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2 | Operator learning — an ingredient for PDE modelling
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3 | Operator learning — an ingredient for PDE modelling

Fitting functions Fitting
’gj’ operators ﬁ’
A\ i wo A
A M f -1.q » —_— #Li.l I “‘ll|I .Ilm .
) rlr \ \ J.lﬁ N Il. Y ]II|||
B AN BRAY t
| 1 Jl' 2N IIl.llII o
Y L
u; U

ol N:ar%nin2||vi—N[ui1||

» Given functional data, find a PDE that generates it

Least squares approach to PDE modelling
* Experiments -> PDE

« Simulation of high fidelity PDE -> low fidelity PDE
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MOR-Physics'?
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‘ Operator learning methods

'Patel and Desjardins, arXiv:1810.08552, 2018
ZPatel et al., CMAME, 2021
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MOR-physics learns dynamics of colloidal
system from molecular dynamics
simulations. Generalizes to unseen
concentration and colloid diameter
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DeepONet! T .
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Unstacked DeepONet parameterization

Variational DeepONet learns crack path
"Lu, Jin and Karniadakis, Nature, 2021 under shear loading. Generalizes to
'Goswami et al., CMAME, 2022 unseen crack tip locations.?



7 | Potential operator learning application at Z — PDE
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Image of stagnation
column from MagLIF
experiment.

Reproduced from [1]

Learn operators
that correct

current MagLIF
models?

Gomez et al., Phys. Rev. Let. (2014)

Magnetization Preheat Implosion

MagLIF Simulations. Reproduced from [1]
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@ | 100 ns

Transport equations for moments

with operator learned closures
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Particle-in-cell simulation
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(a) 100 ns

Transport equations for moments

with operator learned closures

Particle-in-cell simulation

involve noisy data

Both examples ‘
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Noisy independent variables lead to biased estimates in
ordinary least-squares (OLS) operator regression

Find Li ~ 0,47
U=1u-+e€,

€y 7 QP(O, O-uéac,a:’)




11 I Noisy independent variables lead to biased estimates in
ordinary least-squares (OLS) operator regression

Action of learned operators on noiseless test u:




12 I Noisy independent variables lead to biased estimates in
ordinary least-squares (OLS) operator regression

Standard neural network regularization does not remove bias

Weight decay Dropout




13 1 Noisy independent variables lead to biased estimates in
ordinary least-squares (OLS) operator regression

Project goal:

 Develop and demonstrate
an error model that
corrects for bias
Assuming smooth
functions and white noise




14 1 Attenuation bias for scalar linear regression

a) No error

"-E 150 @ Noerror
E Q ErroronXorY
E - == Amount of
Slope is underpredicted

7S by OLS with error in x

B 1.00 (SE 0.00)

50

b) Random error on X
+10 mm Hg 120 mm Hg
50

Y: LVMI (g/m?)

. True slope vs. predicted slope via OLS:

c) Random error on Y

o, o8 120 g/m? * var ( X )

= mvar(a:) + var(e,)

Y: LVMI (g/m?)

75
B 1.00 (SE 0.45) B 1.00 (SE 0.89)
50
80 110 140 170 200 80 110 140 170 200
X: Systolic blood pressure (mm Hg) X: Systolic blood pressure (mm Hg)

Hutcheon, Chiolero, and Hanley, BMJ, 2010
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Error-in-variable (EiV) models for standard regression

* Given,

(z,y) where x =2 + ¢, and y = f(£) + ¢,
* Find f
* Tools are narrowly tailored

* Deming regression and total least-squares —
variance/covariance must be known

» Thesis with review of EiV models: Zwanzig, Estimation in
nonlinear functional error-in-variables models, 1997



16 I Generalization of attenuation bias to discrete
linear operators

Given(u,v) where u =4 + ¢, and v = L(0) + €,
Let U,V Dbe finite dimensional and be linear
Assume enough data such that the sample statistics converge
The optimum of the OLS problem,
min || () — |}
is L = Elvu!|(Eluu’] + o, 1)1
With norm upperbound,

1)) < Bt
= Bl + 0T




17 ‘ EiV model for operator regression
Error model,

'[Li — U,i O-u61: ! O
[Lf&i — vi] ~ P (O’ [ 0 UU&B,@/])

Use maximum likelihood estimation (MLE)

u' — ut )

max P iy :
L.,u,0,,04 ( [LUZ —°

Assumea: is a smooth function and introduce a filter
max P ([gu@ —u )
Smooth spectral filter,

La* — 0"
Gu = F lterfc(a(k — ke)) Fu




18 ‘ EiV model for operator regression

Error model,

'[Li — U,i O-u61: ! O
[Lf&i — vi] ~ P (O’ [ 0 UU&B,@/])

Use maximum likelihood estimation (ML

~ i Methods of parameterizing the operator
max pl|lw v 1. MOR-Physics
L.t,0,,0, Lu' —° 2. DeepONet

Assumea: is a smooth function ard introduce a filter
Gut 1"
max P < :
L,G,04,04 ([Lu’b T UZ

Smooth spectral filter,
Gu = F lterfc(a(k — ke)) Fu



19 I Learning the Burgers operator with noisy input
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20 I EIV model reduces attenuation bias in learning the
Burgers operator — MOR-Physics

Action of OLS operator on clean u Action of EiV operator on clean u

E1V model improves recovery of true Burgers operator in the presence of noisy indepen-
dent variables. (Left) Underlying smooth function % (----) and training u for SNR = 8
(—),SNR =4 (—), SNR = 0 (—), and SNR = —4 (—). (Right) Action of true
Burgers operator (----) on noiseless test us; and action of learned operators from data
with decreasing SNR for OLS (Top right) and EiV (Bottom right).
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MLE fails to find good filters

MLE, SNR =8 MLE, SNR =4

1 4 -

Ay

MLE, SNR =0 MLE, SNR —-4

&£ €T

Effect of cutoff wavenumber prior on filter for EiV model. (Left) Action of MLE estimate
of filters on noisy u’ (——) for decreasing SNR and corresponding noiseless 4* (----).
(Right) Action of MAP estimate of filters («. prior) on u* with hyperparameters, 3., = 10

(—), Br, = 20(—), Bk, = 40(—), and B,;, = 80(—).



2 I Smoothness prior

Use a smooth spectral filt@n = F ‘erfc(a(k — k.))Fu
Use a Beta distribution for prior (approximatio# @ 1)
ke/B ~ Beta(l+ 4,1+ 6)

Maximum a posteriori estimation (MAP),

Gut — u’

Lt — vz]) P(lic/ﬁ)

a,0,8 are hyperparameters

max P (




23 I Smoothness prior robustly recovers operator with EiV
model and is insensitive to hyperparameters

Br. = 10
2

Cutoff wavenumber prior improves EiV model. Action of EiV operator on u.s; learned
from SNR = 8 (—), SNR = 4 (——), SNR = 0 (—), and SNR = —4 (—) for
various [3_. Action of true operator (----).




24 I Smoothness prior robustly recovers operator with EiV
model and is insensitive to hyperparameters
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Cutoff wavenumber prior improves EiV model. Action of EiV operator on u.s; learned
from SNR = 8 (—), SNR = 4 (——), SNR = 0 (—), and SNR = —4 (—) for
various [3_. Action of true operator (----).
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Effect of smoothness prior on filter

MLE, SNR =8

MLE, SNR =4

MAP, SNR =8 MAP, SNR =4
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MLE, SNR, =-4
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X

Effect of cutoff wavenumber prior on filter for EiV model. (Left) Action of MLE estimate
of filters on noisy u’ (——) for decreasing SNR and corresponding noiseless 4* (----).
(Right) Action of MAP estimate of filters («. prior) on u* with hyperparameters, 3., = 10

o -
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(—), Br, = 20(—), Bk, = 40(—), and B,;, = 80(—).




EiV model reduces attenuation bias in learning
the 2D Burgers operator - MOR-Physics

Utest

Noise free test function

Utest

True operator’s action

0.4
0.2
;” 0.0
0.2
X

Decreasing Slgnal to noise (SNR) in trammg data

OLS learned model applied to Utest

EiV learned model applied to Utest




27 | Statistics on learning the Burgers operator with
EiV vs. OLS — DeepONets
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28 I EIV model is robust to various distributions of the smooth
underlying input functions — DeepONet
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29 | Extension of operator inference and EiIV model to time-
dependent PDEs

For PDEs of the form,
Ot = LU

We seek to inféf  given time independent white noise corrupted solutions,
u=1U+ €,

The OLS loss is computed as,

min |[P(u(t = 0),t) — ulty)|[7

whereP is the evolution operator for the PDE (approximated via forward Euler)
The EiIV model is
Gu(-,0)" —u(-0)" | op (o, [7udra 0
Lgu(,tf)z —U(',tf)z ’ 0 Juéaz,az’

Where MAP estimation is computed as shown previously




0 | Inferring the Kuramoto—-Sivashinsky Equation with EiV vs.
OLS — MOR-Physics )

Kuramoto-Sivashinsky (KS) Equation:
Oyu + 0.50,u® + agu -+ c‘iﬁu =0.

OLS and EiV models perform similarly for KS equation inference. (7Top left) Noiseless
test data, utest. (Bottom left) OLS and (Bottom right) EiV inferred operators for increas-
ing hyperparameter, N;. (Top right) Lyapunov exponents for true equation (----); OLS
equation with Ny = 2 (----), Ny = 4 (----), Ny = 8 (----); and E1V equation with
Ny =2(), Ny =4(), Ny =8(—).



31 I Conclusion

Failure to account for error in the independent variables leads
to biased estimates for operator regression

Developed an error-in-variables model to correct for bias

Demonstrated this error model with MOR-Physics and
DeepONet

Future work

* Explore the full posterior distribution of operators
- Besides the MAP, how do other plausible operators behave?
* UQ - The action of operators sampled from the posterior will give error bars

* Other error models, e.g. multiplicative noise
* Relax smoothness assumption

Manuscript,
e Pateletal PMI R 2022




