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§ Currently 7 out of the top ten supercomputers use GPUs 
(Graphics Processing Units), according to the June 2023 
Top500 List (https://www.top500.org)

§ All 3 US exascale machines will have GPUs: OLCF Frontier 
(AMD), ALCF Aurora (Intel), NNSA El Capitan (AMD)

§ LAMMPS accelerator packages: special code (beyond regular 
C++ and MPI in LAMMPS) that is required to run well on GPUs 
and many-core CPUs (e.g. CUDA, OpenMP)

Supercomputer Hardware Trends
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Accelerator Packages

§ LAMMPS has 5 accelerator packages: 
§ OPENMP
§ INTEL
§ OPT
§ GPU
§ KOKKOS

§ https://docs.lammps.org/Speed_packages.html
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Running OPT Package

§ OPT package includes optimized versions of some styles
§ Compile LAMMPS with OPT package
§ Run with 8 MPI: mpiexec -np 8 ./lmp_exe -in 
in.lj -sf opt

§ -sf opt is the suffix command: automatically appends 
/opt onto anything it can

§ For example, pair_style lj/cut automatically 
becomes pair_style lj/cut/opt (no changes to 
input file needed)

§ https://docs.lammps.org/suffix.html
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OPENMP Package

§ https://docs.lammps.org/Speed_omp.html
§ Uses OpenMP to enable multithreading on CPUs
§ MPI parallelization in LAMMPS is almost always more 

effective than OpenMP on CPUs
§ When running with MPI across multi-core nodes, MPI often 

suffers from communication bottlenecks, so using 
MPI+OpenMP per node could be faster

§ The more nodes per job and the more cores per node, the 
more pronounced the bottleneck and the larger the benefit 
from MPI+OpenMP

§ OPENMP package may vectorize (SIMD) better than vanilla 
LAMMPS styles
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Running OPENMP Package

§ Compile LAMMPS with OPENMP package
§ Run with 2 MPI and 2 OpenMP threads:

export OMP_NUM_THREADS=2 

mpiexec -np 2 ./lmp_exe –in in.lj -sf omp
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INTEL Package

§ https://docs.lammps.org/Speed_intel.html
§ Allows code to vectorize and run well on Intel (and 

other) CPUs, also supports OpenMP threading
§ Can also be used with the OPENMP package
§ Normally best performance out of all accelerator 

packages for CPUs
§ Supports reduced precision: mixed FP64+FP32 or 

pure single FP32
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Running INTEL Package

§ Compile LAMMPS with INTEL package
§ To run using 2 MPI and 2 threads on a Intel CPU:

mpiexec -np 2 ./lmp_exe -in in.lj -pk intel 
0 omp 2 mode double -sf intel

§ -pk is the package command that sets package options, see 
https://docs.lammps.org/package.html
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GPU Package

§ https://docs.lammps.org/Speed_gpu.html
§ Designed for one or more GPUs coupled to many CPU cores
§ Only pair runs on GPU, fixes/bonds/computes run on CPU
§ Atom-based data (e.g. coordinates, forces) move back and 

forth between the CPU(s) and GPU every timestep
§ Asynchronous force computations can be performed 

simultaneously on the CPU(s) and GPU if using Kspace (e.g. 
PPPM)

§ Provides NVIDIA and more general OpenCL support
§ Supports reduced precision: mixed FP64+FP32 or pure single 

FP32
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Running GPU Package

§ Compile GPU library found in lib/gpu 
§ Compile LAMMPS with GPU package
§ Run with 16 MPI and 4 GPUs: mpiexec -np 16 
./lmp_exe -in in.lj -sf gpu -pk gpu 4

§ Important: use CUDA MPS (Multi-Process Service) if using 
multiple MPI ranks per GPU

§ Automatically overlaps pair-style on GPU with Kspace on CPU
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§ Abstraction layer between programmer and next-generation 
platforms

§ Allows the same C++ code to run on multiple hardware (GPU, 
CPU)

§ Kokkos consists of two main parts:
1. Parallel dispatch—threaded kernels are launched and mapped onto 

backend languages such as CUDA or OpenMP
2. Kokkos views—polymorphic memory layouts that can be optimized 

for a specific hardware

§ Used on top of existing MPI parallelization (MPI + X)
§ See https://kokkos.github.io/kokkos-core-wiki for more info
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LAMMPS KOKKOS Package

§ https://docs.lammps.org/Speed_kokkos.html
§ Need C++17 compiler
§ Supports OpenMP and GPUs
§ Designed so that everything (pair, fixes, computes, etc.) runs 

on the GPU, minimal data transfer from GPU to CPU
§ Relative performance penalty if kernel isn’t ported to Kokkos
§ Only double precision FP64 support
§ Package options can toggle full and half neighbor list, newton 

on/off, etc.
 -pk kokkos newton on neigh half

§ https://docs.lammps.org/package.html
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Running Kokkos Package

§ Compile LAMMPS with the KOKKOS package
§ Run with 4 MPI and 4 GPUs: mpiexec -np 4 
./lmp_exe -in in.lj -k on g 4 -sf kk

§ Run with 4 OpenMP threads: ./lmp_exe -in in.lj -k 
on t 4 -sf kk
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Processor and Thread Affinity

§ Use mpirun command-line arguments (e.g. --bind-to 
core) to control how MPI tasks and threads are assigned to 
nodes and cores

§ Also use OpenMP variables such as OMP_PROC_BIND and 
OMP_PLACES

§ One must also pay attention to NUMA bindings between 
tasks, cores, and GPUs. For example, for a dual-socket system, 
MPI tasks driving GPUs should be on the same socket as the 
GPU
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§ For KOKKOS package on GPUs, timing breakdown won’t be 
accurate without CUDA_LAUNCH_BLOCKING=1 (but will 
prevent kernel overlap and could slow down simulation)

Measuring performance
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Parallel MD Performance

§ MD parallelizes well: major parts of timestep (forces, neighbor list build, 
time integration) can be done in parallel through domain decomposition

§ High communication overhead when strong scaling to a few 100 
atoms/proc (depends on cost of the force-field)

§ Strong scaling: hold system size fixed while increasing processor count (# 
of atoms/processor decreases)

§ Weak scaling: increase system size in proportion to increasing processor 
count (# of atoms/processor remains constant)

§ For perfect strong scaling, doubling the processor count cuts the 
simulation time in half

§ For perfect weak scaling, the simulation time stays exactly the same when 
doubling the processor count

§ Harder to maintain parallel efficiency with strong scaling because the 
compute time decreases relative to the communication time
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Performance of Different Potentials

§ See plots in LAMMPS reference paper
§ https://doi.org/10.1016/j.cpc.2021.108171
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Thank You

Questions?
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