
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly 
owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-
0003525.

Accelerator Packages and Performance
Stan Moore

2023 LAMMPS Beginners Tutorial

SAND2023-07578CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do
not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract
DE-NA0003525.



§ Currently 7 out of the top ten supercomputers use GPUs 
(Graphics Processing Units), according to the June 2023 
Top500 List (https://www.top500.org)

§ All 3 US exascale machines will have GPUs: OLCF Frontier 
(AMD), ALCF Aurora (Intel), NNSA El Capitan (AMD)

§ LAMMPS accelerator packages: special code (beyond regular 
C++ and MPI in LAMMPS) that is required to run well on GPUs 
and many-core CPUs (e.g. CUDA, OpenMP)

Supercomputer Hardware Trends

2
http://www.nvidia.com/object/tesla-p100.html

https://www.top500.org/


Accelerator Packages

§ LAMMPS has 5 accelerator packages: 
§ OPENMP
§ INTEL
§ OPT
§ GPU
§ KOKKOS

§ https://docs.lammps.org/Speed_packages.html

3

https://docs.lammps.org/Speed_packages.html


Running OPT Package

§ OPT package includes optimized versions of some styles
§ Compile LAMMPS with OPT package
§ Run with 8 MPI: mpiexec -np 8 ./lmp_exe -in 
in.lj -sf opt

§ -sf opt is the suffix command: automatically appends 
/opt onto anything it can

§ For example, pair_style lj/cut automatically 
becomes pair_style lj/cut/opt (no changes to 
input file needed)

§ https://docs.lammps.org/suffix.html

4

https://docs.lammps.org/suffix.html


OPENMP Package

§ https://docs.lammps.org/Speed_omp.html
§ Uses OpenMP to enable multithreading on CPUs
§ MPI parallelization in LAMMPS is almost always more 

effective than OpenMP on CPUs
§ When running with MPI across multi-core nodes, MPI often 

suffers from communication bottlenecks, so using 
MPI+OpenMP per node could be faster

§ The more nodes per job and the more cores per node, the 
more pronounced the bottleneck and the larger the benefit 
from MPI+OpenMP

§ OPENMP package may vectorize (SIMD) better than vanilla 
LAMMPS styles

5

https://docs.lammps.org/Speed_omp.html


Running OPENMP Package

§ Compile LAMMPS with OPENMP package
§ Run with 2 MPI and 2 OpenMP threads:

export OMP_NUM_THREADS=2 

mpiexec -np 2 ./lmp_exe –in in.lj -sf omp

6



INTEL Package

§ https://docs.lammps.org/Speed_intel.html
§ Allows code to vectorize and run well on Intel (and 

other) CPUs, also supports OpenMP threading
§ Can also be used with the OPENMP package
§ Normally best performance out of all accelerator 

packages for CPUs
§ Supports reduced precision: mixed FP64+FP32 or 

pure single FP32

7

https://docs.lammps.org/Speed_intel.html


Running INTEL Package

§ Compile LAMMPS with INTEL package
§ To run using 2 MPI and 2 threads on a Intel CPU:

mpiexec -np 2 ./lmp_exe -in in.lj -pk intel 
0 omp 2 mode double -sf intel

§ -pk is the package command that sets package options, see 
https://docs.lammps.org/package.html

8

https://docs.lammps.org/package.html


GPU Package

§ https://docs.lammps.org/Speed_gpu.html
§ Designed for one or more GPUs coupled to many CPU cores
§ Only pair runs on GPU, fixes/bonds/computes run on CPU
§ Atom-based data (e.g. coordinates, forces) move back and 

forth between the CPU(s) and GPU every timestep
§ Asynchronous force computations can be performed 

simultaneously on the CPU(s) and GPU if using Kspace (e.g. 
PPPM)

§ Provides NVIDIA and more general OpenCL support
§ Supports reduced precision: mixed FP64+FP32 or pure single 

FP32

9

https://docs.lammps.org/Speed_gpu.html


Running GPU Package

§ Compile GPU library found in lib/gpu 
§ Compile LAMMPS with GPU package
§ Run with 16 MPI and 4 GPUs: mpiexec -np 16 
./lmp_exe -in in.lj -sf gpu -pk gpu 4

§ Important: use CUDA MPS (Multi-Process Service) if using 
multiple MPI ranks per GPU

§ Automatically overlaps pair-style on GPU with Kspace on CPU

10



§ Abstraction layer between programmer and next-generation 
platforms

§ Allows the same C++ code to run on multiple hardware (GPU, 
CPU)

§ Kokkos consists of two main parts:
1. Parallel dispatch—threaded kernels are launched and mapped onto 

backend languages such as CUDA or OpenMP
2. Kokkos views—polymorphic memory layouts that can be optimized 

for a specific hardware

§ Used on top of existing MPI parallelization (MPI + X)
§ See https://kokkos.github.io/kokkos-core-wiki for more info

11

https://kokkos.github.io/kokkos-core-wiki


LAMMPS KOKKOS Package

§ https://docs.lammps.org/Speed_kokkos.html
§ Need C++17 compiler
§ Supports OpenMP and GPUs
§ Designed so that everything (pair, fixes, computes, etc.) runs 

on the GPU, minimal data transfer from GPU to CPU
§ Relative performance penalty if kernel isn’t ported to Kokkos
§ Only double precision FP64 support
§ Package options can toggle full and half neighbor list, newton 

on/off, etc.
 -pk kokkos newton on neigh half

§ https://docs.lammps.org/package.html
12

https://docs.lammps.org/Speed_kokkos.html
https://docs.lammps.org/package.html


Running Kokkos Package

§ Compile LAMMPS with the KOKKOS package
§ Run with 4 MPI and 4 GPUs: mpiexec -np 4 
./lmp_exe -in in.lj -k on g 4 -sf kk

§ Run with 4 OpenMP threads: ./lmp_exe -in in.lj -k 
on t 4 -sf kk

13



Processor and Thread Affinity

§ Use mpirun command-line arguments (e.g. --bind-to 
core) to control how MPI tasks and threads are assigned to 
nodes and cores

§ Also use OpenMP variables such as OMP_PROC_BIND and 
OMP_PLACES

§ One must also pay attention to NUMA bindings between 
tasks, cores, and GPUs. For example, for a dual-socket system, 
MPI tasks driving GPUs should be on the same socket as the 
GPU

14



§ For KOKKOS package on GPUs, timing breakdown won’t be 
accurate without CUDA_LAUNCH_BLOCKING=1 (but will 
prevent kernel overlap and could slow down simulation)

Measuring performance

15



Parallel MD Performance

§ MD parallelizes well: major parts of timestep (forces, neighbor list build, 
time integration) can be done in parallel through domain decomposition

§ High communication overhead when strong scaling to a few 100 
atoms/proc (depends on cost of the force-field)

§ Strong scaling: hold system size fixed while increasing processor count (# 
of atoms/processor decreases)

§ Weak scaling: increase system size in proportion to increasing processor 
count (# of atoms/processor remains constant)

§ For perfect strong scaling, doubling the processor count cuts the 
simulation time in half

§ For perfect weak scaling, the simulation time stays exactly the same when 
doubling the processor count

§ Harder to maintain parallel efficiency with strong scaling because the 
compute time decreases relative to the communication time

16



Performance of Different Potentials

§ See plots in LAMMPS reference paper
§ https://doi.org/10.1016/j.cpc.2021.108171

17

https://doi.org/10.1016/j.cpc.2021.108171


Thank You

Questions?

18


