties

Examined P-wave velocities in 9.5-13.5 g/cc

range

— Near liquid-solid transition 2M & 16K cell results vary

— Good agreement with PREM and liquid DFT data
Adiabatic bulk modulus

— Results within

approx. 5-10% of EOS/PREM data

* |AP results slightly stiffer

Metastable bcc phase observed during melting

Solid polycrystal

Melting from metastable bcc
state
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Built new multi-phase EOS model for

copper

Including electrical conductivity model

Based on existing experimental data

and PBEsol DFT calculations

Resulting EOS tables tabulated in

uTri format

Quantifying table uncertainty

Good agreement with exp. / DFT
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| Copper Model Development: IAP Trained
Using EOS Model Data

« training data
« model data [ ; i
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Copper EOS Model: Vapor

100
........ &
. T IO S .
DFT calculations carried out for low- g 0T e . e
: O 2% 8
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Copper EOS Model: Electrical Conductivity

TD-DFT calculations used to measure

electrical conductivities

Electrical conductivity isobars based on

exp. data

Good agreement for both exp. / DFT data
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Copper Interatomic Potential Fitting

Training SNAP interatomic potential(IAP) 1950
using nonlinear GA optimization 1450
DFT dataset range: g
— Density from 0.1-27 g/cc g 90
— Temperatures from 300-30,000K £ 4o
Goal: Develop a transferable interatomic
potential for copper 8000K & 0.8 gico -50
— Transferable — solid-liquid-vapor o

Main challenge:
— Large changes in local environment

— SNAP does not do well at very low
densities

— -DFT
o SNAP
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| Copper Interatomic Potential Fitting

GEpmEnaam ~2.5 kmps shock

Carried out quadratic SNAP fitting
procedure with single objective function
genetic algorithm

= Using reference potentials:
= ZBL (short-range repulsion)

= Morse (long-range interactions)

= Used ~20 groups with a population size
of 1,000

= Ran genetic algorithm to approx. 40,000
candidates

Obtained interatomic potential that was
stable in solid-liquid-vapor phases
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Copper Interatomic Potential Fitting

Main outcome:

= Good transferability and phase stability
achieved

Noteworthy issue:

= Difficult to capture vapor dome properties
& high compression behavior with high
degree of fidelity

Conclusion

= Extra flexibility needed in the long-range
model

Analysis & next steps:

= Using best Cu SNAP potential the impact
of Morse parameters were examined
using Sobol sensitivity analysis
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Copper Interatomic Potential Fitting

Interatomic spacing

» Added a modified Morse pair style to 001 0123458678 0910111213
LAMMPS |
= Changes added to morse/smooth/linear > 0
s (r) = Dofe~2aC=T0) — 2¢=a(r-10)) —Sad
g 002 Changing switchin
s E(r) = — —&(R.) — (r — O ging hing
(r?w P0r) () = o(Ro) — (r o -0.03 function location
Re)—- - -0.04
= YP(r) - switching function Interatomic spacing
. tp(r)=1+e:,r_d¢(r) nn 1 2 3 4 5 6 7 8 9 10 11 12 13
* Where b controls the width of the transition and d .
controls the location of the attenuation (for a fixed b) % -0.01
* This new pair style gives more flexibility to S 0.02 .
Bayesian optimization procedure Ij‘c_]’ 0.0 Changing transition
= |mportant for building transferable interatomic : width
potentials -0.04




Copper Interatomic Potential Fitting

Nonlinear Dakota GA optimization
= Using adjusted Morse potential

= Using additional objective functions
= OK elastic properties
= Cold curve
= DAC data
= Hugoniot points (both in solid/liquid regimes)
= Cohesive energy
= Check: FCC more stable than BCC

= FCC/BCC energy difference ~ 0.02-0.1
eV/atom

Tested cold-curve agreement up to
approx. 2TPa

= Good agreement with exp. data

Pressure, TPa
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12 17
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Copper Interatomic Potential Fitting

Reasonable shock stability
observed up to 8.6 km/s with latest

potentials

= Validation done using multi-scale shock
technique (MSST) in LAMMPS

Current efforts

= Expanding shock stability to higher

pressures
= Upto3TPa

= Gauging vapor stability for shock-stable

potentials

= Vapor dome calculations too costly for

objective functions

= Vapor calculations done in post-
processing for best shock IAP

potentials

> Varying long-range Morse

parameters
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| Conclusion

« lllustrated framework for building transferable
|AP from ab-initio / exp. / EOS data

— Complications from magnetics / long-range
interactions
— Incorporated longitudinal spin fluctuations

 Examined shock response of both Cu & Fe
* Fe shock stability up to Earth-core conditions

* Cu shock stability up to ~1.2 TPa
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