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MOTIVATING STOCHASTIC + DETERMINISTIC TENSOR ALGORITHMS
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Recent trend in theoretical computer science & numerical linear algebra (and 
elsewhere!):
• Use randomization to solve very large, hard problems 
• data mining, information science, compression, scientific computing

• Often faster with equivalent levels of  error
• Examples: low-rank matrix decompositions, streaming, regression, linear systems [1]

How can we extend the existing approaches to 
low-rank tensor decompositions?

Typical approach: use stochasticity for a fast approximation and determinism 
for refinement to yield effective algorithms with theoretical guarantees.

[1] Martinsson and Tropp, Randomized Numerical Linear Algebra: Foundations & Algorithms, Acta Numerica, 2020.



LOW-RANK TENSOR APPROXIMATION

Canonical polyadic decomposition (CPD)
CP model Sum of 𝑟 outer product tensors

≈

Data

Low-rank CPD

Poisson CPD
<latexit sha1_base64="oDd4ROBvO0sE0QwMMsD3we8zdUE="></latexit>

Xi ⇠ Poisson(Mi)

<latexit sha1_base64="MvyLCR5W/t0PE4/sa1yF1FKdz0A="></latexit>

• Assume rank(X) = r.

• Typically choose r ⌧ min{n1, n2, . . . , nd}.

<latexit sha1_base64="EYaOMkb1zmH2h6s1hWXHiiLD+0Q="></latexit>

• X is the data tensor in d dimensions or modes.

• M is the model tensor.

• Ak is an nk ⇥ r factor matrix.

• i = (i1, i2, . . . , id) is a multi-index
3



LOW-RANK TENSOR APPROXIMATION
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• This a nonlinear, nonconvex optimization problem. 
• The maximum likelihood estimator (MLE) corresponds to the global optimizer       

for this problem.
• The typical approach is to flatten or unfold the tensors into matrices and use local methods.
• Stochastic: Generalized Canonical Polyadic (GCP) tensor decomposition [2, 3]
• Deterministic: Canonical Polyadic Alternating Poisson Regression (CPAPR) [4]

Statistical method to compute low-rank Poisson CPD

Poisson tensor maximum likelihood estimation

<latexit sha1_base64="pt1LMwiABDEnDnIkr/8Istn67Oc="></latexit>

min
M

fX(M) = min
X

i

mi � xi log(mi)

where a(1)i1
a(2)i2

. . . a(d)id
= mi are the optimization variables

<latexit sha1_base64="G9TZvLgwLEVr4B+/CVpB/qNmTvQ="></latexit>

M⇤

[2] Hong, Kolda, and Duersch, Generalized Canonical Polyadic Tensor Decomposition, SIAM Review, 2020
[3] Kolda and Hong, Stochastic Gradients for Large-Scale Tensor Decomposition, SIAM Journal on Mathematics of Data Science, 2020
[4] Chi and Kolda, On Tensors, Sparsity, and Nonnegative Factorizations, SIAM Journal on Matrix Analysis and Applications, 2012



OUR NEW STOCHASTIC + DETERMINISTIC TENSOR ALGORITHMS
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How can current local methods be leveraged together to improve
likelihood of  finding the MLE/global optimizer?

Restarted CPAPR with SVDrop

Proposed methods
Hybrid GCP-CPAPR

• Inspired by Simulated Annealing.
• Improves probability of  

convergence to global optimizer 
and reduces cost compared to 
standalone methods.

• Uses novel heuristic to avoid suboptimal 
solutions w.r.t. global optimizer.

• Saves computation by restarting when the 
iterates are detected to be headed to a 
suboptimal solution.



HYBRID GCP-CPAPR
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1. Use stochastic optimization to compute a fast approximate solution.
2. Use deterministic optimization to refine approximate solution.

Hybrid GCP-CPAPR (HybridGC) intuition

<latexit sha1_base64="pewH41ViPZuUmKY8E7lqYU2iUxs="></latexit>

Algorithm HybridGC(tensor X, rank r, initial guess M0)
M1  GCP(X, r, M0)
M2  CPAPR(X, r, M1)

return model tensor cM = M2 as estimate to M⇤



NUMERICAL EXPERIMENTS WITH HYBRID GCP-CPAPR
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• Based on loss function values.
• Probability estimate of  finding MLE/global optimizer.
• Spectral properties of  unfolded tensor.

1. Generate N random starting points.
2. Compute decompositions with CPAPR & GCP separately.
3. HybridGC step: refine GCP decompositions with CPAPR.
4. Analyze average behavior of  our experiments.

Datasets

Methodology

Error measures

1. Small: 4 x 6 x 8, 17 nonzeros, r = 3, N > 110k
2. Large: 1k x 1k x 1k, 98k nonzeros, r = 20, N = 100



HYBRID GCP-CPAPR RESULTS: OPTIMIZATION VARIABLES VIEW
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Ex. 1 Ex. 2



PROBABILITY OF FINDING MAXIMUM LIKELIHOOD ESTIMATOR (MLE)
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For small choices of  𝜖, HybridGC 
is the most likely to estimate 

MLE/global optimizer.

Small dataset (𝑁 > 110𝐾)

Large dataset (𝑁 = 100)

<latexit sha1_base64="6xMA3aflqfumCjmxgTLVUANyiVM="></latexit>

✏ =
|fX(cM)� fX(M

⇤)|
|fX(M⇤)|

Relative distance from MLE

<latexit sha1_base64="Xy5bS2g7lDIYFTI0/0LUyQx4hUA="></latexit>

✏ CPAPR GCP HybridGC

10�1 0.963 0.963 0.967
10�2 0.963 0.963 0.967
10�3 0.963 0.879 0.967
10�4 0.963 0.003 0.967

<latexit sha1_base64="Vhc8BurWYqfrgdQlX+nQYXmMV20="></latexit>

✏ CPAPR GCP HybridGC

10�1 1.00 1.00 1.00
10�2 0.46 0.04 0.46
10�3 0.03 0.00 0.17
10�4 0.00 0.00 0.01



OUR FUNDAMENTAL (YET SIMPLE) QUESTION
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Why and when do 
these methods fail?

We’ll try to answer this for CPAPR.



CONVERGENCE DEPENDS ON NUMBER OF STEPS IN SEARCH DIRECTION
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CHALLENGING BEHAVIOR ON SMALL DATASET

12

“Optimal” # of  inner iterations: 
leads to MLE

Too many inner iterations: 
leads to other local minimizer

Spectral property
The ratio of  successive 
singular values may be 

a useful heuristic. 

Related work
• Two-factor degeneracies (2FD)5
• Heuristic to detect 2FD6

[5] Kruskal, Harshman, and Lundy, How 3-MFA data can cause degenerate parafac solutions, among other relationships, in Multiway Data Analysis, 1989
[6] Mitchell and Burdick, Slowly converging parafac sequences: Swamps and two-factor degeneracies, Journal of Chemometrics, 1994



RESTARTED CPAPR WITH SVDROP (OVERVIEW)
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While (not converged), compute a rank-𝑅 decomposition with CPAPR:
1. Every step, update current model.
2. Every 𝑗 steps, compute spectral properties of  current model.
3. If  (spectral properties) < 𝛾, checkpoint	and continue. 
4. Otherwise, choose a new initial guess and restart.

Choose the following parameters:
• 𝑘!"# : Maximum number of  outer iterations
• 𝑙!"# : Maximum number of  inner iterations
• 𝑗: Compute spectral properties every 𝑗 ≤ 𝑙!"# inner iterations
• 𝛾: Maximum threshold of  spectral properties for acceptable search 

path (e.g., 𝛾 = 10$)



RESTARTED CPAPR WITH SVDROP (DETAILED)
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1. Choose an initial guess
2. While not converged, compute a rank-𝑅 decomposition with CPAPR:

a. At the 𝑖-th iteration in mode-𝑘, compute the 𝑅-th largest singular value 𝜎(") 𝑅 ($).
b. Proceed for 𝑗 iterations.
c. At the (𝑖 + 𝑗)-th iteration in mode-𝑘, compute the 𝑅-th largest singular value 𝜎(") 𝑅 ($%&).
d. If   𝜎(") 𝑅 ($)/𝜎(") 𝑅 ($%&) < 𝛾, set 𝜎(") 𝑅 ($) ← 𝜎(") 𝑅 ($%&)	and continue. 
e. Otherwise, restart: go to 1.

Choose the following parameters:
• 𝑘!"# : Maximum number of  outer iterations
• 𝑙!"# : Maximum number of  inner iterations
• 𝑗: Compute spectral properties every 𝑗 ≤ 𝑙!"# inner iterations 
• 𝛾: Maximum threshold of  spectral properties for acceptable search 

path (e.g., 𝛾 = 10$)
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CONVERGENCE AND PERFORMANCE RESULTS

Probability of  convergence to MLE vs. local minimizer with SVDrop; 
<latexit sha1_base64="rHZhpKqISSs4pjVPNoBaTwMFlYk=">AAAF43icbVRLb9QwEE67LHSXVwtHLoY+xKVVHtt93ECAhASF8mgpalaV43h3TRM7sh1oiXKAKzfElR/GiR/An2Acp0t3iyVnJjOe+T6Px46yhCntur8WFhuXmpevLLXaV69dv3FzeeXWvhK5JHSPiETIgwgrmjBO9zTTCT3IJMVplNB30fEj43/3kUrFBH+rTzM6TPGYsxEjWIPpaGXxTyuUVLHPNBInRajpif7EYj0pi7tlsb7ebrXCiI4ZLzSO8gTLskgS+W+UsKAVapHJPKFGR9OxgebHBgrTPNEMWOcpLzyvLEhpMRUp3uw/liKrEjLOqURMU1mxVGgt1Dhfs2AhCknKYgNYBJteUKJHgsMWxzQGhB3GWQq7kVNM10RtIM/++XOMAis6MLcv0O3a0J796895BzA913KqvjUro7+narpu5/mTuciaUsf1DW5VgGhUdNzOoDRc3GC7En7fCgMUDNxuJXpuJfoB2jBZgsHAGgZ9ZGmch36pJ1CJZ8/eokwwrm2ebYvu1lzmuf1PeK5fVSmwNTO1rNCBf1VUs8yivxD/Um1eKKjXqUvq92w/1Fv3y9rftfksju+j86h9K3pn4FZDQTAFDyOhtUjrQwgpj6dtC51cto+WV90ttxroouLVyqpTj92jlYXfYSxInlKuSYKVOvTcTA8LLKGLE1q2w1zRDJNjPKaHoHKcUjUsqmtZonWwxGgkJEwofmU9H1HgVKnTNIKVKdYTNe8zxv/5DnM96g8LxrNcU04s0ChPkBbI3HEUM0mJTk5BwUQy4IrIBEtM4Eapdnsd7dZPBKhQIJDnkSMhjsGqylk+UuLT0gSbzcxyjdLZSlSMiRwWNAfBMl3F4WQsgMwknc17Zp1NwQWc3tB4M0VzOAMRm3LDv6ScfiIiTTGPw2k0I6OcE/NaFGdN9XCaGeBnIOMPudLw3oEdWsKbb4CLyr6/5XW3Oq/81QdR3RxLzh3nnnPf8Zye88B56uw6ew5pvG6cNL40vjZp81vze/OHXbq4UMfcdmZG8+dfLsuXbw==</latexit>

SVDrop inner iterations ⌧

Converged Minimizer 0 1 2 3 4 5 6 7 8 9 10

Yes MLE 0 4024 4049 4035 4028 4029 3906 3970 3983 3990 3998

Yes Other KKT point 3905 0 0 0 0 0 102 43 31 24 20

No - 146 27 2 16 23 22 43 38 37 37 33

<latexit sha1_base64="OScJyoq4jzJ2Yf27RrYB4Mc5bPw="></latexit>

� = 106, ✏ = 10�4, N = 4051

Sensitivity of  SVDrop to 
<latexit sha1_base64="s2KyfottjYX9YSBNS0d3u5u5/a4="></latexit>

� (⌧ = 2)



CONCLUSIONS

• SVDrop has the highest likelihood of  finding MLE in our experiments.
• The method can be prohibitively expensive when it does fail, but this is rare.
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Contact: {jermyer, dmdunla}@sandia.gov
Paper (to be updated soon): https://arxiv.org/abs/2207.14341

FUTURE WORK

• It’s unclear how sensitive SVDrop is to the complex interplay parameters.
• Experiments on Small dataset are very limited – do they generalize?
• Are low-accuracy singular values useful?

https://arxiv.org/abs/2207.14341

