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MOTIVATING STOCHASTIC + DETERMINISTIC TENSOR ALGORITHMS N
AN

N

Recent trend in theoretical computer science & numerical linear algebra (and N\
elsewherel):
* Use randomization to solve very large, hard problems

* data mining, information science, compression, scientific computing
* Often taster with equivalent levels of error

* Examples: low-rank matrix decompositions, streaming, regression, linear systems [1]

Typical approach: use stochasticity for a fast approximation and determinism
for refinement to yield effective algorithms with theoretical guarantees.

How can we extend the existing approaches to
low-rank tensor decompositions?

‘ [1] Martinsson and Tropp, Randomized Numerical Linear Algebra: Foundations & Algorithms, Acta Numerica, 2020.




LOW-RANK TENSOR APPROXIMATION

Canonical polyadic decomposition (CPD)

Data CP model Sum of r outer product tensors

-

L e RMXmXxna M= [Aq, A, ..., Ag] € RMXn2xxna
Low-rank CPD

e X is the data tensor in d dimensions or modes. e Assume rank(X) = r.
e M is the model tensor. e Typically choose r < min{ny,na,...,nq}.
e A, is an n, X r factor matrix. Poisson CPD

o i=(i1,is,...,iq) is a multi-index X; ~ Poisson(Mj)




LOW-RANK TENSOR APPROXIMATION

Poisson tensor maximum likelihood estimation

Statistical method to compute low-rank Poisson CPD

mjvi(n foc (M) = min Z mi — xi log(my)

where a,gll)a@) o agj) — m,; are the optimization variables

* 'This a nonlinear, nonconvex optimization problem.
e The maximum likelihood estimator (MLE) corresponds to the global optimizer V(™
for this problem.
* 'The typical approach is to flatten or unfold the tensors into matrices and use local methods.
* Stochastic: Generalized Canonical Polyadic (GCP) tensor decomposition |2, 3]
* Deterministic: Canonical Polyadic Alternating Poisson Regression (CPAPR) [4]

[2] Hong, Kolda, and Duersch, Generalized Canonical Polyadic Tensor Decomposition, SIAM Review, 2020
[3] Kolda and Hong, Stochastic Gradients for Large-Scale Tensor Decomposition, SIAM Journal on Mathematics of Data Science, 2020
‘ [4] Chi and Kolda, On Tensors, Sparsity, and Nonnegative Factorizations, SIAM Journal on Matrix Analysis and Applications, 2012 4




OUR NEW STOCHASTIC + DETERMINISTIC TENSOR ALGORITHMS N
AN

How can current local methods be leveraged together to improve N
likelihood of finding the MLLE/global optimizer?

Proposed methods

Hybrid GCP-CPAPR Restarted CPAPR with SVDrop
* Inspired by Simulated Annealing. * Uses novel heuristic to avoid suboptimal
* Improves probability of solutions w.r.t. global optimizer.
convergence to global optimizer * Saves computation by restarting when the
and reduces cost compared to iterates are detected to be headed to a

standalone methods. suboptimal solution.




HYBRID GCP-CPAPR
Hybrid GCP-CPAPR (HybridGC) intuition

1. Use stochastic optimization to compute a fast approximate solution.
2. Use deterministic optimization to refine approximate solution.

Algorithm HYBRIDGC(tensor X, rank r, initial guess Mj)
M, GCP(:X:, T, M())
My CPAPR(X, T, M1)

return model tensor M = M as estimate to M"




NUMERICAL EXPERIMENTS WITH HYBRID GCP-CPAPR

Methodology

1. Generate N random starting points.
2. Compute decompositions with CPAPR & GCP separately.
3. HybridGC step: refine GCP decompositions with CPAPR.

4, Analyze average behavior of our experiments.

Datasets
1. Small: 4 x 6 x 8, 17 nonzeros, »r =3, N > 110k

2. Large: 1k x 1k x 1k, 98k nonzeros, = 20, N = 100
Error measures

* Based on loss function values.
* Probability estimate of finding MLLE /global optimizer.
* Spectral properties of unfolded tensor.

B 7




HYBRID GCP-CPAPR RESULTS: OPTIMIZATION VARIABLES VIEW N
AN
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PROBABILITY OF FINDING MAXIMUM LIKELIHOOD ESTIMATOR (MLE) N

Small dataset (N > 110K)

€ CPAPR GCP HyBrRIDGC
10—1 0.963 0.963 0.967
102 0.963 0.963 0.967
10~3 0.963 0.879 0.967
10—4 0.963 0.003 0.967

Large dataset (N = 100)

€ CPAPR GCP HyYBrRIDGC
101 1.00 1.00 1.00
102 0.46 0.04 0.46
10—3 0.03  0.00 0.17
10—4 0.00 0.00 0.01

N

Relative distance from MLE

(M) — fx (M)
fac (V)]

For small choices of €, HybridGC

is the most likely to estimate
MILE/global optimizer.

\S

N\



OUR FUNDAMENTAL (YET SIMPLE) QUESTION

Why and when do
these methods fail?

We'll try to answer this for CPAPR.




CONVERGENCE DEPENDS ON NUMBER OF STEPS IN SEARCH DIRECTION N
AN
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CHALLENGING BEHAVIOR ON SMALL DATASET

“Optimal” # of inner iterations: Too many inner iterations:
leads to MLLE leads to other local minimizer
10° P | 100 e | Spectral property
— : ’\__,\.@\ The ratio of successive
| ' | singular values may be
10_5 10_5 i g . .y
= f a useful heuristic.
o
—
e ,
= A _
51077 1071 Related work
k= ,
—oy(M) * Two-factor degeneracies (2FD)>
, O'3(M 2) , * Heuristic to detect 2FD®
10715} 03(M ) 10151
- M,: k th unfolding I
- 03: 3rd largest singular value
10° 102 10° 102
Total iterations across all modes Total iterations across all modes

[5] Kruskal, Harshman, and Lundy, How 3-MFA data can cause degenerate parafac solutions, among other relationships, in Multiway Data Analysis, 1989
‘ [6] Mitchell and Burdick, Slowly converging parafac sequences: Swamps and two-factor degeneracies, Journal of Chemometrics, 1994 12




RESTARTED CPAPR WITH SVDROP (OVERVIEW)

Choose the following parameters:

* K. Maximum number of outer iterations

* L4 - Maximum number of inner iterations

* j: Compute spectral properties every j < [y, 4 Inner iterations

* y: Maximum threshold of spectral properties for acceptable search

path (e.g., ¥ = 10°)

While (not converged), compute a rank-R decomposition with CPAPR:
1. Every step, update current model.
2. Every J steps, compute spectral properties of current model.
3. If (spectral properties) < y, checkpoint and continue.
4. Otherwise, choose a new initial guess and restart.

. .




RESTARTED CPAPR WITH SVDROP (DETAILED)

Choose the following parameters:

* K. Maximum number of outer iterations

Lnasx - Maximum number of inner iterations

J: Compute spectral properties every j < [, 45 inner iterations
Y: Maximum threshold of spectral properties for acceptable search

path (e.g., ¥ = 10°)

Choose an initial guess
While not converged, compute a rank-R decomposition with CPAPR:

a.

o a0 T

At the i-th iteration in mode-k, compute the R-th largest singular value O (k) [R1W.
Proceed for J iterations.

At the (I + j)-th iteration in mode-k, compute the R-th largest singular value o [R ]G+,
If o [R](i)/O'(k) [R]G+) <y, set O k) [R1®) « (k) [R]¢+)) and continue.

Otherwise, restart: go to 1.

14




CONVERGENCE AND PERFORMANCE RESULTS

N
\
\

Probability of convergence to MLE vs. local minimizer with SVDrop; v = 106, e = 107%, N = 4051 \

SVDROP inner iterations 7

Converged Minimizer 0 1 2 3 4 5 6 7 8 9 10
Yes MLE 0 4024 4049 4035 4028 4029 3906 3970 3983 3990 3998
Yes Other KKT point 3905 0 0 0 0 0 102 43 31 24 20
No - 146 27 2 16 23 22 43 38 37 37 33
Sensitivity of SVDrop to v (1 = 2)
100 ¢ ey 1060
- = 10 I
o e
o, o,
c@ s 1000
100 T 102 C10° 10 10 102 TS

Total iterations

Total iterations
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CONCLUSIONS

* SVDrop has the highest likelithood of finding MLE 1n our experiments.

* The method can be prohibitively expensive when 1t does fail, but this 1s rare.

FUTURE WORK

* It’s unclear how sensitive SVDrop 1s to the complex interplay parameters.
* Experiments on Small dataset are very limited — do they generalize?

* Are low-accuracy singular values useful?

Contact: {jermyer, dmdunla}@sandia.gov
Paper (to be updated soon): https://arxiv.org/abs/2207.14341
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