

Sandia
National
Laboratories

Exceptional service in the national interest

RECENT IMPROVEMENTS IN CP POISSON TENSOR ALGORITHMS

Jeremy M. Myers^{1,2}, Daniel M. Dunlavy¹

August 21, 2023

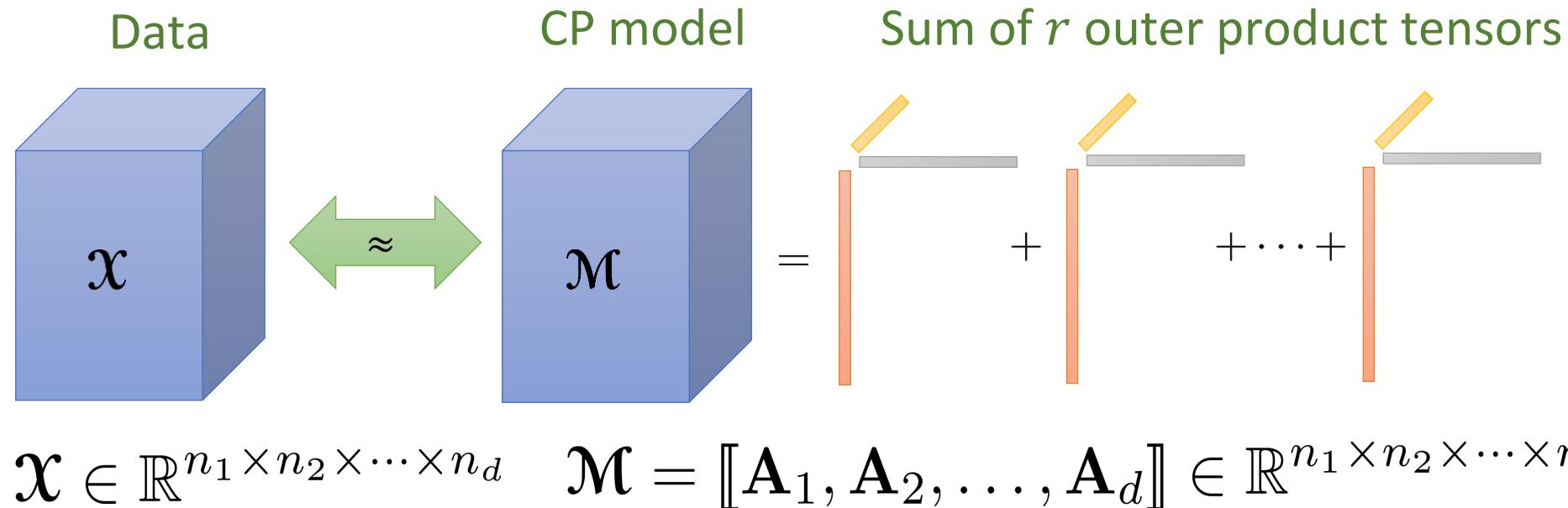
[01211] Generalized and non-Gaussian Tensor Decompositions

10th International Congress on Industrial and Applied Mathematics (ICIAM 2023)

Tokyo, Japan and Virtual

MOTIVATING STOCHASTIC + DETERMINISTIC TENSOR ALGORITHMS

Recent trend in theoretical computer science & numerical linear algebra (and elsewhere!):


- Use randomization to solve very large, hard problems
 - data mining, information science, compression, scientific computing
- Often faster with equivalent levels of error
- Examples: low-rank matrix decompositions, streaming, regression, linear systems [1]

Typical approach: use stochasticity for a fast approximation and determinism for refinement to yield effective algorithms with theoretical guarantees.

How can we extend the **existing approaches** to
low-rank tensor decompositions?

LOW-RANK TENSOR APPROXIMATION

Canonical polyadic decomposition (CPD)

Low-rank CPD

- \mathcal{X} is the data tensor in d dimensions or modes.
- \mathcal{M} is the model tensor.
- \mathbf{A}_k is an $n_k \times r$ factor matrix.
- $\mathbf{i} = (i_1, i_2, \dots, i_d)$ is a multi-index
- Assume $\text{rank}(\mathcal{X}) = r$.
- Typically choose $r \ll \min\{n_1, n_2, \dots, n_d\}$.

Poisson CPD

$$\mathcal{X}_{\mathbf{i}} \sim \text{Poisson}(\mathcal{M}_{\mathbf{i}})$$

LOW-RANK TENSOR APPROXIMATION

Poisson tensor maximum likelihood estimation

Statistical method to compute low-rank Poisson CPD

$$\min_{\mathcal{M}} f_{\mathcal{M}}(\mathcal{M}) = \min \sum_{\mathbf{i}} m_{\mathbf{i}} - x_{\mathbf{i}} \log(m_{\mathbf{i}})$$

where $a_{i_1}^{(1)} a_{i_2}^{(2)} \dots a_{i_d}^{(d)} = m_{\mathbf{i}}$ are the optimization variables

- This is a **nonlinear, nonconvex** optimization problem.
- The **maximum likelihood estimator (MLE)** corresponds to the **global optimizer \mathcal{M}^*** for this problem.
- The typical approach is to *flatten* or *unfold* the tensors into matrices and use **local** methods.
 - Stochastic: Generalized Canonical Polyadic (GCP) tensor decomposition [2, 3]
 - Deterministic: Canonical Polyadic Alternating Poisson Regression (CPAPR) [4]

[2] Hong, Kolda, and Duersch, Generalized Canonical Polyadic Tensor Decomposition, *SIAM Review*, 2020

[3] Kolda and Hong, Stochastic Gradients for Large-Scale Tensor Decomposition, *SIAM Journal on Mathematics of Data Science*, 2020

[4] Chi and Kolda, On Tensors, Sparsity, and Nonnegative Factorizations, *SIAM Journal on Matrix Analysis and Applications*, 2012

OUR NEW STOCHASTIC + DETERMINISTIC TENSOR ALGORITHMS

How can current local methods be leveraged together to improve likelihood of finding the MLE/global optimizer?

Proposed methods

Hybrid GCP-CPAPR

- Inspired by Simulated Annealing.
- Improves probability of convergence to global optimizer and reduces cost compared to standalone methods.

Restarted CPAPR with SVDrop

- Uses novel heuristic to avoid suboptimal solutions w.r.t. global optimizer.
- Saves computation by restarting when the iterates are detected to be headed to a suboptimal solution.

HYBRID GCP-CPAPR

Hybrid GCP-CPAPR (HybridGC) intuition

1. Use stochastic optimization to compute a fast approximate solution.
2. Use deterministic optimization to refine approximate solution.

Algorithm HYBRIDGC(tensor \mathcal{X} , rank r , initial guess \mathcal{M}_0)

$\mathcal{M}_1 \leftarrow \text{GCP}(\mathcal{X}, r, \mathcal{M}_0)$

$\mathcal{M}_2 \leftarrow \text{CPAPR}(\mathcal{X}, r, \mathcal{M}_1)$

return model tensor $\widehat{\mathcal{M}} = \mathcal{M}_2$ as estimate to \mathcal{M}^*

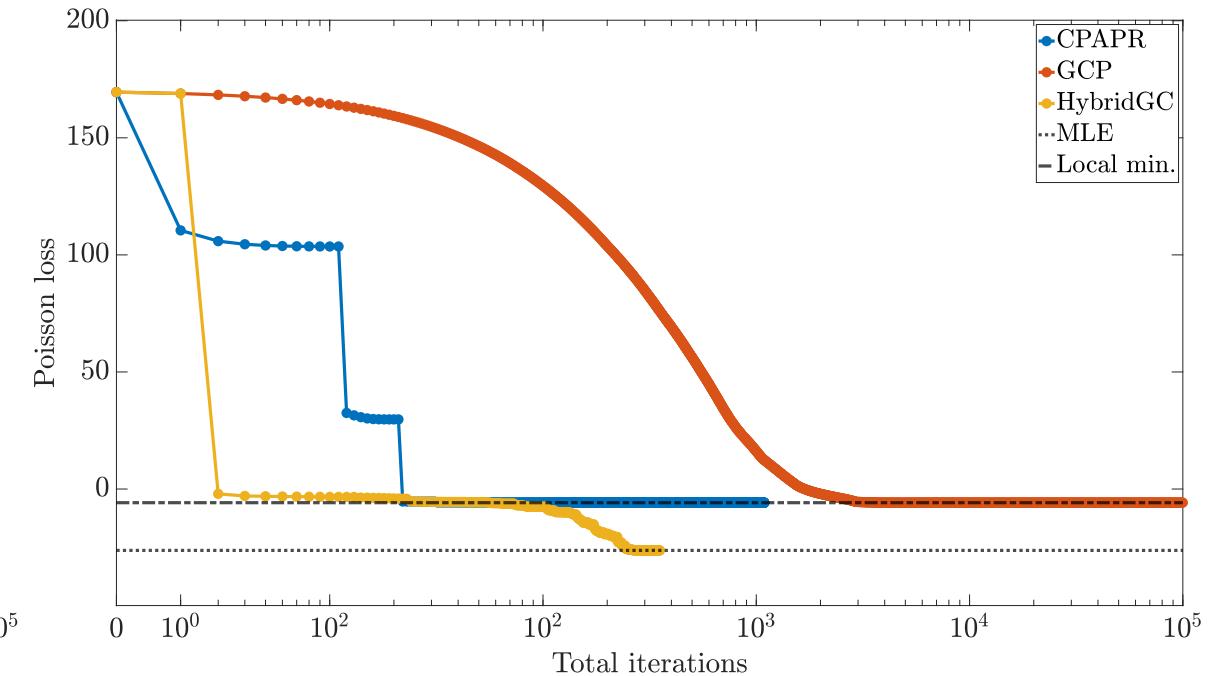
NUMERICAL EXPERIMENTS WITH HYBRID GCP-CPAPR

Methodology

1. Generate N random starting points.
2. Compute decompositions with CPAPR & GCP separately.
3. HybridGC step: refine GCP decompositions with CPAPR.
4. Analyze average behavior of our experiments.

Datasets

1. **Small:** $4 \times 6 \times 8$, 17 nonzeros, $r = 3$, $N > 110k$
2. **Large:** $1k \times 1k \times 1k$, 98k nonzeros, $r = 20$, $N = 100$


Error measures

- Based on loss function values.
- Probability estimate of finding MLE/global optimizer.
- Spectral properties of unfolded tensor.

HYBRID GCP-CPAPR RESULTS: OPTIMIZATION VARIABLES VIEW

Ex. 1

Ex. 2

PROBABILITY OF FINDING MAXIMUM LIKELIHOOD ESTIMATOR (MLE)

Small dataset ($N > 110K$)

ϵ	CPAPR	GCP	HYBRIDGC
10^{-1}	0.963	0.963	0.967
10^{-2}	0.963	0.963	0.967
10^{-3}	0.963	0.879	0.967
10^{-4}	0.963	0.003	0.967

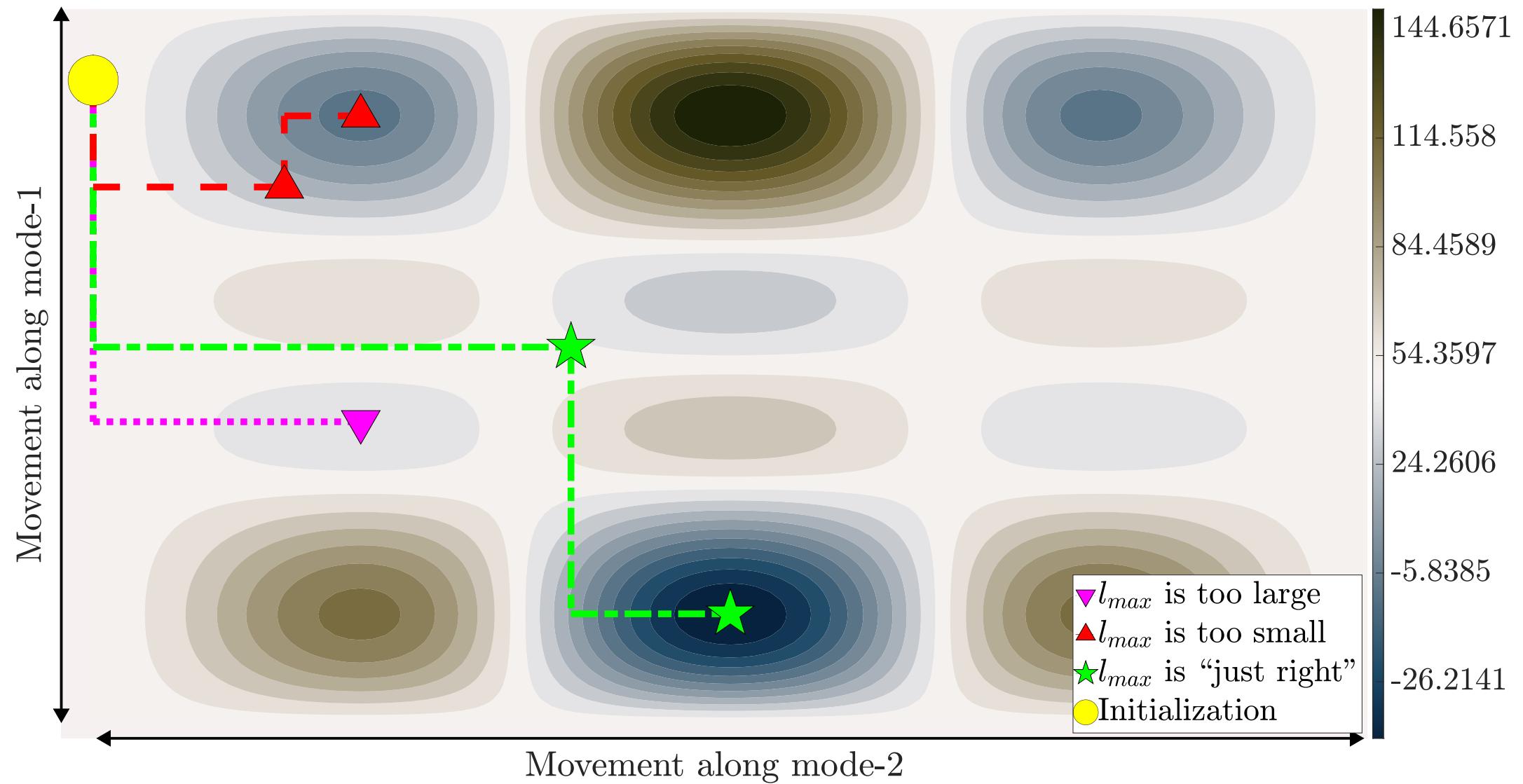
Large dataset ($N = 100$)

ϵ	CPAPR	GCP	HYBRIDGC
10^{-1}	1.00	1.00	1.00
10^{-2}	0.46	0.04	0.46
10^{-3}	0.03	0.00	0.17
10^{-4}	0.00	0.00	0.01

Relative distance from MLE

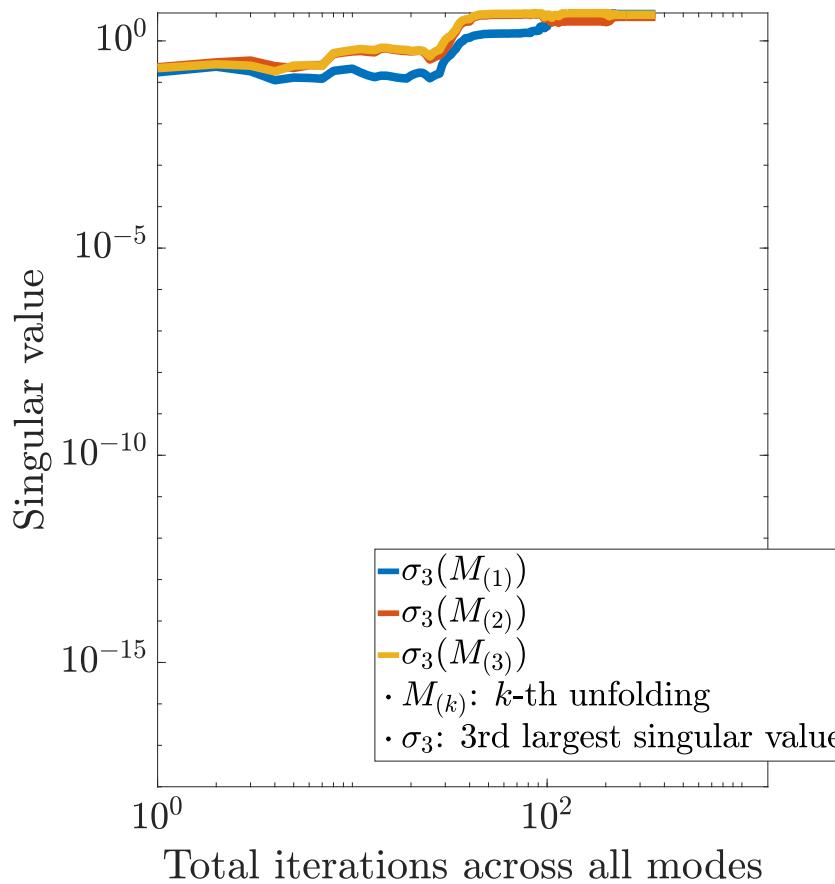
$$\epsilon = \frac{|f_{\mathcal{X}}(\widehat{\mathcal{M}}) - f_{\mathcal{X}}(\mathcal{M}^*)|}{|f_{\mathcal{X}}(\mathcal{M}^*)|}$$

For small choices of ϵ , HybridGC is the most likely to estimate MLE/global optimizer.

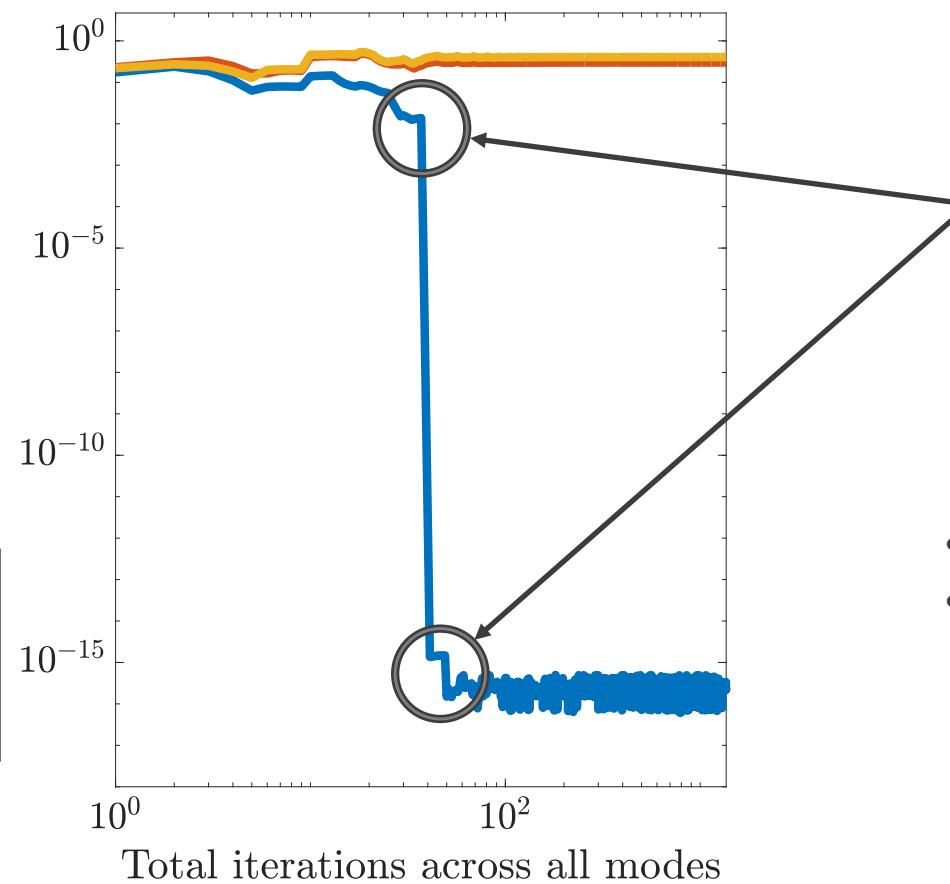


OUR FUNDAMENTAL (YET SIMPLE) QUESTION

**Why and when do
these methods fail?**


We'll try to answer this for CPAPR.

CONVERGENCE DEPENDS ON NUMBER OF STEPS IN SEARCH DIRECTION



CHALLENGING BEHAVIOR ON SMALL DATASET

“Optimal” # of inner iterations:
leads to MLE

Too many inner iterations:
leads to other local minimizer

Spectral property

The ratio of successive singular values may be a useful heuristic.

Related work

- Two-factor degeneracies (2FD)⁵
- Heuristic to detect 2FD⁶

[5] Kruskal, Harshman, and Lundy, How 3-MFA data can cause degenerate parafac solutions, among other relationships, in *Multiway Data Analysis*, 1989

[6] Mitchell and Burdick, Slowly converging parafac sequences: Swamps and two-factor degeneracies, *Journal of Chemometrics*, 1994

RESTARTED CPAPR WITH SVDROP (OVERVIEW)

Choose the following parameters:

- k_{max} : Maximum number of outer iterations
- l_{max} : Maximum number of inner iterations
- j : Compute spectral properties every $j \leq l_{max}$ inner iterations
- γ : Maximum threshold of spectral properties for acceptable search path (e.g., $\gamma = 10^6$)

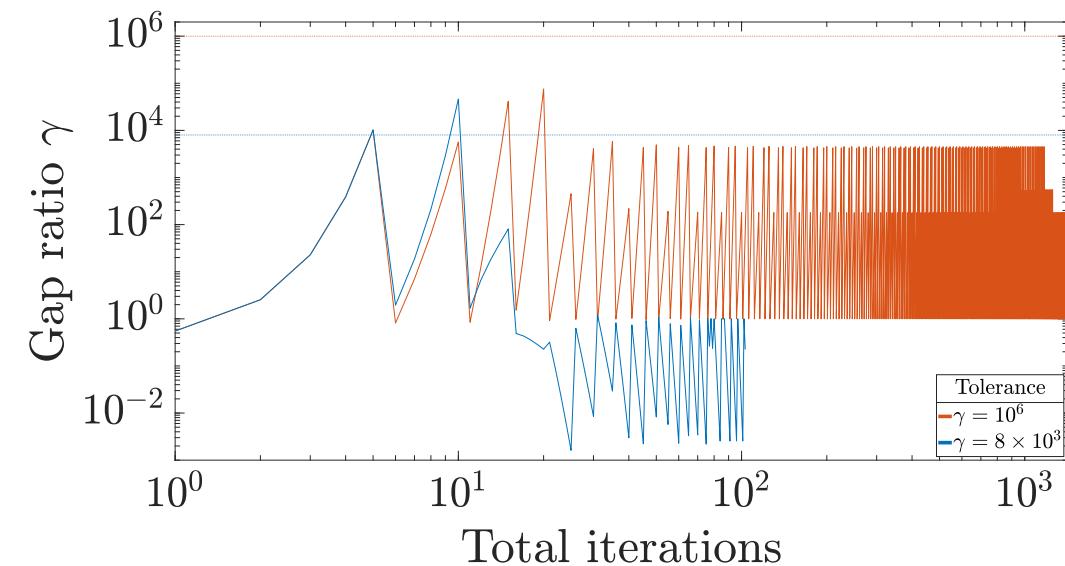
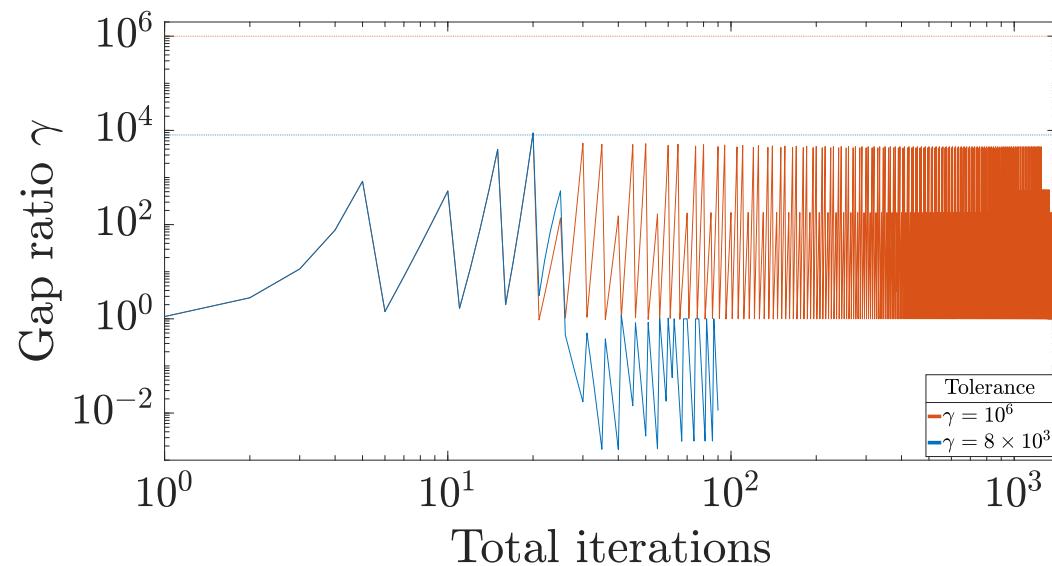
While (not converged), compute a rank- R decomposition with CPAPR:

1. Every step, update current model.
2. Every j steps, compute spectral properties of current model.
3. If $(\text{spectral properties}) < \gamma$, checkpoint and continue.
4. Otherwise, choose a new initial guess and **restart**.

RESTARTED CPAPR WITH SVDROP (DETAILED)

Choose the following parameters:

- k_{max} : Maximum number of outer iterations
- l_{max} : Maximum number of inner iterations
- j : Compute spectral properties every $j \leq l_{max}$ inner iterations
- γ : Maximum threshold of spectral properties for acceptable search path (e.g., $\gamma = 10^6$)



1. Choose an initial guess
2. While not converged, compute a rank- R decomposition with CPAPR:
 - a. At the i -th iteration in mode- k , compute the R -th largest singular value $\sigma_{(k)}[R]^{(i)}$.
 - b. Proceed for j iterations.
 - c. At the $(i + j)$ -th iteration in mode- k , compute the R -th largest singular value $\sigma_{(k)}[R]^{(i+j)}$.
 - d. If $\sigma_{(k)}[R]^{(i)} / \sigma_{(k)}[R]^{(i+j)} < \gamma$, set $\sigma_{(k)}[R]^{(i)} \leftarrow \sigma_{(k)}[R]^{(i+j)}$ and continue.
 - e. Otherwise, **restart**: go to 1.

CONVERGENCE AND PERFORMANCE RESULTS

Probability of convergence to MLE vs. local minimizer with SVDrop; $\gamma = 10^6$, $\epsilon = 10^{-4}$, $N = 4051$

Converged	Minimizer	SVDROP inner iterations τ										
		0	1	2	3	4	5	6	7	8	9	10
Yes	MLE	0	4024	4049	4035	4028	4029	3906	3970	3983	3990	3998
Yes	Other KKT point	3905	0	0	0	0	0	102	43	31	24	20
No	-	146	27	2	16	23	22	43	38	37	37	33

Sensitivity of SVDrop to γ ($\tau = 2$)

CONCLUSIONS

- SVDrop has the highest likelihood of finding MLE in our experiments.
- The method can be prohibitively expensive when it does fail, but this is rare.

FUTURE WORK

- It's unclear how sensitive SVDrop is to the complex interplay parameters.
- Experiments on **Small** dataset are very limited – do they generalize?
- Are low-accuracy singular values useful?

Contact: {jermyer, dmdunla}@sandia.gov

Paper (to be updated soon): <https://arxiv.org/abs/2207.14341>