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2 Motivation: multi-scale & multi-physics coupling

• Monolithic (Lagrange multipliers)
• Partitioned (loose) coupling
• Iterative (Schwarz, optimization)
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• Mesh-based (FE, FV, FD)
• Meshless (SPH,  MLS)
• Implicit, explicit
• Eulerian, Lagrangian…
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• PDEs, ODEs
• Nonlocal integral 
• Classical DFT 
• Atomistic, …

There exist established rigorous mathematical theories for 
coupling multi-scale and multi-physics components based on 

traditional discretization methods (“Full Order Models” or FOMs).

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Traditional + Data-Driven Methods

• PINNs
• Neural ODEs
• Projection-based ROMs, …

While there is currently a big push to integrate data-driven methods into modeling & 
simulation toolchains, existing algorithmic and software infrastructures are ill-equipped to 

handle rigorous plug-and-play integration of non-traditional, data-driven models!

There exist established rigorous mathematical theories for 
coupling multi-scale and multi-physics components based on 

traditional discretization methods (“Full Order Models” or FOMs).






4

Data-driven models: to be “mixed-and-matched” with each other and first-principles models
• Class A: projection-based reduced order models (ROMs)
• Class B: machine-learned models, i.e., Physics-Informed Neural Networks (PINNs)
• Class C: flow map approximation models, i.e., dynamic model                                 

decomposition (DMD) models

Coupling methods:
• Method 1: Alternating Schwarz-based coupling

• Method 2: Optimization-based coupling

• Method 3: Coupling via generalized mortar methods 
(GMMs)

Coupling Projects, Models and Methods

fHNM (flexible Heterogeneous Numerical Methods) & M2dt (Multi-faceted Mathematics for 
Predictive Digital Twins) projects: discover the mathematical principles that guide the 

assembly of standard and data-driven numerical models in stable, accurate and physically 
consistent ways, towards creating predictive digital twins.
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6 Outline

• The Schwarz Alternating Method for Domain 
Decomposition-Based Coupling

• Extension to FOM*-ROM# and ROM-ROM Coupling

• Numerical Examples

Ø 1D Dynamic Wave Propagation in Hyperelastic Bar

Ø 2D Burgers Equation

• Summary & Future Work

*Full-Order Model.  #Reduced Order Model.
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8 Schwarz Alternating Method for Domain Decomposition
§ Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

H. Schwarz (1843–1921)

Crux of Method: if the solution is known in regularly shaped domains, use 
those as pieces to iteratively build a solution for the more complex domain.

Basic Schwarz Algorithm

2Lions, 1990. 3Zanolli et al., 1987. 

overlapping

non-overlapping

1Schwarz, 1870; Lions, 1988.  2Lions, 1990.  3Zanolli et al., 1987. 
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AS A PRECONDITIONER 
FOR THE LINEARIZED 
SYSTEM

AS A SOLVER FOR THE 
COUPLED
FULLY NONLINEAR 
PROBLEM

How We Use the Schwarz Alternating Method9



10 Time-Advancement Within the Schwarz Framework

Controller time stepper

Time integrator for W1

Time integrator for W2

Model PDE:
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Can use different integrators with 
different time steps within each domain!
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16 Time-Advancement Within the Schwarz Framework

Controller time stepper

Time integrator for W1

Time integrator for W2

Model PDE:

Time-stepping procedure is equivalent to doing 
Schwarz on space-time domain [Mota et al. 2022].
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• “Plug-and-play” framework:

Ø Ability to couple regions with different non-conformal meshes, different element types 
and different levels of refinement to simplify task of meshing complex geometries.

Ø Ability to use different solvers/time-integrators in different regions.

Model Solid Mechanics PDEs:

Quasistatic:

Dynamic:

Schwarz for Multiscale FOM-FOM Coupling in Solid 
Mechanics1

1 Mota et al. 2017; Mota et al. 2022.  2 https://github.com/sandialabs/LCM. 

2

https://github.com/sandialabs/LCM
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19 Projection-Based Model Order Reduction via the 
POD/Galerkin Method

19

Proper Orthogonal Decomposition (POD):

Solve ODE at different 
design points
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Hyper-reduction/sample mesh

ROM = projection-based Reduced Order Model                                HROM = Hyper-reduced ROM    



20 Projection-Based Model Order Reduction via the 
POD/LSPG* Method
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Proper Orthogonal Decomposition (POD):
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ROM = projection-based Reduced Order Model                                HROM = Hyper-reduced ROM    

Choose ODE 
temporal 

discretization

Reduce the 
number of 
unknowns

Minimize 
residual

Hyper-reduction/sample mesh

* Least-Squares Petrov-Galerkin



21 Schwarz Extensions to FOM-(H)ROM and (H)ROM-(H)ROM 
Couplings

21

Choice of domain decomposition
• Future work: error indicator-based or reinforcement learning-based algorithms to determine 

“optimal” domain decomposition and ROM/FOM assignment
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23 Numerical Example: 1D Dynamic Wave Propagation 
Problem

23

This talk

This talk

Figure: POD energy 
decay for nonlinear 

Henky problem



24 Numerical Example: 1D Dynamic Wave Propagation 
Problem

24

Figure above: Symmetric Gaussian IC problem solution
Figure below: Rounded Square IC problem solution



25 Numerical Example: Reproductive Problem Results25

• Single-domain ROM and HROM are most 
efficient

• Couplings involving ROMs and HROMs 
enable one to achieve smaller errors

• Benefits of hyper-reduction are limited 
on 1D problem

• FOM-HROM and HROM-HROM couplings 
outperform the FOM-FOM coupling in 
terms of CPU time by 12.5-32.6%



26 Numerical Example: Reproductive Problem Results26

Figure left: FOM (green) – HROM (cyan) coupling 
compared with single-domain FOM solution 

(blue).  HROM has 200 modes.

Figure below: ECSW algorithm samples 253/400 
elements  



27 Numerical Example: Predictive Problem Results27



28 Numerical Example: Predictive Problem Results28

• Predictive single-domain ROM solution exhibits spurious oscillations in velocity and acceleration
• Predictive FOM-HROM solution is smooth and oscillation-free

Ø Highlights coupling method’s ability to improve ROM predictive accuracy



29 Numerical Example: Predictive Problem Results29
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Numerical Example: 2D Inviscid Burgers Problem



32 Numerical Example: 2D Inviscid Burgers Problem32

This talk



Single Domain ROM33

0 100

10
0

0

Figure above: Reduced mesh of 
single domain HROM

Figure above: HROM and FOM 
results at various time steps

% SV 
Energy

MSE* 
(%)

CPU time* 
(s)

95 69 1.1 138

99 177 0.17 447

* Numbers in 
table are w/o 
hyper-reduction



ROM-ROM-ROM-ROM Coupling
34

0 100

10
0

0

99% Singular Value (SV) Energy Retention95% Singular Value (SV) Energy Retention

1 SD

Subdomains
95% SV Energy 99% SV Energy

MSE 
(%) CPU time (s) MSE (%) CPU time (s)

57 1.1 85 146 0.18 295

44 1.2 56 120 0.18 216

24 1.4 43 60 0.16 89

32 1.9 61 66 0.25 100

Total 245 700
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0 100

10
0

0

1 SD

FOM-HROM-HROM-HROM Coupling
Subdomains

99% SV Energy

MSE 
(%) CPU time (s)

0.0 95

120 0.26 26

60 0.43 17

66 0.34 21

Total 159

Further speedups possible via code 
optimizations and additive Schwarz.
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37 Summary and Future Work37

Summary:
• In a 1D solid mechanics and 2D hyperbolic PDE setting, Schwarz 

has been demonstrated for coupling of FOMs and (H)ROMs
• Computational gains can be achieved  by coupling (H)ROMs

Ongoing & future work: 
• Extension to other applications and HPC codes (e.g., 

compressible flow and Pressio demo-apps/Pressio)
• Improving method efficiency (e.g., additive Schwarz)

• Coupling nonlinear approximation manifold methods 
• Dynamic adaptation of domain partitioning & “on-the-fly” 

ROM-FOM switching (reinforcement learning problem)

• Learning of “optimal” transmission conditions to ensure 
structure preservation

• Extension of Schwarz to coupling of Physics Informed 
Neural Networks (PINNs) 

Movie below: accelerating PINN training via 
PINN-PINN coupling using Schwarz

* https://https://pressio.github.io

Movie above: FOM-FOM coupling via Schwarz 
for 2D double Mach reflection Euler problem 

using pressio-demoapps* 

https://https://pressio.github.io
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42 Bonus: PINN-PINN and PINN-FOM coupling42

Input

Hidden Layers

Output

Loss

Minimize

Neural Network

Goal: investigate the use of the Schwarz alternating method as a 
means to couple Physics-Informed Neural Networks (PINNs)

Scenario 1: use Schwarz to train 
subdomain PINNs (offline)

Scenario 2: use Schwarz to 
coupled pre-trained subdomain 
PINNs/NNs (online)

Will Snyder
Summer Intern
Virginia Tech

Focus thus far

Related work: Li et al., 2019, Li et al., 2020, Wang et al., 2022.



43 Bonus: PINN-PINN coupling43

PINNs are notoriously difficult to train 
for higher Peclet numbers!

Can Schwarz help?



44 Bonus: PINN-PINN coupling

• How Dirichlet boundary conditions are handled 
has a large impact on PINN convergence

• Convergence not improved in general with 
increasing overlap

• Increasing # subdomains in general will increase 
CPU time

WDBC



45 Bonus: PINN-PINN coupling

• Using SDBCs and data loss helps with 
PINN/NN convergence and accuracy



46 Bonus: PINN-FOM coupling

• PINN-FOM coupling gives rapid PINN convergence for arbitrarily high Peclet numbers

• PINN-FOM couplings works with both WDBC and SDBC configurations

PINN subdomain

FOM subdomain



Start of Backup Slides

47



48 Spatial Coupling via Alternating Schwarz
Overlapping Domain Decomposition

Non-overlapping Domain Decomposition

• Dirichlet-Dirichlet transmission BCs 
[Schwarz 1870; Lions 1988; Mota et 
al. 2017; Mota et al. 2022]

This talk: sequential subdomain solves 
(multiplicative Schwarz).  Parallel subdomain 

solves (additive Schwarz) also possible.

Model PDE:



49 Numerical Example: 1D Dynamic Wave Propagation 
Problem

49

J. Barnett, I. Tezaur, A. Mota. "The Schwarz alternating method for the seamless coupling of 
nonlinear reduced order models and full order models", in Computer Science Research Institute 

Summer Proceedings 2022, S.K. Seritan and J.D. Smith, eds., Technical Report SAND2022-10280R, 
Sandia National Laboratories, 2022, pp. 31-55.  (https://arxiv.org/abs/2210.12551) 

Figure left: sample sample mesh for 
1D wave propagation problem

https://www.sandia.gov/ccr/csri-summer-programs/computer-science-research-institute-summer-proceedings-2022/
https://www.sandia.gov/ccr/csri-summer-programs/computer-science-research-institute-summer-proceedings-2022/
https://arxiv.org/abs/2210.12551


50 Numerical Example: Reproductive Problem Results50

Green shading highlights 
most competitive 
coupled models



51 Numerical Example: Predictive Problem Results51

• Start by calculating projection error for reproductive and predictive version of the Rounded Square IC problem:



S.G. Mikhlin 
(1908 – 1990)

S.L. Sobolev (1908 – 1989)

A. Mota, I. Tezaur, C. Alleman

Using the Schwarz alternating as a discretization method for 
PDEs is natural idea with a sound theoretical foundation.

Theoretical Foundation

P.- L. Lions (1956-)

52



Convergence Proof*

*A. Mota, I. Tezaur, C. Alleman. "The Schwarz Alternating Method in Solid Mechanics", CMAME 319 (2017), 19-51.

53



Schwarz Alternating Method for Dynamic Multiscale Coupling: Theory

*A. Mota, I. Tezaur, G. Phlipot. "The Schwarz alternating method for dynamic solid mechanics", IJNME, 2022.

54



Schwarz for Multiscale FOM-FOM Coupling in Solid 
Mechanics1

1 Mota et al. 2017; Mota et al. 2022.

Figure above: tension specimen simulation coupling 
composite TET10 elements with HEX elements in Sierra/SM.  

Figures right: bolted joint simulation coupling composite 
TET10 elements with HEX elements in Sierra/SM.

Schwarz

Schwarz

y-displacement EQPS



56 Numerical Example: Linear Elastic Wave Propagation 
Problem

56

• Linear elastic clamped beam with Gaussian initial condition.

• Simple problem with analytical exact solution but very stringent test for discretization/coupling 
methods.

• Couplings tested: FOM-FOM, FOM-ROM, ROM-ROM, implicit-explicit, implicit-implicit, explicit-
explicit.

Above: 3D rendering of clamped beam with Gaussian initial condition.  
Right: Initial condition (blue) and final solution (red).  Wave profile is 

negative of initial profile at time  T = 1.0e-3.



57
Linear Elastic Wave Propagation Problem: FOM-ROM and 
ROM-ROM Couplings

Single Domain FOM 3 overlapping subdomain     
ROM1-FOM2-ROM3

0 0.5
1

0.750.25

0 0.3

0.3 1

0 1



58 Linear Elastic Wave Propagation Problem: FOM-ROM and 
ROM-ROM Couplings

disp MSE6 velo MSE acce MSE

Overlapping ROM1-FOM2-ROM3 1.05e-4 1.40e-3 2.32e-2

Non-overlapping FOM4-ROM5 2.78e-5 2.20e-4 3.30e-3

6MSE=

Coupled models are reasonably accurate w.r.t. FOM-FOM coupled analogs and convergence 
with respect to basis refinement for FOM-ROM and ROM-ROM coupling is observed.



59 Linear Elastic Wave Propagation Problem: ROM-ROM 
Couplings

MSE in displacement for 2 
subdomain ROM-ROM coupling

Average # Schwarz iterations for 2 
subdomain ROM-ROM coupling

CPU times for 2 subdomain ROM-ROM 
coupling normalized by FOM-FOM CPU time



60 Linear Elastic Wave Propagation Problem: FOM-ROM 
CouplingsFOM-ROM coupling shows convergence with basis refinement.  FOM-ROM couplings are 10-
15% slower than comparable FOM-FOM coupling due to increased # Schwarz iterations.

MSE for 2 subdomain 
FOM-ROM coupling
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Average # Schwarz iterations for 2 
subdomain couplings

WIP: 
understanding & 
improving FOM-
ROM coupling 
performance.



Single Domain, 10 mode POD

10 mode POD – 50 mode POD 10 mode POD – FOM 20 mode POD – FOM

10 mode POD – 10 mode POD

Accuracy can be improved by “gluing” 
several smaller, spatially-local models

Single Domain, FOM (truth)

Linear Elastic Wave Propagation Problem: FOM-ROM and 
ROM-ROM Couplings

Observation suggests need for 
“smart” domain decomposition.



Energy-Conserving Sampling and Weighting (ECSW)62



ECSW: Generating the Reduced Mesh and Weights63



64 Numerical Example: 1D Dynamic Wave Propagation 
Problem

64

Min # 
Schwarz 

Iters

Max # 
Schwarz 

Iters

Total # 
Schwarz 

Iters

1.10 3 9 59,258

1.00 1 4 24,630

0.99 1 5 35,384

0.95 3 6 45,302

0.90 3 8 56,114

• Model accuracy evaluated w.r.t. analogous FOM-
FOM coupling using mean square error (MSE): 



Overlapping Coupling, Nonlinear Henky MM, 2 Subdomains

Multiplicative Schwarz Additive Schwarz



Overlapping Coupling, Nonlinear Henky MM, 2 Subdomains

Additive Multiplicative

Total # Schwarz iters 24495 24211

CPU time 2.03e3s 2.16e3

MS difference in disp 6.34e-13/6.12e-13

MS difference in velo 1.35e-11/1.86e-11

MS difference in acce 5.92e-10/1.07e-9



Overlapping Coupling, Nonlinear Henky MM, 3 Subdomains

Additive Multiplicative

Total # Schwarz iters 26231 25459

CPU time 1.89e3s 2.05e3s

MS difference in disp 5.3052e-13/9.3724e-13/6.1911e-13

MS difference in velo 7.2166e-12/2.2937e-11/2.4975e-11

MS difference in acce 2.8962e-10/1.1042e-09/1.6994e-09



Non-overlapping Coupling, Nonlinear Henky MM, 2 Subdomains

Multiplicative Schwarz Additive Schwarz



Non-overlapping Coupling, Nonlinear Henky MM, 2 Subdomains

Additive Multiplicativ
e

Total # Schwarz iters 44895 24744

CPU time 1.87e3s 982.5s

MS difference in disp 4.26e-5/2.74e-5

MS difference in velo 1.02e-5/5.91e-6

MS difference in acce 5.84e-5/1.21e-5



Non-overlapping Coupling, Nonlinear Henky MM, 3 Subdomains

Additive Multiplicative

Total # Schwarz iters 53413 27509

CPU time 5.91e3s 2.87e3s

MS difference in disp 2.8036e-05/3.1142e-05/ 8.8395e-06

MS difference in velo 1.4077e-05/1.2104e-05/6.5771e-06

MS difference in acce 8.7885e-05/3.2707e-05/1.3778e-05



FOM-FOM Coupling: Differing Resolution71
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FOM-FOM Coupling: >2 Subdomains74
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Subdomain Wall Clock 
Time (s) Total (s)

Monolithic 124 124

75

300
62

62

77
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1 SD

Domain HROM-FOM-FOM-FOM Wall 
Clock Time (s)

FOM-FOM-FOM-FOM Wall 
Clock Time (s) Speedup

76 1.5 30 68 2.3

Total 276 300 1.1
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77 Summary77

• We have developed an iterative coupling formulation based on the Schwarz alternating 
method and an overlapping or non-overlapping DD

• Numerical results show promise in using the proposed methods to create heterogeneous 
coupled models comprised of arbitrary combinations of ROMs and/or FOMs  

Ø Coupled models can be computationally efficient w.r.t analogous FOM-FOM couplings

Ø Coupling introduces no numerical artifacts into the solution

• FOM-ROM and ROM-ROM have potential to improve the predictive viability of projection-
based ROMs, by enabling the spatial localization of ROMs (via DD) and the online 
integration of high-fidelity information into these models (via FOM coupling)

Opinion: hybrid FOM-ROM models are the future!



78
Comparison of Methods

78

Alternating Schwarz-based Coupling Method Lagrange Multiplier-Based Partitioned Coupling Method

• Can do FOM-FOM, FOM-ROM, ROM-ROM coupling
• Non-overlapping DD
• Monolithic formulation requiring hybrid 

formulation (more intrusive but more efficient)

• Can couple different mesh resolutions and 
element types

• Can use different explicit time-integrators with 
different time-steps in different subdomains

• Provably convergent variant requires interface 
bases

• Parallel subdomain solves if explicit or IMEX 
time-integrator is employed

• Extensions to PINN/DMD data-driven models are 
not obvious

• Can do FOM-FOM, FOM-ROM, ROM-ROM coupling
• Overlapping or non-overlapping DD 
• Iterative formulation (less intrusive but likely 

requires more CPU time)

• Can couple different mesh resolutions and 
element types 

• Can use different time-integrators with 
different time-steps in different subdomains

• No interface bases required

• Sequential subdomain solves in multiplicative 
Schwarz variant
Ø Parallel subdomain solves possible with 

additive Schwarz variant (not shown)

• Extensible in straightforward way to PINN/DMD 
data-driven model



79 Ongoing & Future Work79

• Extension/prototyping on more multi-D (2D/3D compressible flow1, 2D/3D solid mechanics2) and multi-physics 
problems (FSI, Air-Sea coupling)

• Implementation/testing of additive Schwarz variant, which admits more parallelism

• Analysis of method’s convergence for ROM-FOM and ROM-ROM couplings

• Learning of “optimal” transmission conditions to ensure structure preservation

• Extension of coupling methods to coupling of Physics Informed Neural Networks (PINNs) (WIP)

• Exploration of connections between iterative Schwarz and optimization-based coupling [Iollo et al., 2022]

• Development of smart domain decomposition approaches based on error indicators, to determine optimal 
placement of ROM and FOM in a computational domain (including on-the-fly ROM-FOM switching)

• Extension of couplings to POD modes built from snapshots on independently-simulated subdomains

• Journal article currently in preparation.

1 https://github.com/ Pressio/pressio-demoapps 
2 https://github.com/lxmota/norma

https://github.com/Pressio/pressio-demoapps
https://github.com/lxmota/norma

