



Sandia  
National  
Laboratories

Exceptional service in the national interest

# RECENT IMPROVEMENTS IN CP POISSON TENSOR ALGORITHMS

Jeremy M. Myers<sup>1,2</sup>, Daniel M. Dunlavy<sup>1</sup>

August 21, 2023

[01211] Generalized and non-Gaussian Tensor Decompositions

10th International Congress on Industrial and Applied Mathematics (ICIAM 2023)

Tokyo, Japan and Virtual

## MOTIVATING STOCHASTIC + DETERMINISTIC TENSOR ALGORITHMS

Recent trend in theoretical computer science & numerical linear algebra (and elsewhere!):

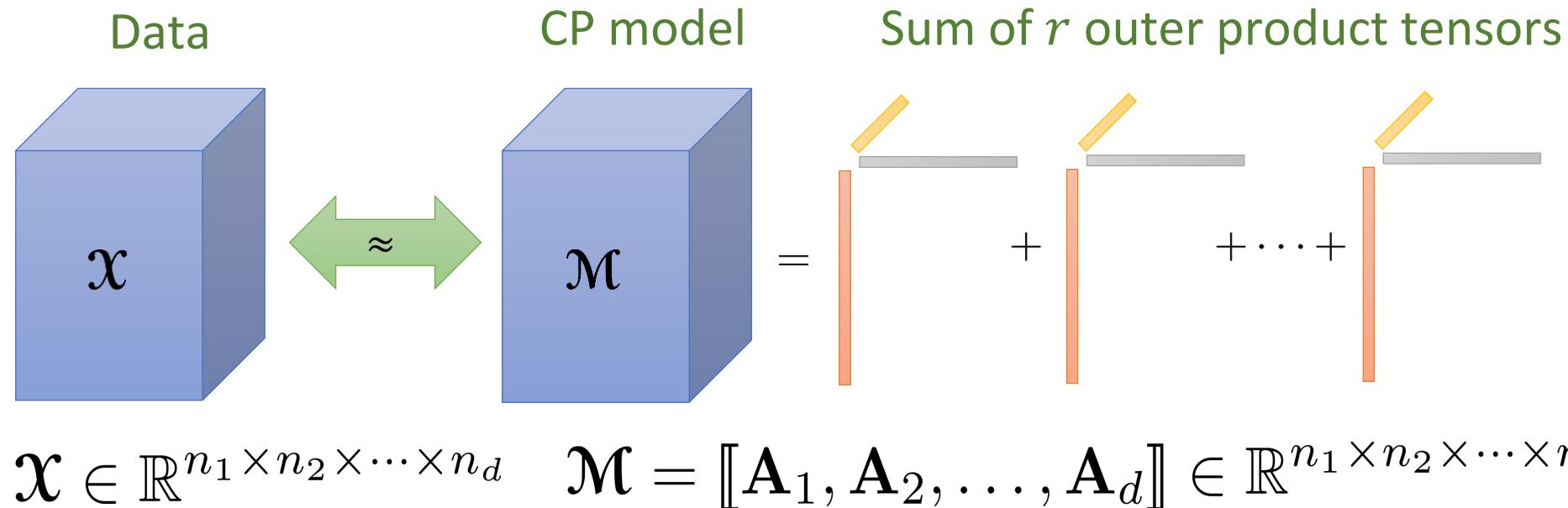
- Use randomization to solve very large, hard problems
  - data mining, information science, compression, scientific computing
- Often faster with equivalent levels of error
- Examples: low-rank matrix decompositions, streaming, regression, linear systems [1]

Typical approach: use stochasticity for a fast approximation and determinism for refinement to yield effective algorithms with theoretical guarantees.

How can we extend the **existing approaches** to  
**low-rank tensor decompositions?**

# LOW-RANK TENSOR APPROXIMATION

## Canonical polyadic decomposition (CPD)



### Low-rank CPD

- $\mathcal{X}$  is the data tensor in  $d$  dimensions or modes.
- $\mathcal{M}$  is the model tensor.
- $\mathbf{A}_k$  is an  $n_k \times r$  factor matrix.
- $\mathbf{i} = (i_1, i_2, \dots, i_d)$  is a multi-index
- Assume  $\text{rank}(\mathcal{X}) = r$ .
- Typically choose  $r \ll \min\{n_1, n_2, \dots, n_d\}$ .

### Poisson CPD

$$\mathcal{X}_{\mathbf{i}} \sim \text{Poisson}(\mathcal{M}_{\mathbf{i}})$$

# LOW-RANK TENSOR APPROXIMATION

## Poisson tensor maximum likelihood estimation

Statistical method to compute low-rank Poisson CPD

$$\min_{\mathcal{M}} f_{\mathcal{M}}(\mathcal{M}) = \min \sum_{\mathbf{i}} m_{\mathbf{i}} - x_{\mathbf{i}} \log(m_{\mathbf{i}})$$

where  $a_{i_1}^{(1)} a_{i_2}^{(2)} \dots a_{i_d}^{(d)} = m_{\mathbf{i}}$  are the optimization variables

- This is a **nonlinear, nonconvex** optimization problem.
- The **maximum likelihood estimator (MLE)** corresponds to the **global optimizer  $\mathcal{M}^*$**  for this problem.
- The typical approach is to *flatten* or *unfold* the tensors into matrices and use **local** methods.
  - Stochastic: Generalized Canonical Polyadic (GCP) tensor decomposition [2, 3]
  - Deterministic: Canonical Polyadic Alternating Poisson Regression (CPAPR) [4]

[2] Hong, Kolda, and Duersch, Generalized Canonical Polyadic Tensor Decomposition, *SIAM Review*, 2020

[3] Kolda and Hong, Stochastic Gradients for Large-Scale Tensor Decomposition, *SIAM Journal on Mathematics of Data Science*, 2020

[4] Chi and Kolda, On Tensors, Sparsity, and Nonnegative Factorizations, *SIAM Journal on Matrix Analysis and Applications*, 2012

# OUR NEW STOCHASTIC + DETERMINISTIC TENSOR ALGORITHMS

How can current local methods be leveraged together to improve likelihood of finding the MLE/global optimizer?

## Proposed methods

### Hybrid GCP-CPAPR

- Inspired by Simulated Annealing.
- Improves probability of convergence to global optimizer and reduces cost compared to standalone methods.

### Restarted CPAPR with SVDrop

- Uses novel heuristic to avoid suboptimal solutions w.r.t. global optimizer.
- Saves computation by restarting when the iterates are detected to be headed to a suboptimal solution.

## HYBRID GCP-CPAPR

### Hybrid GCP-CPAPR (HybridGC) intuition

1. Use stochastic optimization to compute a fast approximate solution.
2. Use deterministic optimization to refine approximate solution.

**Algorithm** HYBRIDGC(tensor  $\mathcal{X}$ , rank  $r$ , initial guess  $\mathcal{M}_0$ )

$\mathcal{M}_1 \leftarrow \text{GCP}(\mathcal{X}, r, \mathcal{M}_0)$

$\mathcal{M}_2 \leftarrow \text{CPAPR}(\mathcal{X}, r, \mathcal{M}_1)$

**return** model tensor  $\widehat{\mathcal{M}} = \mathcal{M}_2$  as estimate to  $\mathcal{M}^*$

# NUMERICAL EXPERIMENTS WITH HYBRID GCP-CPAPR

## Methodology

1. Generate  $N$  random starting points.
2. Compute decompositions with CPAPR & GCP separately.
3. HybridGC step: refine GCP decompositions with CPAPR.
4. Analyze average behavior of our experiments.

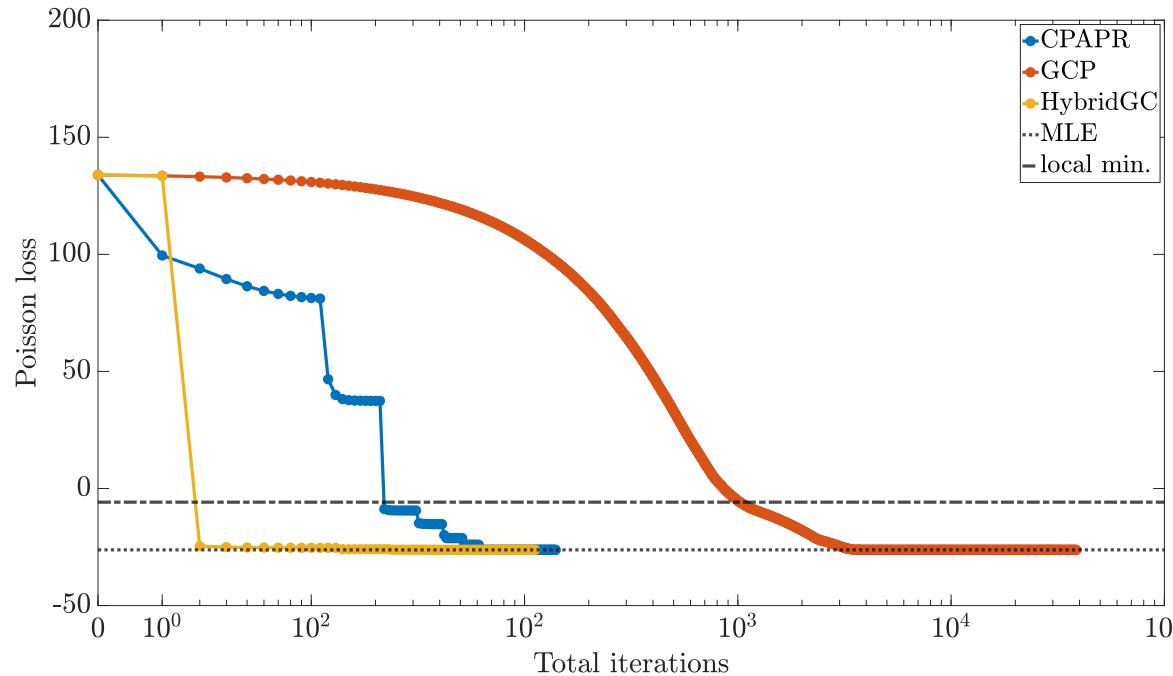
## Datasets

1. **Small:**  $4 \times 6 \times 8$ , 17 nonzeros,  $r = 3$ ,  $N > 110k$
2. **Large:**  $1k \times 1k \times 1k$ , 98k nonzeros,  $r = 20$ ,  $N = 100$

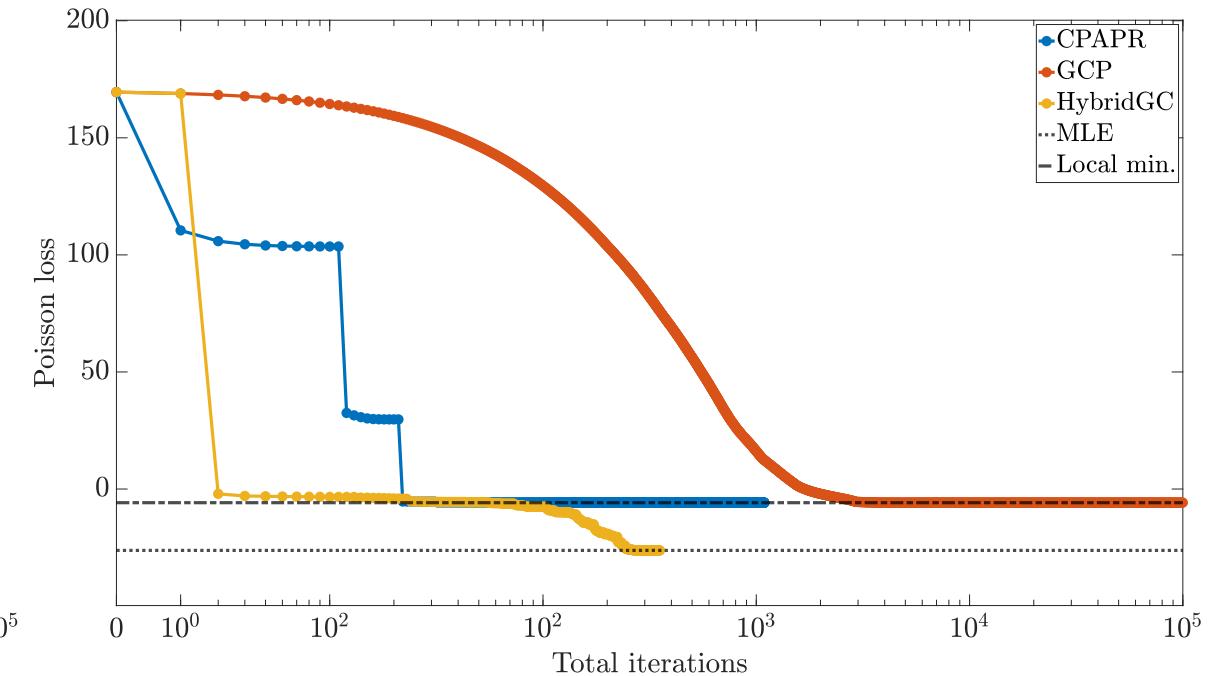
## Error measures

- Based on loss function values.
- Probability estimate of finding MLE/global optimizer.
- Spectral properties of unfolded tensor.

# HYBRID GCP-CPAPR RESULTS: OPTIMIZATION VARIABLES VIEW



Ex. 1



Ex. 2

## PROBABILITY OF FINDING MAXIMUM LIKELIHOOD ESTIMATOR (MLE)

**Small** dataset ( $N > 110K$ )

| $\epsilon$ | CPAPR | GCP   | HYBRIDGC     |
|------------|-------|-------|--------------|
| $10^{-1}$  | 0.963 | 0.963 | <b>0.967</b> |
| $10^{-2}$  | 0.963 | 0.963 | <b>0.967</b> |
| $10^{-3}$  | 0.963 | 0.879 | <b>0.967</b> |
| $10^{-4}$  | 0.963 | 0.003 | <b>0.967</b> |

**Large** dataset ( $N = 100$ )

| $\epsilon$ | CPAPR       | GCP  | HYBRIDGC    |
|------------|-------------|------|-------------|
| $10^{-1}$  | 1.00        | 1.00 | 1.00        |
| $10^{-2}$  | <b>0.46</b> | 0.04 | <b>0.46</b> |
| $10^{-3}$  | 0.03        | 0.00 | <b>0.17</b> |
| $10^{-4}$  | 0.00        | 0.00 | <b>0.01</b> |

Relative distance from MLE

$$\epsilon = \frac{|f_{\mathcal{X}}(\widehat{\mathcal{M}}) - f_{\mathcal{X}}(\mathcal{M}^*)|}{|f_{\mathcal{X}}(\mathcal{M}^*)|}$$

For small choices of  $\epsilon$ , HybridGC is the most likely to estimate MLE/global optimizer.

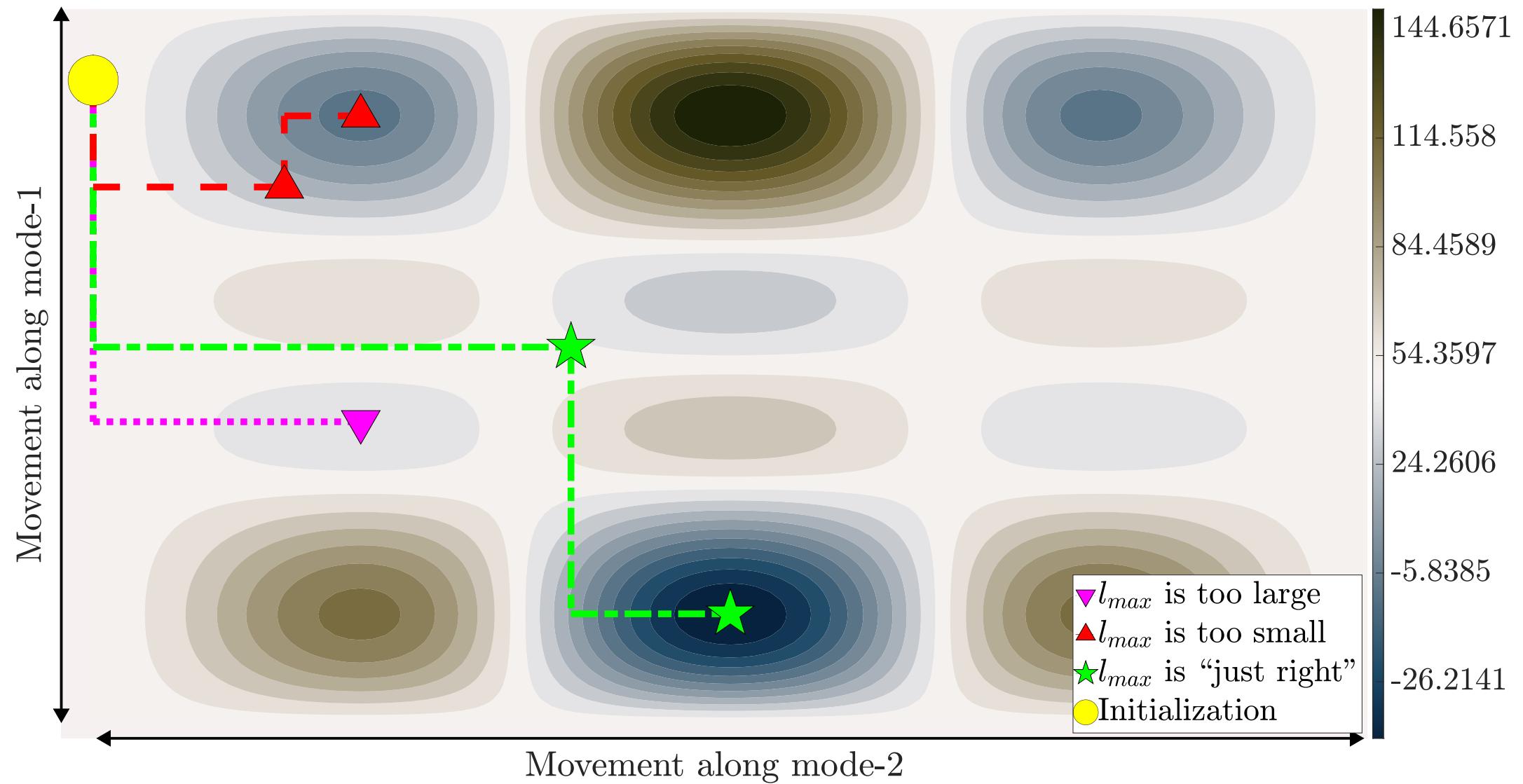


## OUR FUNDAMENTAL (YET SIMPLE) QUESTION

**Why and when do  
these methods fail?**

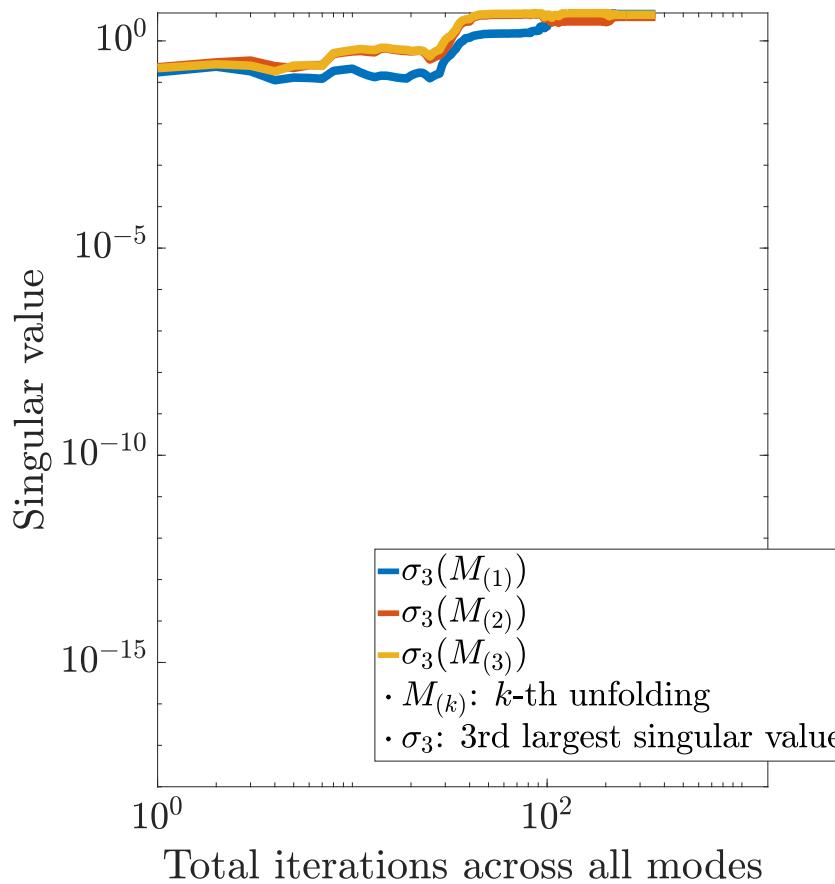
We'll try to answer this for CPAPR.

# CONVERGENCE DEPENDS ON NUMBER OF STEPS IN SEARCH DIRECTION

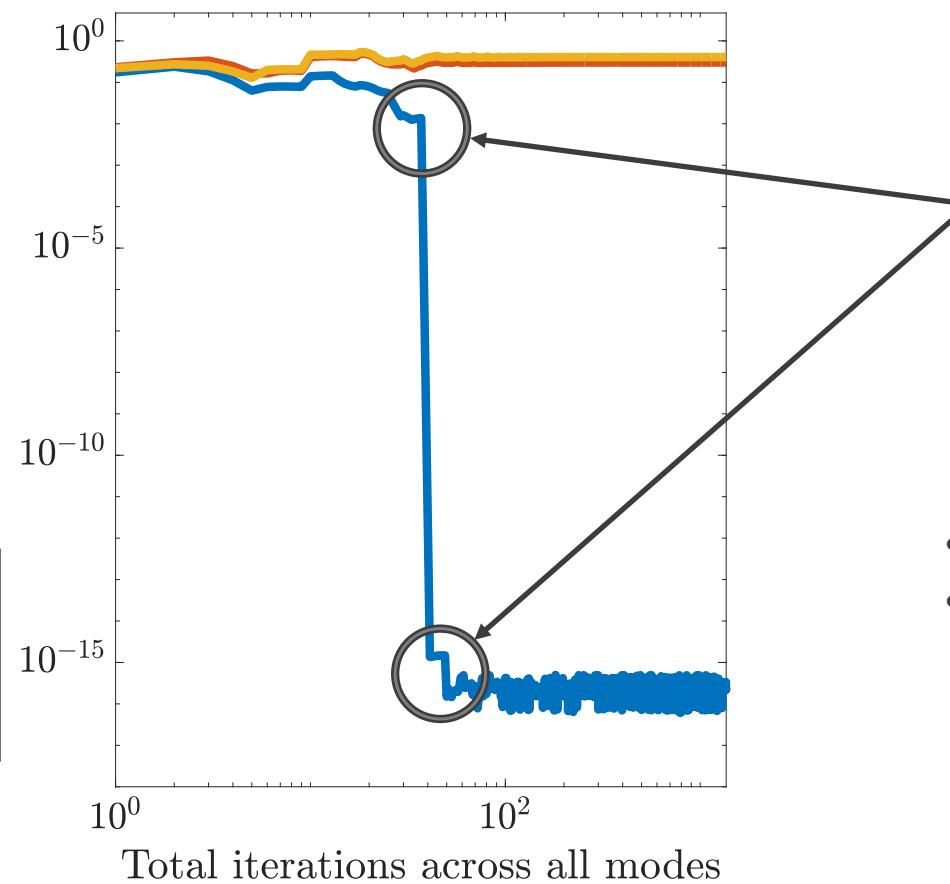


# CHALLENGING BEHAVIOR ON SMALL DATASET

“Optimal” # of inner iterations:  
leads to MLE



Too many inner iterations:  
leads to other local minimizer



## Spectral property

The ratio of successive singular values may be a useful heuristic.

## Related work

- Two-factor degeneracies (2FD)<sup>5</sup>
- Heuristic to detect 2FD<sup>6</sup>

[5] Kruskal, Harshman, and Lundy, How 3-MFA data can cause degenerate parafac solutions, among other relationships, in *Multiway Data Analysis*, 1989

[6] Mitchell and Burdick, Slowly converging parafac sequences: Swamps and two-factor degeneracies, *Journal of Chemometrics*, 1994

## RESTARTED CPAPR WITH SVDROP (OVERVIEW)

Choose the following parameters:

- $k_{max}$ : Maximum number of outer iterations
- $l_{max}$  : Maximum number of inner iterations
- $j$ : Compute spectral properties every  $j \leq l_{max}$  inner iterations
- $\gamma$ : Maximum threshold of spectral properties for acceptable search path (e.g.,  $\gamma = 10^6$ )

While (not converged), compute a rank- $R$  decomposition with CPAPR:

1. Every step, update current model.
2. Every  $j$  steps, compute spectral properties of current model.
3. If  $(\text{spectral properties}) < \gamma$ , checkpoint and continue.
4. Otherwise, choose a new initial guess and **restart**.

## RESTARTED CPAPR WITH SVDROP (DETAILED)

Choose the following parameters:

- $k_{max}$ : Maximum number of outer iterations
- $l_{max}$  : Maximum number of inner iterations
- $j$ : Compute spectral properties every  $j \leq l_{max}$  inner iterations
- $\gamma$ : Maximum threshold of spectral properties for acceptable search path (e.g.,  $\gamma = 10^6$ )

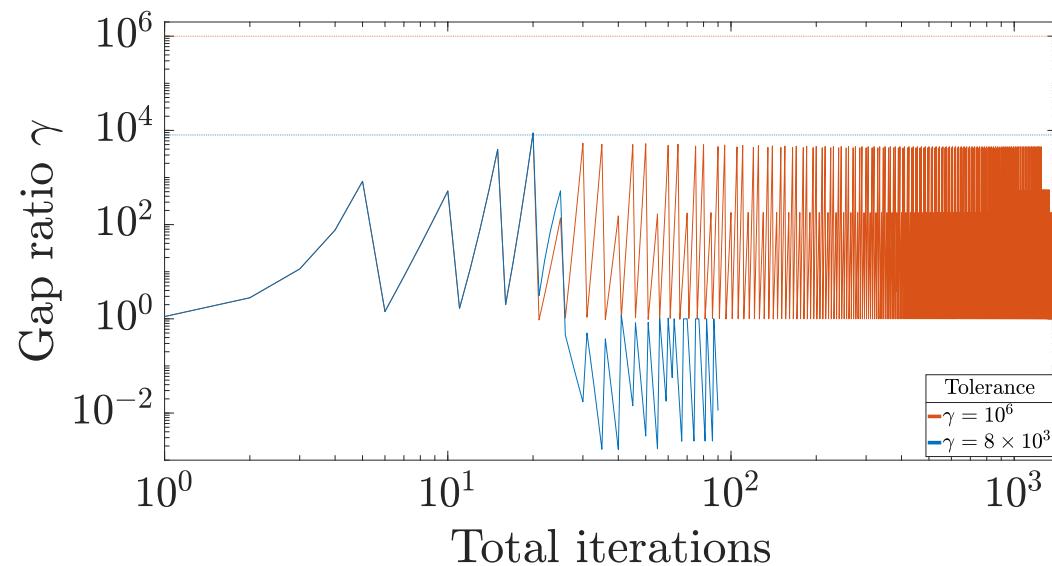
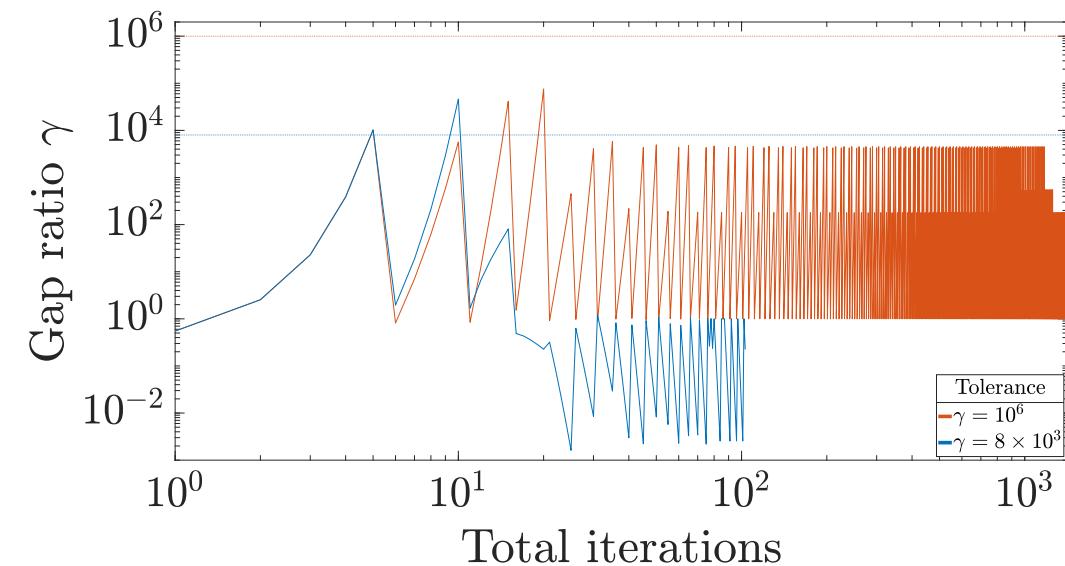
1. Choose an initial guess
2. While not converged, compute a rank- $R$  decomposition with CPAPR:
  - a. At the  $i$ -th iteration in mode- $k$ , compute the  $R$ -th largest singular value  $\sigma_{(k)}[R]^{(i)}$ .
  - b. Proceed for  $j$  iterations.
  - c. At the  $(i + j)$ -th iteration in mode- $k$ , compute the  $R$ -th largest singular value  $\sigma_{(k)}[R]^{(i+j)}$ .
  - d. If  $\sigma_{(k)}[R]^{(i)} / \sigma_{(k)}[R]^{(i+j)} < \gamma$ , set  $\sigma_{(k)}[R]^{(i)} \leftarrow \sigma_{(k)}[R]^{(i+j)}$  and continue.
  - e. Otherwise, **restart**: go to 1.

# CONVERGENCE AND PERFORMANCE RESULTS

Probability of convergence to MLE vs. local minimizer with SVDrop;  $\gamma = 10^6$ ,  $\epsilon = 10^{-4}$ ,  $N = 4051$

| Converged | Minimizer       | SVDROP inner iterations $\tau$ |      |             |      |      |      |      |      |      |      |      |
|-----------|-----------------|--------------------------------|------|-------------|------|------|------|------|------|------|------|------|
|           |                 | 0                              | 1    | 2           | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   |
| Yes       | MLE             | 0                              | 4024 | <b>4049</b> | 4035 | 4028 | 4029 | 3906 | 3970 | 3983 | 3990 | 3998 |
| Yes       | Other KKT point | 3905                           | 0    | 0           | 0    | 0    | 0    | 102  | 43   | 31   | 24   | 20   |
| No        | -               | 146                            | 27   | <b>2</b>    | 16   | 23   | 22   | 43   | 38   | 37   | 37   | 33   |

Sensitivity of SVDrop to  $\gamma$  ( $\tau = 2$ )



## CONCLUSIONS

- SVDrop has the highest likelihood of finding MLE in our experiments.
- The method can be prohibitively expensive when it does fail, but this is rare.

## FUTURE WORK

- It's unclear how sensitive SVDrop is to the complex interplay parameters.
- Experiments on **Small** dataset are very limited – do they generalize?
- Are low-accuracy singular values useful?

Contact: {jermyer, dmdunla}@sandia.gov

Paper (to be updated soon): <https://arxiv.org/abs/2207.14341>