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2 ‘ Motivation: multi-scale & multi-physics coupling

There exist established rigorous mathematical theories for
coupling multi-scale and multi-physics components based on
traditional discretization methods (“Full Order Models” or FOMs).
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3 ‘ Motivation: multi-scale & multi-physics coupling

There exist established rigorous mathematical theories for
coupling multi-scale and multi-physics components based on
traditional discretization methods (“Full Order Models” or FOMs).
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Complex System Model Traditional Methods Coupled Numerical Model Traditional + Data-Driven Methods
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» PDEs, ODEs * Mesh-based (FE, FV, FD)  « Monolithic (Lagrange multipliers) * PINNs

* Nonlocal integral * Meshless (SPH, MLS) » Partitioned (loose) coupling * Neural ODEs

* Classical DFT * Implicit, explicit » Iterative (Schwarz, optimization) * Projection-based ROMs, ...
* Atomistic, ... e Eulerian, Lagrangian, ...

While there is currently a big push to integrate data-driven methods into modeling &
simulation toolchains, existing algorithmic and software infrastructures are ill-equipped to @
handle rigorous plug-and-play integration of non-traditional, data-driven models!
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fHNM (flexible Heterogeneous Numerical Methods) & M2dt (Multi-faceted Mathematics for
Predictive Digital Twins) projects: discover the mathematical principles that guide the
assembly of standard and data-driven numerical models in stable, accurate and physically
consistent ways, towards creating predictive digital twins.

Data-driven models: to be “mixed-and-matched” with each other and first-principles models
* C(lass A: projection-based reduced order models (ROMs)
* (Class B: machine-learned models, i.e., Physics-Informed Neural Networks (PINNs)

* C(lass C: flow map approximation models, i.e., dynamic model
decomposition (DMD) models

Coupling methods:
 Method 1: Alternating Schwarz-based coupling

Q3
High-fidelity
--1- mesh-free

model
(Physics 3)

* Method 2: Optimization-based coupling

 Method 3: Coupling via generalized mortar methods
(GMMs)
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fHNM (flexible Heterogeneous Numerical Methods) & M2dt (Multi-faceted Mathematics for
Predictive Digital Twins) projects: discover the mathematical principles that guide the
assembly of standard and data-driven numerical models in stable, accurate and physically
consistent ways, towards creating predictive digital twins.

Data-driven models: to be “mixed-and-matched” with each other and first-principles models

Class A: projection-based reduced order models (ROMs)

Coupling methods:

This talk

Method 1: Alternating Schwarz-based coupling

Q3
High-fidelity

--1- mesh-free
model
(Physics 3)
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= Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

Crux of Method: if the solution is known in regularly shaped domains, use

those as pieces to iteratively build a solution for the more complex domain. H. Schwarz (1843-1921)
Basic Schwarz Algorithm overlapping
Initialize:
= Solve PDE by any method on Q, w/ initial guess for transmission BCs on T7. v >F1 "
Iterate until convergence: \
= Solve PDE by any method on Q, w/ transmission BCs on I, based on values "
just obtained for (. non-overlapping
= Solve PDE by any method on Q,; w/ transmission BCs on I'; based on values o, >F o,
just obtained for (,. \

Overlapping Schwarz: convergent with all-Dirichlet transmission BCs' if Q;N Q, # 0.

Non-overlapping Schwarz: convergent with Robin-Robin? or alternating Neumann-Dirichlet?
transmission BCs.

'Schwarz, 1870; Lions, 1988. Z2Lions, 1990. 3Zanolli et al., 1987.



o I How We Use the Schwarz Alternating Method

AS A PRECONDITIONER
FOR THE LINEARIZED
SYSTEM

AS A SOLVER FOR THE
COUPLED

FULLY NONLINEAR
PROBLEM




0 I Time-Advancement Within the Schwarz Framework

Step 0: Initialize i = 0 (controller time index).

Controller time stepper

Time integrator for £2,

Time integrator for (2,

u+ N(u) =f, in 2
Model PDE: ! u(x,t) = g(t), on N
u(x,0) = u,, in




11 I Time-Advancement Within the Schwarz Framework

I Ty 'T

Controller time stepper

I Integrate using Aty I

Time integrator for (2,

Q, | | Time integrator for (2,

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance (1, solution from time T; to time T;,; using time-stepper in (; with time-step 4t;, using
solution in (), interpolated to I'; at times T; + nAt;.

u+ N(u) =f, in 2
Model PDE: ! u(x,t) = g(t), on N
u(x, D) = Uy, in




2 I Time-Advancement Within the Schwarz Framework

I Ty 'T

Controller time stepper
| |

| Time integrator for (2,

I\ o / | Interpolate

fromQ, to [},

Q, > Time integrator for 2,
' Integrate using At, '

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance (), solution from time T; to time T;,, using time-stepper in (; with time-step 4t;, using
solution in Q, interpolated to I'; at times T; + n4t;.

Step 2: Advance (), solution from time T; to time T;,, using time-stepper in (), with time-step 4t,, using
solution in Q, interpolated to I, at times T; + n4t,.

u+ N(u) =f, in 2
Model PDE: ! u(x,t) = g(t), on N
u(x,0) = u,, in




i3 1 Time-Advancement Within the Schwarz Framework

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance (), solution from time T; to time T;,; using time-stepper in (; with time-step 4t;, using

solution in Q, interpolated to I'; at times T; + n4t;.

Step 2: Advance (), solution from time T; to time T;,; using time-stepper in (), with time-step 4t,, using

solution in (; interpolated to I, at times T; + nAt,.

Controller time stepper

Time integrator for (2,

Time integrator for 2,

Step 3: Check for convergence at time T}, .
Model PDE:

ut+N@)=f,

u(x,t) = g(t),
u(x,0) = u,,

in
on dfn
in N
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Time-Advancement Within the Schwarz Framework

Q, I Ty ' T
r, I Integrate using At, |
T Interpolate [from
| | AT iflz tol; |
0, I |
I

Step 0: Initialize i = 0 (controller time index).

Controller time stepper

Time integrator for (2,

Time integrator for 2,

Step 1: Advance (), solution from time T; to time T;,, using time-stepper in (), with time-step At,, using

solution in , interpolated to I; at times T; + n4t,.

Step 2: Advance (), solution from time T; to time T;,, using time-stepper in (), with time-step 4t,, using

solution in £, interpolated to I, at times T; + n4t,.

Step 3: Check for convergence at time T}, ;.
» If unconverged, return to Step 1.

Model PDE:

u+ N(u) =f, in 2
u(x,t) = g(t), on afn
u(x,0) = u,, in N
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Time-Advancement Within the Schwarz Framework

Step O: Initialize i = 0 (controller time index).

Q, Tl
T Integrate using At,
T Interpolate from
Q,t6T, AN |
Q, | I

T,

Controller time stepper

Time integrator for (2,

Time integrator for 2,

Can use different integrators with

different time steps within each domain!

Step 1: Advance (, solution from time T; to time T;,, using time-stepper in (), with time-step 4t,, using

solution in (), interpolated to I'; at times T; + n4t,

Step 2: Advance (), solution from time T; to time T;,, using time-stepper in (1, with time-step 4t,, using

solution in (1, interpolated to I, at times T; + n4t,

Step 3: Check for convergence at time T, .

L

» |If unconverged, return to Step 1.
» If converged, set i = i + 1 and return to Step 1.

Model PDE:

u+ N(u) =f, in 2
u(x,t) =g(t), on an
u(x,0) = u,, in N
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Time-Advancement Within the Schwarz Framework

Step 0: Initialize i = 0 (controller time index).

Q, Tl
T Integrate using At,
T Interpolate from
Q,t6T, AN |
Q, | I

T,

Controller time stepper

Time integrator for (2,

Time integrator for 2,

Time-stepping procedure is equivalent to doing

Schwarz on space-time domain [Mota et al. 2022].

Step 1: Advance (, solution from time T; to time T;,, using time-stepper in (), with time-step 4t,, using
solution in (), interpolated to I'; at times T; + n4t,.

Step 2: Advance (), solution from time T; to time T;,, using time-stepper in (1, with time-step 4t,, using

solution in (1, interpolated to I, at times T; + n4t,

Step 3: Check for convergence at time T, .

%

» If unconverged, return to Step 1.
» If converged, set i = i + 1 and return to Step 1.

Model PDE:

u+ N(u) =f, in 2
u(x,t) =g(t), on an
u(x,0) = u,, in N




- | Schwarz for Multiscale FOM-FOM Coupling in Solid

[ 1
Mechanics Model Solid Mechanics PDEs:
Coupling is concurrent (two-way). Quasistatic: DivP 4+ ppB =0 in () ‘
Ease of implementation into existing massively- | Dynamic: DivP +p9B =ppp in QxI
parallel HPC codes.

Scalable, fast, robust (we target real engineering
problems, e.g., analyses involving failure of bolted
components!).

Coupling does not introduce nonphysical artifacts.

Theoretical convergence properties/guarantees!’.

2
“Plug-and-play” framework: @A&M—H "LCM

» Ability to couple regions with different non-conformal fneshes, different element types
and different levels of refinement to simplify task of meshing complex geometries.

> Ability to use different solvers/time-integrators in different regions.
' Mota et al. 2017; Mota et al. 2022. 2 https://github.com/sandialabs/LCM.



https://github.com/sandialabs/LCM

18 1 Outline

* The Schwarz Alternating Method for Domain
Decomposition-Based Coupling

Qo

« Extension to FOM*-ROM# and ROM-ROM Coupling

Ql >F Q2

 Numerical Examples )

» 1D Dynamic Wave Propagation in Hyperelastic Bar

» 2D Burgers Equation

: 2
gl 1 . P
Schwarz “glue K verlap ~

* Summary & Future Work N

*Full-Order Model. #Reduced Order Model.



19 I Projection-Based Model Order Reduction via the

POD/GaIerki:rL]er%t

epRngE"l (FOM)I Mi—ztt; + fint(u) = fext

1. Acquisition

Number of
time steps
<«
== A
_— o
|/ — =
'_;.‘i)lh:&ilﬂmi"gfﬂ'l / / S g
"’ — T 8 ©
1D £~
i i =)
\m\ﬂl\\\ it =z
v

Solve ODE at different

. . Save solution data
design points

2. Learning

Proper Orthogonal Decomposition (POD):

X = - U )N v’

3. Projection-Based Reduction

Reduce the
number of
unknowns

Perform
Galerkin
projection

Hyper-reduce fir(@)~ A

nonlinear

terms

=2

Hyper-reduction/sample mesh

u(t) = u(t) = @u(t)

d?u ~
d’)TMde—t;' + @Tf, (PU) = PTf o

f i11t{¢ﬂ)

ROM = projection-based Reduced Order Model

HROM = Hyper-reduced ROM
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Projection-Based Model Order Reduction via the

POD/LSPG () ethQ%odel (Fom):

du

1. Acquisition
Number of

time steps

<+—>
A

Variables

Number of State

v

Solve ODE at different
design points

Save solution data

2. Learning

Proper Orthogonal Decomposition (POD):

X = = U 2 v’

ar fut, p) * Least-Squares Petrov-Galerkin
3. Projection-Based Reduction
Choose ODE i—t::f{u;t, m|
temporal !
discretization () = 0, n=1,.,T
u(t) = u(t) = du(t)
Reduce the |
number of
unknowns
Minimize  minimize|| (PP, 1“} 2
residual ﬂ:l:l]:l |
A 2
Hyper-reduction/sample mesh

ROM = projection-based Reduced Order Model

HROM = Hyper-reduced ROM
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2’ ‘ Schwarz Extensions to FOM-(H)ROM and (H)ROM-(H)ROM

Enforcf‘e%%m Icg‘%%ichlet boundary conditions (DBCs) in ROM at indices ip;,
« Method | in [Gunzburger et al. 2007] is employed
u(t) = u+ ou(t), v(t) =v+eov(t), a(t) =a+ Pa(t)
» POD modes made to satisfy homogeneous DBCs: @®(ip;.,:) =0
Hyper-reduction considerations
« Boundary points must be included in sample mesh for DBC enforcement
«  We employ the Energy-Conserving Sampling & Weighting Method (ECSW) [Farhat et al. 2015] —
preserves Hamiltonian structure for solid mechanics problems
Choice of domain decomposition

* Future work: error indicator-based or reinforcement learning-based algorithms to determine
“optimal” domain decomposition and ROM/FOM assignment

Snapshot collection and reduced basis construction
« POD results presented herein use snapshots obtained via FOM-FOM coupling on Q = U; Q;

« Future work: generate snapshots/bases separately in each (); [Hoang et al. 2021, Smetana et al.

2022]

I i Em B
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‘ Numerical Example: 1D Dynamic Wave Propagatlon

1DFL;EQP L@metry Q= (0,1), clamped at both ends, with
prescribed initial condition discretized using FEM + Newmark-f

Simple problem but very stringent test for discretization/
coupling methods, and difficult problem for ROMs.

Two constitutive models considered:
» Linear elastic (problem has exact analytical solution)
» Nonlinear hyperelastic Henky This talk

0.2F

0.1

1 Subdomain

2 Subdomains,

— 2 Subdomains, ¢
5'12

Figure: POD energy
decay for nonlinear
Henky problem

10°

101

102
# POD modes (M)

103

ROMs results are reproductive and predictive, and are based on the POD/Galerkin method, with

POD calculated from FOM-FOM coupled model.

» 50 POD modes capture ~100% snapshot energy for linear variant of this problem.
» 536 POD modes capture ~100% snapshot energy for Henky variant of this problem.

Hyper-reduced ROMs (HROMs) perform hyper-reduction using ECSW [Farhat et al., 2015]

» Ensures that Lagrangian structure of problem is preserved in HROM.

Couplings tested: overlapping, non-overlapping,|FOM-FOM, FOM-ROM, ROM-ROM, FOM-HROM,
HROM-HROM, implicit-explicit, implicit-implicit,|explicit-explicit.

This talk



Numerical Example: 1D Dynamic Wave Propagatlon

TwoPJers%mroblem with different initial conditions (ICs): ;| N
» Symmetric Gaussian IC (top right) S
» Rounded Square IC (bottom right) U S

[

Non-overlapping domain decomposition (DD) of Q = Q, U Q,, where ,

= [0, 0.6] and Q, = [0.6, 1.0] B

' ) acceleration, snapshot 1, time = 0

» DD is based on heuristics: during time-interval considered (0 <t <

1 x 10%), sharper gradient forms in Q;, suggesting FOM or larger i T
ROM is needed there. o e e w oa w e o w0 o
Reproductive problem:
» Displacement snapshots collected using FOM-FOM non-overlapping

<107 displacement, snapshot 101, time = 1e-05

Figure above: Symmetric Gaussian IC problem solution
Figure below: Rounded Square IC problem solution

coupling with Symmetric Gaussian IC l / \
» FOM-ROM, FOM-HROM, ROM-ROM and HROM-HROM run with 1
Symmetric Gaussian IC 5?’ ety s.fi..‘ls..ot 1o e 1005
Predictive problem: ’i{ ‘:L
» Displacement snapshots collected using FOM-FOM non-overlapping o oz oa 06 o8
coupling with Symmetric Gaussian IC [
» FOM-ROM, FOM-HROM, ROM-ROM and HROM-HROM run with A | ﬁ' ‘# |
Rounded Square IC :

I i Em B



25 I Numerical Example: Reproductive Problem Results

T T T [ T
- [
[
[ * O % & f
10 | | o - Single-domain ROM and HROM are most
: | " 3 efficient
; |
E! | « Couplings involving ROMs and HROMs
7 | i enable one to achieve smaller errors
L |
%’ N | » Benefits of hyper-reduction are limited
s 107° F FOM I -
2 | o ROM | on 1D problem
“  HROM |
TP vy : ; « FOM-HROM and HROM-HROM couplings
1077 F L EOMHROM - outperform the FOM-FOM coupling in
| O ROM-ROM | ] terms of CPU time by 12.5-32.6%
*  HROM-HROM :
10712 ' ' ' —
500 1000 1500 2000 2500 3000

CPU time (s)



26 I Numerical Example: Reproductive Problem Results

x107 displacement, snapshot 1, time = 0
T T ] T T

10

5| i
0 01 02 03 Y 05 a5 07 08 as 1 Figure left: FOM (green) - HROM ( ) coupling
velocity, snapshot 1, time = 0 compared with single-domain FOM solution
10k ' ' ' ' ' ] (blue). HROM has 200 modes.
10k - Figure below: ECSW algorithm samples 253/400
20 - - elements
30 & | | | | | | | | | =
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
%108 ?cceleraltion, snalpshot 1 , time = q
4 . 0 50 100 150 200 250 300 350

nz = 253

-4
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

I i Em B



27 ‘ Numerical Example: Predictive Problem Results

|
102 F |
x O | %
I x
|
CPU Emvse(@1)/ Emse(01)/ Emse(a@)/ '
Model . Ne.1/Ne, . £ . Ng [
°oe time (s) 1/Ne,2 Emse(t2) Emse(V2) Emse (@2) > 107 i
FOM 1.288 x10° —/— —/— —/— —/— - = |
ROM 1.358 x10° —/— 3.451x10~%/— | 6.750 x 10°%/— | 3.021 x 10~ /— — w |
HROM 9.759 x 107 614/— 3.463 x 10~ °/— | 6.750 x 10 %/— | 3.021 x 10~ /— - uB 10T o
FOM-FOM 2.133 x 10° —/— —/— —/— —/— 23,280 > :
FOM-ROM 2.084 x 10° -/- 1.907 x 10~%/ 1.461 x 10~/ 3.973 x 10~°/ 23,288 e . sl | FOM
1.170 x 10~° 9.882 x 1075 1.757 x 1073 < W | RoM
1.967 x10~ % 4.986 x 10~° 2.768 x 102 I
FOM-HROM ) 3 —/2 29,7 | FOM-FOM
OM-HRO 2.219 x 10 /253 1.720 x 10 ° 4.185 x10 2 2.388 x 10 9,700 o | O FOM-ROM
3 e 5.592 x 10~ 7%/ 1.575 x 10~ 7/ 9.197 x 102/ 107 F || * FOM-HROM |3
ROM-ROM 2:502 x 10 / 4.346 x 10~4 1.001 x 10~2 5.304 x 102 26,220 | e
: )
i . 4.802 x 10~* 8.500 x 10—~ 3.744 x 10~ 1 |
HROM-HROM | 2.200x10 405/253 1.960 x 1073 4.630 x10~2 2.580 x10~! 30,067 1072 : : — :
500 1000 1500 2000 2500 3000
CPU time (s)

Results indicate that predictive accuracy/robustness can be improved by coupling ROM or HROM to FOM

> FOM-ROM coupling is remarkably accurate, achieving displacement error O(1 x 10~%)
» FOM-HROM and ROM-ROM couplings are more accurate than single-domain ROMs
» HROM-HROM on par with single-domain HROM in terms of accuracy

Wall-clock times of coupled models can be improved

» FOM-HROM, ROM-ROM and HROM-HROM models are slower than FOM-FOM model as more Schwarz
iterations required to achieve convergence

» Hyper-reduction samples ~60% of total mesh points for this 1D traveling wave problem
*» Greater gains from hyper-reduction anticipated for 2D/3D problems




8 ‘ Numerical Example: Predictive Problem Results

Displ acement

<107 | Displ atl::ement

U1

0.8
Velot:|ty

s | B

0 0.1 0.7 0.8 0.9
Velomty

o—_ w\/WWWML\,MWWWW o M \— “““W / B —

-20 20 ! | |
0 [}‘9 1 0 0.1 0.2 0.8 0.9
«10° Acceleratlon <108 : : Acceleratlon | |

T
I
L 1 ot ] |
o - | \jl - NN

0 |[ h Y

2+ _ 2+ U 1

| | | | | | | | | | | [ | | |
0 0.1 0.2 0.3 0.4 0).(5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0)'(5 0.6 0.7 0.8 0.9

Predictive single-domain ROM (M,= 300)
solution at final time

Predictive FOM-HROM (M,= 200)
solution at final time

— Single-domain FOM solution

— Solution in Q, — Solution in Q,

* Predictive single-domain ROM solution exhibits spurious oscillations in velocity and acceleration

* Predictive FOM-HROM solution is smooth and oscillation-free
» Highlights coupling method’s ability to improve ROM predictive accuracy



29 ‘ Numerical Example: Predictive Problem Results

0.5

-0.5

20

-20

-40

A N O N A

%107 Displacement
T I T T T
C ! ! ! ! ! ! ! !
0 0.1 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Velocity
T T T T
B | | | | | | | |
0 0.1 0.3 0.4 0.5 0.6 0.7 0.8 0.9
%108 Acceleration
= T T T \]\ T
C | | | | | | | |
0 0.1 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Predictive single-domain ROM (M;= 300)

05

Displacement
I T T

[

-05

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Velocity
T

20 -

-20 -

-40 -

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Acceleration

T T T i T

AN O N A

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Predictive FOM-HROM (M,= 200)

— Single-domain FOM solution

— Solution in Q,

— Solution in Q,




30 I Qutline

* The Schwarz Alternating Method for Domain
Decomposition-Based Coupling

Qo

« Extension to FOM*-ROM# and ROM-ROM Coupling

Ql >F Q2

 Numerical Examples \

» 1D Dynamic Wave Propagation in Hyperelastic Bar

» 2D Burgers Equation

: 2
gl 1 . P
Schwarz “glue K verlap ~

* Summary & Future Work N

*Full-Order Model. #Reduced Order Model.



31 ‘ Numerical Example: 2D Inviscid Burgers Problem
t=0.0 t=06.2

ou 1 [/0u®* Ouv
a + E (a + W) = 0.02 eXp(ﬂQX)

ov 1 [(Ovu Ov?
o ta(ax tay) =
u(x=0,y,t; p) = p
ulx,y,t=0)=v(x,y,t=0)=1
x,y € [0,100], t € [0, T¢]

FOM discretization:

» Spatial discretization given by a Godunov-type
scheme with N = 250 elements in each
dimension

* Implicit temporal discretization: trapezoidal
method with fixed At = 0.05; Choose T, = 25.0

t =125 t =18.8

25 50 75 25 950 75

Figure above: solution of u
component at various times

1?0

¥

100




2 I Numerical Example: 2D Inviscid Burgers Problem

« 2D makes for a more appropriate testing of potential speedups 10
from coupling subdomains to ROMs

« The inviscid Burgers’ equation is a popular analog for fluid
problems where shocks are possible, and is particularly difficult
for conventional projection-based ROMs

« Two parameters considered: 104

1 200 400 600 800 1000

} Di riChlEt BC parameterizatlon l"'l Singular value index j
» Source term parameterization u,

« ROMs results are predictive and are based on the Least-Squares Petrov-Galerkin (LSPG)
method, with POD calculated from FOM coupling models.

» Greater than 200 POD modes required to capture 99% snapshot energy for when sampling 9
i = [py, 1] values

Hyper-reduced ROMs (HROMs) perform hyper-reduction using ECSW [Farhat et al., 2015]
Couplings tested:|overlapping,| FOM-FOM, FOM-ROM, ROM-ROM, FOM-HROM, HROM-HROM,

implicit-explicit,

implicit-implicit, |explicit-explicit.

This talk




13 1 Single Domain ROM

« Spatial/temporal resolution: Ax; = 0.4, Ay; = 0.4, At; = 0.05

« Uniform sampling of D = [4.25,5.50] X [0.015, 0.03] by a 3x3 grid = 9 training parameter

« Reduced mesh resulting from solving non-negative least squares problem formulate by

“

iy cell inde

points characterized by Ay, = 0.625 and Au, = 0.0075
* Queried but unsampled parameter point u = [4.75,0.02] with reduced dimension of M = 95

ECSW gives n, = 5,689 elements (9.1% of N, = 62,500 elements).

0 50
0 oo

100

150 200

SR

o4 -

—
o
=

2004 0

T cell il‘lIE]LI?}{ "
Figure above: Reduced mesh of
single domain HROM

wle = 5.2, )

1.
I

[ =]
L

_ —— HPROM \— 4&__

— HDM
—— HPROM

] 20 40 Gl 2 100

Figure above: 'HROM and FOM
results at various time steps

B
% SV . MSE* CPU time*
Energy ’ (%) )
69 1.1 138
99 177  0.17 447 |
* Numbers in
table are w/o 0 ¥ 190 :
hyper-reduction | © '
= a2, ‘
o
o_
—




.. ROM-ROM-ROM-ROM Coupling

. 95% Singular Value (SV) Energy Retention 99% Singular Value (SV) Energy Retention
=
% 5.0
o (4 .
o 0, g g. ———————_————————— ;—_
o (3 ;“" 0 20 40 60 80 100 0 20 10 60 80 100
° 4 il &L
—~
1D 35
3
I
' 0 20 40 60 80 100 0 20 40 60 80 100
y y

95% SV Energy 99% SV Energy

* Method convergesin only 3

Subdomains MSE
M

Schwarz itgrations per BUVR CPU time (s) M  MSE(%) CPU time (s) _9 x 100
controller time-step
£ 0(1% l 0, 57 | 1.1 85 146 | 0.18 295

» Errors O(1%) or less 0, 44 |12 56 120 | 0.18 216 =

* 1.47x speedup over all-FOM 0, 24 |14 43 60 | 0.16 89

coupling for 95% SV energy
retention case

100

(N 32 1.9 @ 66 0.25 100
2

700
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FOM-HROM-HROM-HROM Coupling

< 5.0
j T}
I
= 2.5 1
o _ e ()
?-..g
= 0 20 40 60 30 100 o 1,
—~ ) ° {3
=Ty
% 51 Y ﬂ.q,
2 1SD
I
£ U ! T T T T T
' 0 20 40 60 30 100
iy

FOM in (, as this is “hardest” subdomain for ROM

HROMs in ,, Q5, O, capture 99% snapshot energy

Method converges in 3 Schwarz iterations per controller time-step
Errors 0(0.1%) with O error in

2.26x speedup achieved over all-FOM coupling

Further speedups possible via code
optimizations and additive Schwarz.

Subdomains

M
A —
15 120
13 60
4 66
Total

Subdomain 1: PROM Reduced Mesh
0 0 100 1%

120 140

MSE
(%))

0.0

0.26

0.43

u3E

95
26
17

&

Subdomain 2: PROM Reduced Mesh
0

99% SV Energy

CPU time (s)

0 120 140

x cell index

Subdomain 3: PROM Reduced Mesh
0 20 40 60 80 100 120 140
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« Extension to FOM*-ROM# and ROM-ROM Coupling
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» 1D Dynamic Wave Propagation in Hyperelastic Bar

» 2D Burgers Equation
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 Summary & Future Work
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model /
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*Full-Order Model. #Reduced Order Model.



7 I Summary and Future Work

Summary:

* In a 1D solid mechanics and 2D hyperbolic PDE setting, Schwarz
has been demonstrated for coupling of FOMs and (H)ROMs

« Computational gains can be achieved by coupling (H)ROMs

I .
Ongoing & future work: IT"ﬂ‘E'SSIO

« Extension to other applications and HPC codes (e.g.,
compressible flow and Pressio demo-apps/Pressio)

« Improving method efficiency (e.g., additive Schwarz)

* Coupling nonlinear approximation manifold methods

 Dynamic adaptation of domain partitioning & “on-the-fly”
ROM-FOM switching (reinforcement learning problem)

* Learning of “optimal” transmission conditions to ensure
structure preservation

« Extension of Schwarz to coupling of Physics Informed
Neural Networks (PINNs)

* https://https://pressio.github.io

Monolithic
: _ .
|

i
i
o

o5 1.5 0 15 in 15

Schwarz, T2 :
o
ne =
£ —

nE b

o 1.5 ] 15 in 16

Schiwarz, I3 .

"I _
e
o4
F

05 14 1 20 25 in 15

% [m)

Movie above: FOM-FOM coupling via Schwarz
for 2D double Mach reflection Euler problem
using pressio-demoapps®

Movie below: accelerating PINN training via
PINN-PINN coupling using Schwarz

Schwarz iteration 1; Pe = 10

0.6 " .
"/’ \\
.r"’ \
47 ’,/’ \‘\
,f"/ “\
0.2 1 e \
- \
.r” ]'I.
004 -~ !
0.0 0.2 0.4 0.6 0.8 1.0


https://https://pressio.github.io
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42 ‘ Bonus: PINN-PINN and PINN-FOM coupling Will Snyder

Neural Network Summer Intern
L TTTTTTTTTTTTT T TTTTTTToTToTT oo T o o TmmTmmTs < Virginia Tech
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\\“\\},‘{i‘(/ PDE loss £, (6) A |
ASONLLN l inimize
NA KL B . e |
V. 7 . 0" = LG
: ﬂ“.’o‘."x — BCloss £,(6) — Loss £(8) ——> 0 = argmin£0) |
N
Input STIRX Output
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Scenario 1: use Schwarz to train
subdomain PINNs (offline)

Goal: investigate the use of the Schwarz alternating method as a

means to couple Physics-Informed Neural Networks (PINNs) —| Scenario 2: use Schwarz to
coupled pre-trained subdomain

Related work: Li et al., 2019, Li et al., 2020, Wang et al., 2022. PINNs/NNs (online)




s | Bonus: PINN-PINN coupling

1D steady advection-diffusion equation on Q = [0,1]:

0 Va2 ¥1 1
Uy —VUyy =1, u(0)=u(1)=0 : : : :
\ J
PINNs are notoriously difficult to train o]
for higher Peclet numbers! Overlapping DD: Q = 1, U Q, with boundary dQ = {0,1}

|—> Can Schwarz help?
L, ,(8) = MSE (— VV2NN g (x, 8) + VNN g (x, 6) — 1)

Schwarz PINN training algorithm: Ly, (6) = MSE(NNE.(HH- 6)) + MSE(NNo (v, 6) = NNo,(v,,6) )

Loop over subdomains ; until convergence of Schwarz method
Train PINN in Q; with with loss £;(0) = aL,.;(6) + L, ;(0) + L, ;(6)
Communicate Dirichlet data between neighboring subdomains
Update boundary data on y; from neighboring subdomains
If strong enforcement of Dirichlet BC (SDBC), set i (x,6) = NNgq,(x, 6)
If weak enforcement of Dirichlet BC (WDBC), set # = 0 and ilq,(x, 8) = v(x)NNgq,(x,6) + w(x)ﬂﬂj(yj, 9)
where v(x) is chosen s.t. v(0) = v(y;) = v(1) = 0 and Y (x) is chosen s.t. v(y;) =1

I i Em B



44 ‘ Bonus: PINN-PINN coupling

Schwarz iteration 1; Pe = 250

1'[] N d"'"
..-*"'.F’ 1
084 WDBC Pt '-
..--""-'# !
0.6+ T |
-?_IS- ..-"'## :
S 0.4 _-- :
,.-"""## 1
0.2 1 _,_.-*" |
7 //!
001 -~ :
0.0 0.2 0.4 0.6 0.8 1.0
X
Schwarz iteration 1; Pe = 10
0.6 =TT
‘ SDBC on y; Pt \
- A%
- k)
- A\
— 0.4 1 ,-"' \
-?j- ;’J iy
3 ’a" "l.
02 h ’#’ 'I.‘
e
r"’# "I-
-~ ]
004 -~ L -
0.0 0.2 0.4 0.6 0.8 1.0

Schwarz iteration 1; Pe = 250

1.0 A =
="

- 1

081  SDBC on dQ) JPttas \
s -

061 Jtaas |
> .'._'...-"' :
S 0.4- _7 !
####f 1

D 2 . .'.--"“.F :
DD_' ___,_...-'""
0.0 0.2 0.4 0.6 0.8 1.0

* How Dirichlet boundary conditions are handled
has a large impact on PINN convergence

» Convergence not improved in general with
increasing overlap

* Increasing # subdomains in general will increase
CPU time



45 ‘ Bonus: PINN-PINN coupling

=
=
=

10"

Average L2 error over all Domains

Pe =100

< 4

O
A
L8
v A A <)
10°
CPU time (s)

T OA P40 AP>40

ApJO AN

2 (1, no snapshots, WDBC (unconverged)
2 (1, no snapshots, SDBC

2 (1, snapshots, WDBC (unconverged)

2 (1, snapshots, SDBC

3 1, no snapshots, WDBC (unconverged)
3 121, no snapshots, SDBC

3 11, snapshots, WDBC

3 (1, snapshots SDBC (unconverged)

4 1, no snapshots, WDBC (unconverged)
4 1, no snapshots, SDBC (unconverged)
4 1, snapshots, WDBC

4 (1, snapshots SDBC

5 €1, no snapshots, WDBC (unconverged)
5 1, no snapshots, SDBC (unconverged)
5 (1, snapshots, WDBC

5 (1, snapshots, SDBC

Using SDBCs and data loss helps with
PINN/NN convergence and accuracy



s | Bonus: PINN-FOM coupling

Schwarz iteration 1; Pe = 1000000

1 0 . / .~

0.8 -7
06 PINN subdomain ,’___.- |
> - ) |
— _- FOM subdomain |
- 0.4 4 -

0.2 A

0.0 A

0.0 0.2 0.4 0.6 0.8 1.0
X

« PINN-FOM coupling gives rapid PINN convergence for arbitrarily high Peclet humbers
* PINN-FOM couplings works with both WDBC and SDBC configurations
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s | Spatial Coupling via Alternating Schwarz

Overlapping Domain Decomposition

e

-

(n+1)

(n+1) _ _(n)
LYy =u,

( N (ugnﬂ}) =f,in{Q,

u, =g, on dQ\I}y

on Ij

( N(ugnﬂ}) =f,inf,

ugnﬂ} =g, on d,\I;
L‘Mg.rHl) _ §n+1) on l_.z

93}

I's

Model PDE: {

in
on an

N(u) = f,

u=9g,

>n

Q2

o0

Non-overlapping Domain Decomposition

rN (ugnﬂj) = f, in 0
9 ué"“} =g, ondQ\I
! ugﬂﬂ) = Adn+1s on I
rFN (ugnﬂ}) =f, in
\ ugn"'l:' =g, on 90Q,\T
kFug“H) n= Fu.&nﬂ} ‘n, on I

Apy1 =8+ (1-86)A,0on Ifornz=1

O

Dirichlet-Dirichlet transmission BCs
[Schwarz 1870; Lions 1988; Mota et

al. 2017; Mota et al. 2022]

This talk: sequential subdomain solves

(multiplicative Schwarz). Parallel subdomain —

92

o2

solves (additive Schwarz) also possible.

Relevant for multi-material and multi-

physics coupling

Alternating Dirichlet-Neumann
transmission BCs [Zanolli et al. 1987]

Robin-Robin transmission BCs also lead
to convergence [Lions 1990]

0 € 0,1]: relaxation parameter (can

help convergence)



s I Numerical Example: 1D Dynamic Wave Propagation

BasEsrigeIQ!\?lraTr]wd M, vary from 60 to 300
» Larger ROM used in 4, since solution has steeper gradient here

For couplings involving FOM and ROM/HROM, FOM is placed in 24, since solution has steeper gradient here

Non-negative least-squares optimization problem for ECSW weights solved using MATLAB’s 1sqnonneg
function with early termination criterion (solution step-size tolerance = 10™%)

» Ensures all HROMs have consistent termination criterion w.r.t. MATLAB implementation
» However, relative error tolerance of selected reduced elements will differ

¢ Switching to termination criterion based on relative error is work in progress and expected to improve

HROM results
» Convergence tolerance determines size of sample mesh N, ;

» Boundary points must be in sample mesh for application of Schwarz BC

0 50 100 150 20 250 300 350 400
nz =130

Figure left: sample sample mesh for
1D wave propagation problem

J. Barnett, I. Tezaur, A. Mota. "The Schwarz alternating method for the seamless coupling of
nonlinear reduced order models and full order models”, in Computer Science Research Institute

Summer Proceedings 2022, S.K. Seritan and J.D. Smith, eds., Technical Report SAND2022-10280R,
Sandia National Laboratories, 2022, pp. 31-55. (https://arxiv.org/abs/2210.12551)

I i Em B
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50 ‘ Numerical Example: Reproductive Problem Results

_ CPU Emse(y)/ Emsr(D1)/ Emse(ar)/ ,
Model Mi/Ms | N.1/N. , - g e N
ode 1/ Mz 1/ Ne2 time (s) Enmse(ta) Enmse(U2) Enmsel(az) S
FOM -/ —/— 1.871 x 107 iy - iy - -/ —
ROM 60/ — —/—= 1.398 x 10° | 1.659 x 10~ */— 1.037 x 10~ * 4.681 x 10 ' /— -
HROM 60,/ — 155/ — 5.878 x 10" | 1.730 x 10~ /— | 1.063 x 10~ /— | 4.741 x 107" /- -
ROM 200/ — -/- 1.448 x 10° | 2287 x 10”7 /— | 4.038 x 10™°/— | 4.542 x 10~ */— -
HROM 200/ — 428/ — 9.229 x 10° | 8396 x 10" /— | 8947 x 10" °/— | 7.462 x 10"~ /— —
FOM-FOM —/- —/—- 2.345 x 10° | — — — 24,630 . . .
FOM-ROM —/30 iy 2341 x 10° 2171 x 10 °/ | 3884 x10°°/ | 2.082x 107/ | 25227 Green shading highlights
1.253 x 10~° 2.401 x 10~* 2.805 x 1073 g
FOM-HROM —/80 —/130 2.085 x 107 2.022 x 10~7/ 1.723e x 1073/ 7.421 x 1073/ 29,678 most Compet]twe
5.734 x 10~* 5.776 x 10~3 3.791 x 1072
FOM-ROM —/200 —/- 2.449 x 108 | &784x107°%/ | 1.835x 1070/ | 5.550x 10/ |, oq, coupled models
' o 7.357 x 10~ 1! 4.027 x 107° 1.401 x 1077 o
. , B B 3 1.421 x 10°°/ 1.724 x 10~%/ 9.567 x 10~ %/
FOM-HROM /200 /252 2.352 x 10 4.563 » 10—4 5943 % 10-3 L 364 x 10-2 27,156
4.861 x 10" °/ 1.219 x 1077/ 1.586 x 10~/
ROM-ROM 200/80 —/— ) 3 27,810
/ / 2778 > 10 3.093 x 10~° 4.177 x 10~* 3.936 x 10°° '
HROM-HROM | 200/80 315/130 1.769 x 10° 3.410 x 10~ 7/ 4.110 x 10~ %/ 2.485 x 1071/ 29,860
6.662 x 10~ % 6.432 x 103 4.307 x 10~2
2.580 x 10~ %/ 6.226 x 10~ °/ 9.470 x 10~ * -
ROM-ROM 300/80 -/ . 3 25,059
/ / 2.646 > 10 1.292 x 107 2.483 x 10~ * 2.906 x 1077 7
HROM-HROM | 300/80 405/130 1.938 x 10° 6.960 x 107 6.328 x 10~ 2 3.137 x 10 ° 29,896
7.230 x 10~* 7.403 x 1073 4.960 x 10~

« All coupled models evaluated converged on average in <3 Schwarz iterations per time-step
« Larger FOM-ROM coupling has same total # Schwarz iters (Ng) as FOM-FOM coupling
« Other couplings require more Schwarz iters than FOM-FOM coupling to converge
» More Schwarz iters required when coupling less accurate models
» Larger 300/80 mode ROM-ROM takes less wall-clock time than smaller 200/80 mode ROM-ROM
* FOM-HROM and HROM-HROM couplings outperform the FOM-FOM coupling in terms of CPU time by 12.5-32.6%
* All couplings involving ROMs/HROMs are at least as accurate as single-domain ROMs/HROMs

I i Em B



51 | Numerical Example: Predictive Problem Results

« Start by calculating projection error for reproductive and predictive version of the Rounded Square IC problem:

|u — @p (B, Prr) " @ ull2

|2

Eproj(u, ®ar) =

107 « Projection error suggests predictive ROM can achieve
= accuracy and convergence with basis refinement
5
S 10 i+ 0(100) modes are needed to achieve sufficiently
E ] I . ]
re) Epmj[u, ¢, ). reproductive \ ] accurate ROM
0o Epmj[v, tth}, reproductive . . . .
_ e (a, &, reprodacive _ » Larger ROMs containing O(100) modes considered
) projt ! ' : : .
0°F | _ e (a0, predictive in our coupling experiments: M,= 300, M,= 200
- — — Epmj[v, Q>M}, predictive 1
_ _Epmj[a, 'J>M}, predictive
108
10° 10" 102 10°

POD basis size (M)



Theoretical Foundation

Using the Schwarz alternating as a discretization method for
PDEs is natural idea with a sound theoretical foundation.

S.L. Sobolev (1936): posed Schwarz method for linear elasticity in
variational form and proved method’s convergence by proposing a
convergent sequence of energy functionals.

S.G. Mikhlin (1951): proved convergence of Schwarz method for general
linear elliptic PDEs.

P.-L. Lions (1988): studied convergence of Schwarz for nonlinear monotone

* Lo . " . S.G. Mikhlin
elliptic problems using max principle. (1908 - 1890)
A. Mota, |. Tezaur, C. Alleman (2017): proved convergence of the
alternating Schwarz method for finite deformation quasi-static nonlinear
PDEs (with energy functional @[¢]) with a geometric convergence rate. P- L. Lions (1956-)

?[p)] = f A(F,Z)dV—f B-@dv
B B
V-P+B=0

A. Mota, I. Tezaur, C. Alleman




3 ‘ Convergence Proof*

4 Nemerical Examples
3

whaa [ = LA
o amtiad e 1] 1

Theorem 1. Assume that the energy functional @[] satisfies properties 1-5 above. Consider the Schwarz alternating
method of Section 2 defined by (9)—(13) and its equivalent form (39). Then

(@) [@pD] = o[V = ... > O[] = G[pM] > ... > D[], where @ is the minimizer of P[] over S.

(b) The sequence {q'i(") } defined in (39) converges to the minimizer @ of @[] in S.

(c) The Schwarz minimum values [@""] converge monotonically to the minimum value ®[p) in S starting from any
initial guess @7

Iytic Ssbution for Linear-Elasise Smgular Bar
b we pavide the sk ion of e snglir bor of Socticn 4% s Liness shuticay. The

*A. Mota, I. Tezaur, C. Alleman. "The Schwarz Alternating Method in Solid Mechanics", CMAME 319 (2017), 19-51.



Schwarz Alternating Method for Dynamic Multiscale Coupling: Theory

54

* Like for quasistatics, dynamic alternating Schwarz method converges provided each single-domain
problem is well-posed and overlap region is non-empty, under some conditions on At.

* Well-posedness for the dynamic problem requires that action functional S[¢] =

I, J, L (@, @)dVdt be strictly convex or strictly concave, where L(¢, @) =T (@) + V(@) is the
Lagrangian.
> This is studied by looking at its second variation §2S[¢},]

* We can show assuming a Newmark time-integration scheme that for the fully-discrete problem:

52S[¢y) = x7 M — I{]x

.};2
[(ﬁﬂf}z
> §2S[¢gy,] can always be made positive by choosing a sufficiently small At

» Numerical experiments reveal that At requirements for stability/accuracy typically lead to
automatic satisfaction of this bound.



Schwarz for Multiscale FOM-FOM Coupling in Solid

nodal eqps
2.226e+00

Time: 0.000000

11132

M'\_Il|||||\|||||||\|||||||\’"H
g
7
8

y-displacement EQPS

Figure above: tension specimen simulation coupling

composite TET10 elements with HEX elements in Sierra/SM.

Figures right: bolted joint simulation coupling composite
TET10 elements with HEX elements in Sierra/SM.

W%

Single Q Schwarz

Single Q

I i Em B

" Mota et al. 2017; Mota et al. 2022.



s 1 Numerical Example: Linear Elastic Wave Propagation

Problem
» Linear elastic clamped beam with Gaussian initial condition.

« Simple problem with analytical exact solution but very stringent test for discretization/coupling
methods.

* Couplings tested: FOM-FOM, FOM-ROM, ROM-ROM, implicit-explicit, implicit-implicit, explicit-
explicit.

* ROMs are reproductive and based on the 0.01 displecement, ssnpshot 1 time = 0
POD/Galerkin method. ki
» 50 POD modes capture ~100% snapshot 0.006
energy 0.004 |

0.002

-0.002 |
-0.004
-0.006

-0.008

Above: 3D rendering of clamped beam with Gaussian initial condition. | |
Right: Initial condition (blue) and final solution (red). Wave profile is 00 0.2 0.4 0.6 0.8 1
negative of initial profile at time T = 1.0e-3.




Linear Elastic Wave Propagation Problem: FOM-ROM and
> ROM-ROM Couplings

Coupling delivers accurate solution if each subdomain model is reasonably accurate,
can couple different discretizations with different Ax, At and basis sizes.

0.01 displacement, snaishot 1, time=0

-0.01

0 0.2 0.4 0.6 0.8 1
velocity, snapshot 1, time =0

1 1 1 1
0 0.2 0.4 0.6 0.8 1
<107 acceleration, snapshot 1, time = 0

Single Domain FOM

-0.01

0 0.2 0.4 056 08 0.0, 0.2 0.4 06 0.8 1
__velocity, snapshot 1, time =0 _ velocity, snapshot 1, time = 0
200} 200} ' ' I I
O — e b
-200} . . . . -200}
o 0.2 0.4 0.6 0.8 0 0.2 0'.4 0.6 0.8 1
, <107 acceleration, snapshot 1, time = 0 <107 acceleration, snapshot 1, time = 0
L 2F T T T T

0.01 displacement, snapshot 1, time = 0 displacement, snapshot 1, time = 0
a : ) ! L 0.01 T T N T T

o 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1

3 overlapping subdomain
ROM'-FOMZ-ROM3

2 non-overlapping subdomain
FOM*-ROM> (68 = 1)

OI 'H 1|
' ' 0 f, 05 0 03
R 03 1 SImplicit FOM, At =2.25e-7,
"Implicit 40 mode POD ROM, At=1e-6, Ax=1.25e-3 0.25 {13 0.75 Ax =1e-6

Zimplicit FOM, At =1e-6, Ax =8.33e-4
3Explicit 50 mode POD ROM, At =1e-7, Ax =1e-3

“Explicit 50 mode POD ROM,
At =2.25e-7, Ax =1e-6




s | Linear Elastic Wave Propagation Problem: FOM-ROM and
ROM-ROM Couplings

Coupled models are reasonably accurate w.r.t. FOM-FOM coupled analogs and convergence
with respect to basis refinement for FOM-ROM and ROM-ROM coupling is observed.

| disp MSE°| velo MSE | acce MSE_

Overlapping ROM'-FOM2-ROM3  1.05e-4 1.40e-3 2.32e-2
Non-overlapping FOM*-ROM> 2.78e-5 2.20e-4  3.30e-3

'Implicit 40 mode POD ROM, At =1e-6, Ax =1.25e-3
Iimplicit FOM, At =1e-6, Ax =8.33e-4

3Explicit 50 mode POD ROM, At =1e-7, Ax =1e-3
“Implicit FOM, At =2.25e-7, Ax =1e-6

SExplicit 50 mode POD ROM, At =2.25e-7, Ax =1e-6

N N
6MSE= mean squared error = \J Z |a"(p) — u" (#)”3/\] Z HUR(F’)HE
n=1 n=1



ROM-W:%MQQ?gives errors < 0(1e-6) & speedups over FOM-FOM coupling for basis sizes > 40.

MSE in displacement for 2 CPU times for 2 subdomain ROM-ROM Average # Schwarz iterations for 2
| subdomain ROM-ROM coupling coupling normalized by FOM-FOM CPU time | subdomain ROM-ROM coupling

9 | Linear Elastic Wave Propagation Problem: ROM-ROM E

» 100 100
| a0 | ) | B
. 90
| &0 '80 ‘80 - * I
' . ‘ 70 ’ 70 1s
| ) | i
&l _ 60 60
1" \ |
| M 0 Mso ﬂ50 128
40 40 40
30 30 ’
20
. N - e - h 8
N 10 B e 10
—— e . :
( 4 | 1N 0 0 1
i 0 20 40 60 80 100 0 20 40 60 80 100
# POD modes in # POD modes in # POD modes in ©, :

Smaller ROMs are not the fastest: less accurate & require more Schwarz iterations to converge.

All couplings converge in < 4 Schwarz iterations on average Overlapping implicit-implicit cguhling
(FOM-FOM coupling requires average of 2.4 Schwarz iterations). with Q; = [0,0.75], Q,= [0.25,1]




« | Linear Elastic Wave Propagation Problem: FOM-ROM

F%ﬂ-"kgurc!%ling shows convergence with basis refinement. FOM-ROM couplings are 10-
15% slower than comparable FOM-FOM coupling due to increased # Schwarz iterations.

MSE for 2 subdomain
FOM-ROM coupling

10

=== (isplacement

= velocity

10° |

acceleration | |

Average MSE over 2 subdomains
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CPU times for 2 subdomain
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by FOM-FOM CPU time
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performance.
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Linear Elastic Wave Propagation Problem: FOM-ROM and

ROM-ROM Couplings

Inaccurate model + accurate model #
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Figures above: Q, = [0,0.75], Q,=[0.25, 1]

20 mode POD - FOM

Observation suggests need for
“smart” domain decomposition.

Accuracy can be improved by “gluing”
several smaller, spatially-local models
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62 ‘ Energy-Conserving Sampling and Weighting (ECSW)

* Project-then-approximate paradigm (as opposed to approximate-then-project)

re(qr,t) = WTr(i, t)
_ WTLTr, (L,+1, t)

ees

« L, €{0,1}%*N where d, is the number of degrees of freedom associated with each mesh element (this is
in the context of meshes used in first-order hyperbolic problems where there are N, mesh elements)

« L.+ € {0,1}%*N selects degrees of freedom necessary for flux reconstruction

« Equality can be relaxed

Augmented reduced mesh: © represents a
selected node attached to a selected
element; and & represents an added node to
enable the full representation of the
computational stencil at the selected
node/element




63

ECSW: Generating the Reduced Mesh and Weights

Using a subset of the same snhapshots u;,i € 1, ..., n;, used to generate the state basis I/, we can train the
reduced mesh

Snapshots are first projected onto their associated basis and then reconstructed
Cse = WTLETE (Le+ (uref +V VT(HS - uref)) ) t) e R"
d, =n(i,t) € R", s=1,..,ny

We can then form the system
611 pew ClNe dl

Cnp1 = Cpn, dnh
Where €& = d, & € RNe, & = 1 must be the solution
Further relax the equality to yield non-negative least-squares problem:
§ = arg minyecgn||Cx — d||, subjecttox = 0

Solve the above optimization problem using a non-negative least squares solver with an early
termination condition to promote sparsity of the vector ¢



Numerical Example: 1D Dynamic Wave Propagation

« Altern %ng%urlchlet Neumann Schwarz BCs with no relaxation (6 = 1) on Schwarz boundary I’

(. (n41) . Min # Max # Total #
Div P, +pB(t;)) =0, in{, Schwarz Schwarz Schwarz
) ‘pgnﬂ} = ¥, on a0\ Iters Iters Iters
1.10 3 9 59,258
\ 7Y = A on I o T Qs
1.00 1 4 24,630
)
DivP""Y 4+ pB(t) =0, inQ, \ 0.99 1 5 35,384
0
] (pg’”” = x, on aQ,\T 0.95 3 6 45,302
pfz”””n = pg”‘“)n} on T A,y =0+ (1 =04, on Nforn=1 0.90 3 8 56,114

» A parameter sweep study revealed 8 = 0 gave best performance (min # Schwarz iterations)

« All couplings were implicit-implicit with At; = At, = AT = 1077 and Ax; = Ax, = 1073
» Time-step and spatial resolution chosen to be small enough to resolve the propagating wave

« All reproductive cases run on the same RHEL8 machine and all predictive cases run on the same RHEL7
machine, in MATLAB

* Model accuracy evaluated w.r.t. analogous FOM-
FOM coupling using mean square error (MSE):

(el = w3
N

EMSE (ﬁi) —

I i Em B



‘ Overlapping Coupling, Nonlinear Henky MM, 2 Subdomains

« 0 =10,0.7]U[0.3,1], implicit-implicit FOM-FOM coupling, dt = 1e-7, dx=1e-3.

10

x10* Idisplacemell'lt, sshoil: 1, time=0 displacement, snapshot 1, time = 0

O 0-2 0-4 0.6 0.8 l 0 0.2 0.4 0.6 0.8 1
velocity, Isnapshot 1,I time =0 velocity, snapshot 1, time = 0
T T

T
10 ~ T 10 L
() 1 = ——

(0 o

-101 | .10t
-20F i 20}
-30E ! L L ! = -30 1 1 1 )
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
6 H H —_
6 x10 Iacceleratloln, snapshotll, time = o. - . %105 acceleration, snapshot 1, time =0
4 - B 4t
2r ] 2
0 04
:421 ! ! | | | -2
_ -4

Multiplicative Schwarz Additive Schwarz



# Schwarz iters
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k=
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T

ot

Overlapping Coupling, Nonlinear Henky MM, 2 Subdomains

Impl-lmpl FOM-FOM, Overlapping, Henky MM

Additive

— — — Multiplicative |7

=

0.2

0.4

time

0.6

0.8

1

%1073

coupling, dt = 1e-7, dx=1e-3.

« Additive Schwarz requires slightly more Schwarz
iterations but is actually faster.

« Solutions agree effectively to machine precision

« (0 =10,0.7]U[0.3,1], implicit-implicit FOM-FOM I
[
in mean square (MS) sense. I

| Additive | Multiplicative

Total # Schwarz iters 24495 24211

CPU time 2.03e3s 2.16e3
6.34e-13/6.12e-13
1.35e-11/1.86e-11
5.92e-10/1.07e-9

MS difference in disp
MS difference in velo
MS difference in acce

I i Em B



3Im|:|I-Im|:|I-EJI:|:||I FOM-FOM-FOM, Overlapping, Henky MM

2.871

2.6

# Schwarz iters
= = = Pt P
(%] =" 5] Pt Pt ="

i

Overlapping Coupling, Nonlinear Henky MM, 3 Subdomains
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I
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I
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time

0.6

0.8

x1073

« 0 =10,0.3]U[0.25,0.75]U[0.7,1], implicit-implicit-explicit
FOM-FOM-FOM coupling, dt = 1e-7, dx = 0.001.

« Solutions agree effectively to machine precision in
mean square (MS) sense.

« Additive Schwarz has slightly more Schwarz iterations
but is slightly faster than multiplicative.

| Additive | Multiplicative

Total # Schwarz iters 26231 25459

CPU time 1.89e3s 2.05e3s
MS difference in disp 5.3052e-13/9.3724e-13/6.1911e-13
MS difference in velo 7.2166e-12/2.2937e-11/2.4975e-11
MS difference in acce 2.8962e-10/1.1042e-09/1.6994e-09



‘ Non-overlapping Coupling, Nonlinear Henky MM, 2 Subdomains

« 0 =10,0.3]U[0.3,1], implicit-implicit FOM-FOM coupling, dt = 1e-7, dx = 1le-3.

10 %107 displacement, snapshot 1, time = 0
T T _,/1},\ T T
I 7\ I
/
(O i == =" ) -
0 0.2 0.4 0.6 0.8 1
velocity, snapshot 1, time =0
T T T T
10+ -
O mm - —
10| i
20+ i
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0 0.2 0.4 0.6 0.8 1
6 %10° acceleration, snapshot 1, time =0
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e ———————— | ;'i R — .
2t \Vi ;
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Multiplicative Schwarz
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O = = = S
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# Schwarz iters

Non-overlapping Coupling, Nonlinear Henky MM, 2 Subdomains

Impl-lmpl FOM-FOM, Non-Overlapping, Henky MM

Additive
— — — Multiplicative

o
T
|

Ln
T

i
T

W
T
|
|

Fd

—

coupling, dt = 1e-7, dx = 1e-3.

Additive Schwarz requires 1.81x Schwarz
iterations (and 1.9x CPU time) to converge.
CPU time could be reduced through added
parallelism of additive Schwarz.

« 0 =10,0.3]U[0.3,1], implicit-implicit FOM-FOM i
I
» Note blue square for additive Schwarz... I

« Additive and multiplicative solutions differ in
mean square (MS) sense by O(1e-5).

_ Additive Multlpllcatlv |

Total # Schwarz iters 44895 24744
CPU time 1.87e3s 982.5s

MS difference in disp 4.26e-5/2.74e-5

MS difference in velo 1.02e-5/5.91e-6

MS difference in acce 5.84e-5/1.21e-5 !



# Schwarz iters

« Q0 =10,0.3]U[0.3,0.7]U[0.7,1], implicit-implicit-
Impl-impl-Expl FOM-FOM-FOM, Non-overlapping, Henky MM explicit FOM-FOM-FOM coupling, dt = 1e-7, dx =
0.001.

Additive _ « Additive Schwarz has about 1.94x number Schwarz

— — — Multiplicative

Non-overlapping Coupling, Nonlinear Henky MM, 3 Subdomains E

iterations and is about 2.06x slower - similar to 2 s
subdomain variant of this problem. No “blue |
square”.
» Results suggest you could win with additive ]
Schwarz if you parallelize and use enough

1 domains.

A TR  Additive/multiplicative solutions differ by O(1e- |

| :'{ {: ¥ : ] 5), like for 2 subdomain variant of this problem.

. T dditive | Multiplicative
0 0.2 0.4 0.6 0.8 1

time %107 Total # Schwarz iters 53413 27509 r
CPU time 5.91e3s 2.87e3s I
MS difference in disp 2.8036e-05/3.1142e-05/ 8.8395e-06 ‘

MS difference in velo 1.4077e-05/1.2104e-05/6.5771e-06
MS difference in acce 8.7885e-05/3.2707e-05/1.3778e-05
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Figures show the mid-plane slice of the solution for u, at various times o
The right subdomain is a finer mesh, and the difference in how the shock is resolved
can be seen

Q, - Q, ordering gives 2 Schwarz iterations per global time step

(1, — ), ordering gives 3 Schwarz iterations per global time step

FOM-FOM Coupling: Differing Resolution

t = 16.50 t

I
]
E‘:t
=
=

0 20 10 60 80 100 0 20 10 60 <0 100

= U ,&x =~ |

I 20 10 60 80 100 ; 0 20 40 60 80 100
Yy Y
Figures above: Two-subdomain explicit-explicit overlapping coupling in x-axis
[0, 70] U [30, 100] where u = [4.3,0.021], At = 0.005, Ax; = 0.4, Ax, = 0.3

X

1(|)0

v

1(|)0

Order can be important!

2

12,




72 I FOM-FOM Coupling: Differing time integrators and At

t = 16.50 t = 25.00
Li_l Li'_|) 4_ . ﬂl
0 20 10 60 80 100 B 20 40 60 80 100
= 35.0
%"1.5- %
I 1.0 925
0 20 10 60 80 100 ) 0 20 10 60 80 100
Y Y
Figures above: Two-subdomain implicit-explicit overlapping coupling in x-axis [0, 70]
U [30, 100], u = [4.3,0.021], At, = 0.05, At, = 0.005, Ax; = 0.4, Ax, = 0.3
0 x 100
Introducing a different time stepper in Q; has not introduced artifacts and produces © '
visually identical solution
TRy 12
Choosing , — Q, still only requires 2 Schwarz iterations per global time step
o
o_

I i Em B



7z 1 FOM-FOM Coupling: >2 Subdomains

t = 16.50 t

|

b
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S
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I Tl

I i Il

L1 Lo
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Y Y
Figures above: Four-subdomain implicit-explicit-implicit-explicit overlapping
coupling in x-axis [0, 60] U [40, 100] and y-axis [0,60] U [40, 100], u = [4.3,0.021],

At, = Aty = 0.05, At, = At, = 0.005, Ax, = Ax, = 0.4,Ax, = Ax; = 0.3

« Despite a heterogeneous mixture of different subdomains coupled in multiple °
dimensions with different solvers, resolutions, etc. the solution is still consistent

0 ¥ 1(.)0

v

« Choosing 2, = Q, = Q5 = Q, requires 3 Schwarz iterations per global time step

100




74 ‘ FOM-FOM Coupling: >2 Subdomains

t = 0.00

. Wall Clock

= 50.00)
(]
o
-
B DN $ 380 B B e

Monolithic 124 124 “2’1 : o
0 20 40 60 80 100
ﬂl 75 G o ﬂ3
0, 62 e ELUU- e
0; 62 2 15D
0, 77 £0.951 [ i !
= 0 20 40 60 80 100 |
Y
Figures above: Four-subdomain implicit-implicit-implicit-implicit overlapping
coupling in x-axis [0, 60] U [40, 100] and y-axis [0,60] U [40, 100], u = [4.3,0.021],

At = 0.05, Ax, = Ax, = 0.4,Ax, = Ax; = 0.3

« Despite a heterogeneous mixture of different subdomains coupled in multiple
dimensions with different solvers, resolutions, etc. the solution is still consistent

« Choosing (; = Q, = Q3 = Q4 requires 3 Schwarz iterations per global time step




HROM-FOM-FOM-FOM Coupling

t =0.00

75

uz(x, y = 50.00)
| s

° N 1

1 o 0 7
0 20 40 60 =0 100

T o 0 3

we(x = 50.00, y)
=
o
- =2
(0
O

0.9
0 20 40 60 80 100 n.=4,346 (19% of N,)
]
HROM-FOM-FOM-FOM Wall FOM-FOM-FOM-FOM Wall
Clock Time (s) Clock Time (s)
30 68 2.3
276 300 1.1

« We have computational gain even when choosing the “worst” subdomain for HROM
* No speedup over single-domain FOM (wall clock time = 124 s)
» Mitigation: additive Schwarz, which admits more parallelism




76 ‘ HROM-FOM-FOM-FOM Coupling

S
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U

« HROMisin Q, and retains 95% of snapshot energy = 57 modes
» HROM assignment is “worst-case-scenario”

« Method convergesin 3 Schwarz iterations per controller time-step.
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Reduced mesh trained only using a single parameter instance of u = [4.25, 0.0225]

Some spurious oscillations in first/last time steps due to under-resolved solution

Spurious oscillations do not impact Schwarz coupling.
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7 I Summary
Opinion: hybrid FOM-ROM models are the future!

* We have developed an iterative coupling formulation based on the Schwarz alternating
method and an overlapping or non-overlapping DD

* Numerical results show promise in using the proposed methods to create heterogeneous
coupled models comprised of arbitrary combinations of ROMs and/or FOMs

» Coupled models can be computationally efficient w.r.t analogous FOM-FOM couplings

» Coupling introduces no numerical artifacts into the solution

 FOM-ROM and ROM-ROM have potential to improve the predictive viability of projection-
based ROMs, by enabling the spatial localization of ROMs (via DD) and the online
integration of high-fidelity information into these models (via FOM coupling)
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Comparison of Methods

Alternating Schwarz-based Coupling Method

Can do FOM-FOM, FOM-ROM, ROM-ROM coupling
Overlapping or non-overlapping DD

Iterative formulation (less intrusive but likely
requires more CPU time)

Can couple different mesh resolutions and
element types

Can use different time-integrators with
different time-steps in different subdomains

No interface bases required

Sequential subdomain solves in multiplicative
Schwarz variant

> Parallel subdomain solves possible with
additive Schwarz variant (not shown)

Extensible in straightforward way to PINN/DMD
data-driven model

Lagrange Multiplier-Based Partitioned Coupling Method

Can do FOM-FOM, FOM-ROM, ROM-ROM coupling
Non-overlapping DD

Monolithic formulation requiring hybrid
formulation (more intrusive but more efficient)

Can couple different mesh resolutions and
element types

Can use different explicit time-integrators with
different time-steps in different subdomains

Provably convergent variant requires interface
bases

Parallel subdomain solves if explicit or IMEX
time-integrator is employed

Extensions to PINN/DMD data-driven models are
not obvious

E
I

I i Em B



79 1 Ongoing & Future Work

« Extension/prototyping on more multi-D (2D/3D compressible flow', 2D/3D solid mechanics?) and multi-physics
problems (FSI, Air-Sea coupling)

* Implementation/testing of additive Schwarz variant, which admits more parallelism

* Analysis of method’s convergence for ROM-FOM and ROM-ROM couplings

* Learning of “optimal” transmission conditions to ensure structure preservation

» Extension of coupling methods to coupling of Physics Informed Neural Networks (PINNs) (WIP)

» Exploration of connections between iterative Schwarz and optimization-based coupling [lollo et al., 2022]

» Development of smart domain decomposition approaches based on error indicators, to determine optimal
placement of ROM and FOM in a computational domain (including on-the-fly ROM-FOM switching)

» Extension of couplings to POD modes built from snapshots on independently-simulated subdomains

« Journal article currently in preparation.

1 https://github.com/ Pressio/pressio-demoapps
2 https://github.com/Ilxmota/norma
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