his paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do SAND2023-07578C
not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia

Exceptional service in the national interest National
Laboratories

Stan Moore
2023 LAMMPS Beginners Tutorial

l’-:;\'. 1 . E . Y4 ',&Vﬂ Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly
'\&'_,‘ ENERGY "' v_é___.. _! owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-
- 0003525.

Sandia National Laboratories WIS3ndia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly_
. owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract
® Y NISH DE-NA0003525.

Supercomputer Hardware Trends rh)

= Currently 7 out of the top ten supercomputers use GPUs
(Graphics Processing Units), according to the June 2023
Top500 List (https://www.top500.0rg)

= All 3 US exascale machines will have GPUs: OLCF Frontier
(AMD), ALCF Aurora (Intel), NNSA El Capitan (AMD)

= LAMMPS accelerator packages: special code (beyond regular

C++ and MPI in LAMMPS) that is required to run well on GPUs
and many-core CPUs (e.g. CUDA, OpenMP)

https://www.top500.org/

Accelerator Packages) joos,

= LAMMPS has 5 accelerator packages:
= OPENMP
= INTEL
= OPT
= GPU
= KOKKOS

" https://docs.lammps.org/Speed packages.html

https://docs.lammps.org/Speed_packages.html

Sandia

Running OPT Package) e

= OPT package includes optimized versions of some styles

= Compile LAMMPS with OPT package

* Runwith8 MPl: mpiexec -np 8 ./lmp exe -in
in.lj -sf opt

= —-sf opt isthe suffix command: automatically appends
/opt onto anything it can

" Forexample, pair style 17j/cut automatically
becomes pair style 1j/cut/opt (nochangesto
input file needed)

= https://docs.lammps.org/suffix.html

https://docs.lammps.org/suffix.html

Sandia

OPENMP Package) fee,

= https://docs.lammps.org/Speed_omp.html

= Uses OpenMP to enable multithreading on CPUs

= MPI parallelization in LAMMPS is almost always more
effective than OpenMP on CPUs

= When running with MPI across multi-core nodes, MPI often
suffers from communication bottlenecks, so using
MPI+OpenMP per node could be faster

= The more nodes per job and the more cores per node, the
more pronounced the bottleneck and the larger the benefit
from MPI1+OpenMP

= OPENMP package may vectorize (SIMD) better than vanilla
LAMMPS styles

5

https://docs.lammps.org/Speed_omp.html

Running OPENMP Package) e,

= Compile LAMMPS with OPENMP package
"= Run with 2 MPIl and 2 OpenMP threads:

export OMP NUM THREADS=Z2

mpiexec -np 2 ./lmp exe —-in in.1lj -sf omp

Sandia

INTEL Package LUf

= https://docs.lammps.org/Speed intel.html

= Allows code to vectorize and run well on Intel (and
other) CPUs, also supports OpenMP threading

" Can also be used with the OPENMP package

= Normally best performance out of all accelerator
packages for CPUs

= Supports reduced precision: mixed FP64+FP32 or
pure single FP32

https://docs.lammps.org/Speed_intel.html

Running INTEL Package

= Compile LAMMPS with INTEL package
"= Torun using 2 MPIl and 2 threads on a Intel CPU:

mpiexec -np 2 ./lmp exe -in in.lj -pk intel
0 omp 2 mode double -sf 1intel

= —pk isthe package command that sets package options, see
https://docs.lammps.org/package.html

https://docs.lammps.org/package.html

GPU Package) .,

= https://docs.lammps.org/Speed gpu.html

= Designed for one or more GPUs coupled to many CPU cores
= Only pair runs on GPU, fixes/bonds/computes run on CPU

= Atom-based data (e.g. coordinates, forces) move back and
forth between the CPU(s) and GPU every timestep

= Asynchronous force computations can be performed
simultaneously on the CPU(s) and GPU if using Kspace (e.g.
PPPM)

= Provides NVIDIA and more general OpenCL support

= Supports reduced precision: mixed FP64+FP32 or pure single
FP32

9

https://docs.lammps.org/Speed_gpu.html

Running GPU Package) .

= Compile GPU library found in lib/gpu

= Compile LAMMPS with GPU package

= Run with 16 MPl and 4 GPUs: mpiexec -np 16
./1lmp exe -in in.lj -sf gpu -pk gpu 4

= |mportant: use CUDA MPS (Multi-Process Service) if using
multiple MPI ranks per GPU

= Automatically overlaps pair-style on GPU with Kspace on CPU

"kokkos)

= Abstraction layer between programmer and next-generation
platforms

= Allows the same C++ code to run on multiple hardware (GPU,
CPU)
= Kokkos consists of two main parts:

1. Parallel dispatch—threaded kernels are launched and mapped onto
backend languages such as CUDA or OpenMP

2. Kokkos views—polymorphic memory layouts that can be optimized
for a specific hardware

= Used on top of existing MPI parallelization (MPI + X)
= See https://kokkos.github.io/kokkos-core-wiki for more info

11

https://kokkos.github.io/kokkos-core-wiki

LAMMPS KOKKOS Package)

= https://docs.lammps.org/Speed kokkos.html

= Need C++17 compiler
= Supports OpenMP and GPUs

= Designed so that everything (pair, fixes, computes, etc.) runs
on the GPU, minimal data transfer from GPU to CPU

= Relative performance penalty if kernel isn’t ported to Kokkos
= Only double precision FP64 support

= Package options can toggle full and half neighbor list, newton
on/off, etc.

-pk kokkos newton on neigh half
= https://docs.lammps.org/package.html

12

https://docs.lammps.org/Speed_kokkos.html
https://docs.lammps.org/package.html

Running Kokkos Package) S

= Compile LAMMPS with the KOKKOS package

= Run with4 MPl and 4 GPUs: mpiexec -np 4
./1lmp exe -in in.lj -k on g 4 -sf kk

* Run with 4 OpenMP threads: . /1lmp exe -in in.l1j -k
on t 4 -sf kk

Processor and Thread Affinity) e,

= Use mpirun command-line arguments (e.g. —-bind-to
core) to control how MPI tasks and threads are assigned to

nodes and cores

= Also use OpenMP variables such as OMP PROC BIND and
OMP PLACES

= One must also pay attention to NUMA bindings between
tasks, cores, and GPUs. For example, for a dual-socket system,
MPI tasks driving GPUs should be on the same socket as the
GPU

Measuring performance

i) heoa

Loop time of 0.0174524 on 640 procs for 100 steps with 32000 atoms

Performance: 2475308.243 tau/day, 5729.880 timesteps/s
94.1% CPU use with 640 MPI tasks x no OpenMP threads

MPI task timing breakdown:

Section | min time | avg time | max time |%varavg| S%total
Pair | 0.0010798 | 0.0013214 | 0.0016188 | 0.2 | 7.57
Neigh | 0.00021591 | 0.00024434 | 0.0003079 | 0.0 | 1.40
Comm | 0.015171 | 0.015479 | 0.01573 | 0.1 | 88.69
Output | 9.0258e-05 | 0.00011218 | 0.00014501 | 0.0 | 0.64
Modify | 0.00017915 | 0.00018453 | 0.00020567 | 0.0 | 1.06
Other | | 0.0001111 | | | 0.64

= For KOKKOS package on GPUs, timing breakdown won’t be
accurate without CUDA_LAUNCH_BLOCKING=1 (but will
prevent kernel overlap and could slow down simulation) 15

Sandia
Parallel MD Performance i) s

= MD parallelizes well: major parts of timestep (forces, neighbor list build,
time integration) can be done in parallel through domain decomposition

= High communication overhead when strong scaling to a few 100
atoms/proc (depends on cost of the force-field)

= Strong scaling: hold system size fixed while increasing processor count (#
of atoms/processor decreases)

= Weak scaling: increase system size in proportion to increasing processor
count (# of atoms/processor remains constant)

= For perfect strong scaling, doubling the processor count cuts the
simulation time in half

= For perfect weak scaling, the simulation time stays exactly the same when
doubling the processor count

= Harder to maintain parallel efficiency with strong scaling because the
compute time decreases relative to the communication time

16

Performance of Different Potentials) =,

= See plots in LAMMPS reference paper
= https://doi.org/10.1016/j.cpc.2021.108171

Computer Physics Communications
Volume 271, February 2022, 108171

-

ELSEVIER

Feature article

LAMMPS - a flexible simulation tool for
particle-based materials modeling at the
atomic, meso, and continuum scales %, %

Aidan P. Thompson ? 2 i, H. Metin Aktulga_b, Richard Berger ¢, Dan S. Bolintineanu ?,
W. Michael Brown 9, Paul S. Crozier ?, Pieter). in 't Veld ¢, Axel Kohlmeyer €, Stan G. Moore ?,
Trung Dac Nguyen f, Ray Shan &, Mark J. Stevens 2, Julien Tranchida ?, Christian Trott 2,

Steven J. Plimpton ? 2 =

17

https://doi.org/10.1016/j.cpc.2021.108171

Thank You) e,

Questions?

18

