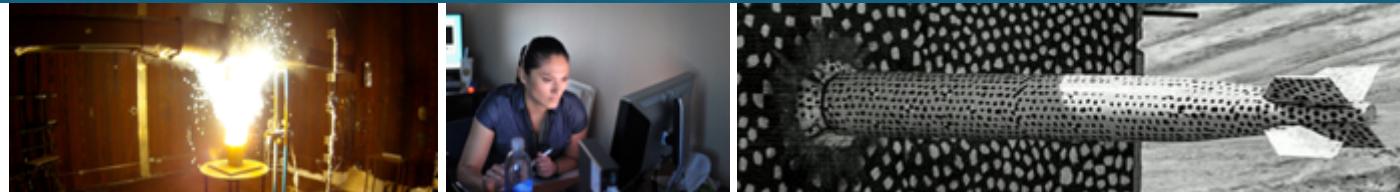


Sandia
National
Laboratories

Error-in-variables modelling for operator learning



Fundamental Science Program Workshop 2023

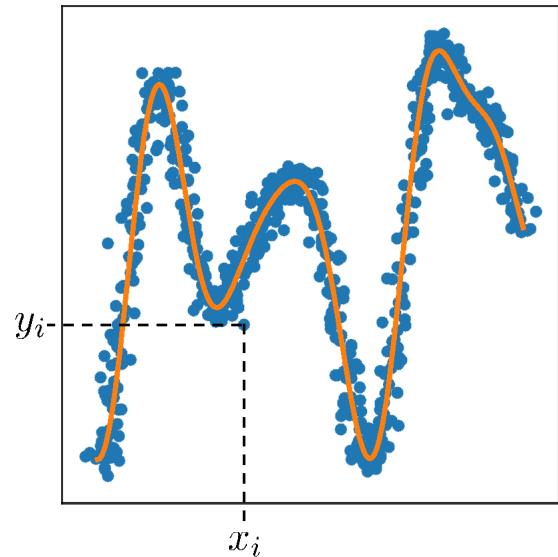
Breakout session: Data Science and Machine
Learning

Ravi G. Patel
Center for Computing Research – Sandia National
Laboratories

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND No: DE-NA0003525.

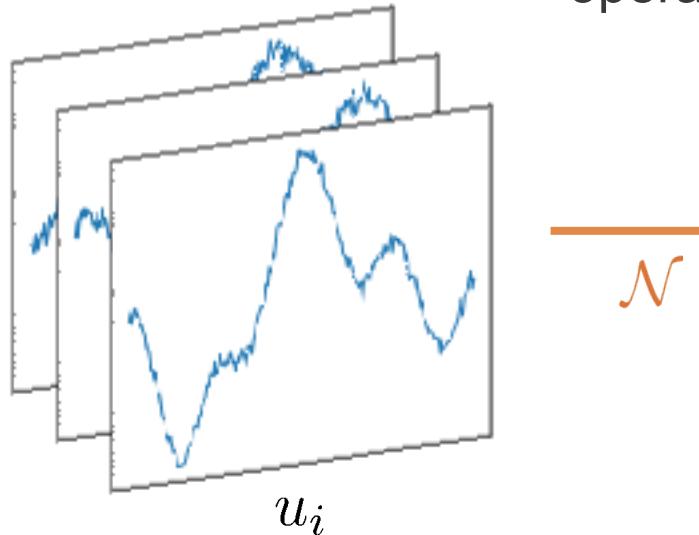
Operator learning – an ingredient for PDE modelling

Fitting functions



$$\hat{f} = \operatorname{argmin}_{f} \sum_i \|y_i - f(x_i)\|$$

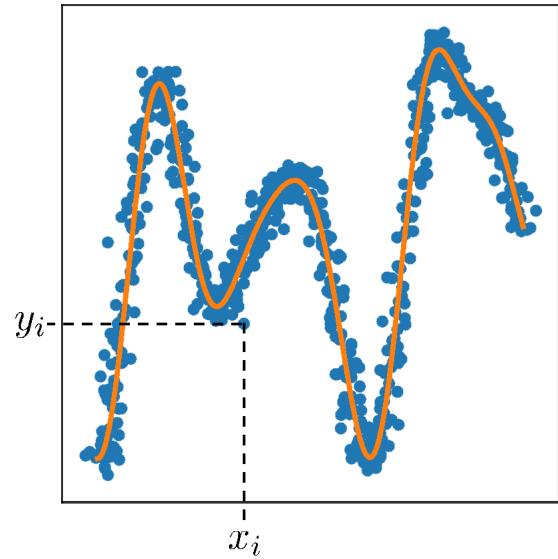
Fitting operators



$$\hat{\mathcal{N}} = \operatorname{argmin}_{\mathcal{N}} \sum_i \|v_i - \mathcal{N}[u_i]\|$$

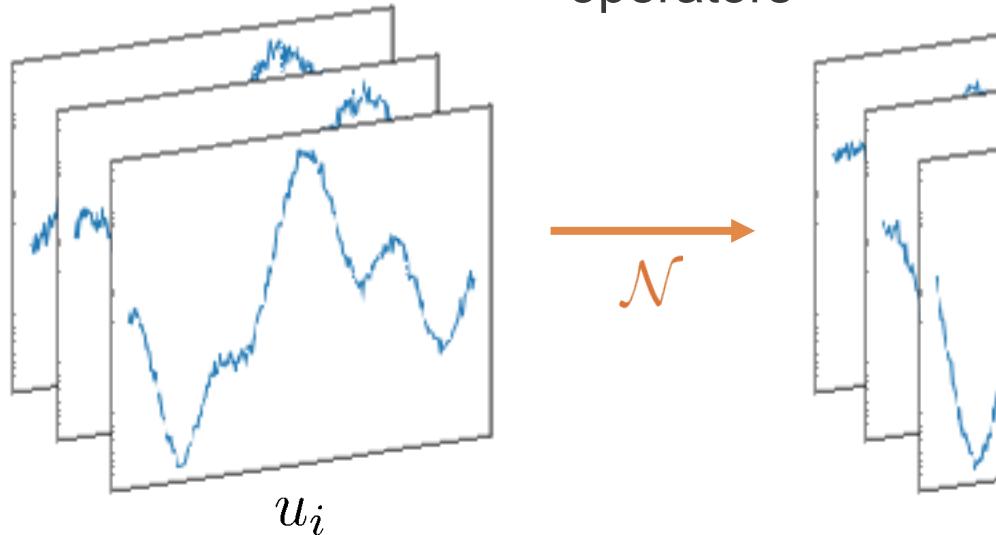
Operator learning – an ingredient for PDE modelling

Fitting functions



$$\hat{f} = \operatorname{argmin}_{f} \sum_i \|y_i - f(x_i)\|$$

Fitting operators

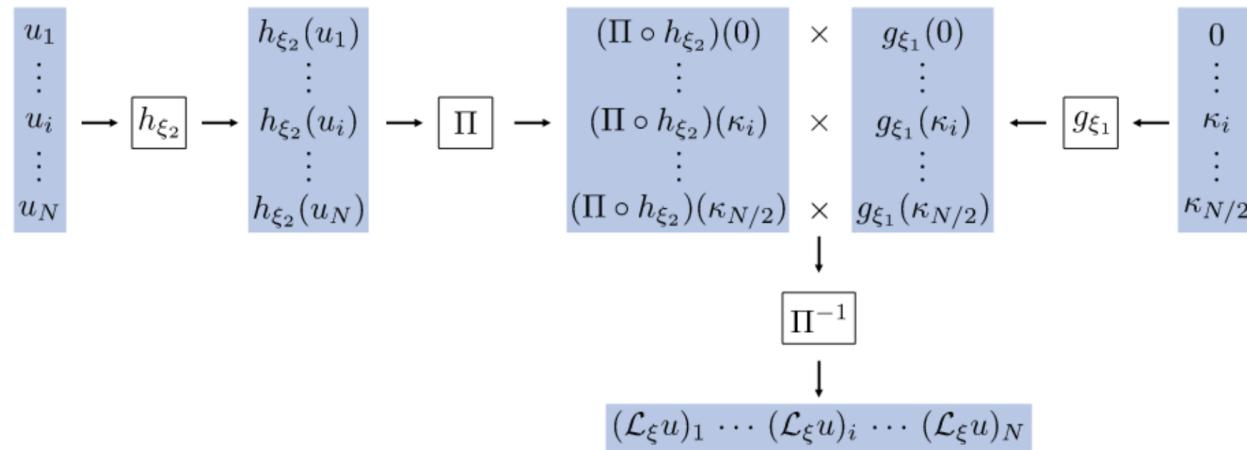


$$\hat{\mathcal{N}} = \operatorname{argmin}_{\mathcal{N}} \sum_i \|v_i - \mathcal{N}[u_i]\|$$

Least squares approach to PDE modelling

- Given functional data, find a PDE that generates it
- Experiments \rightarrow PDE
- Simulation of high fidelity PDE \rightarrow low fidelity PDE

MOR-Physics^{1,2}

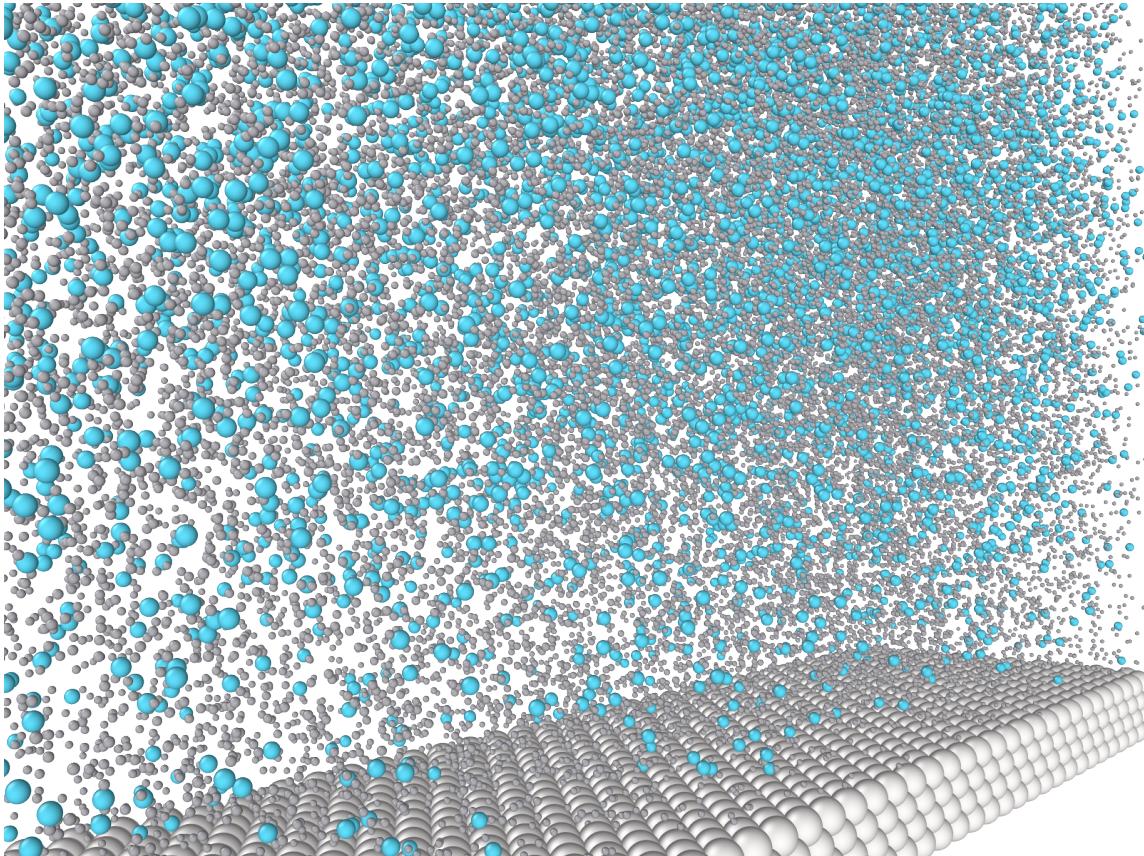
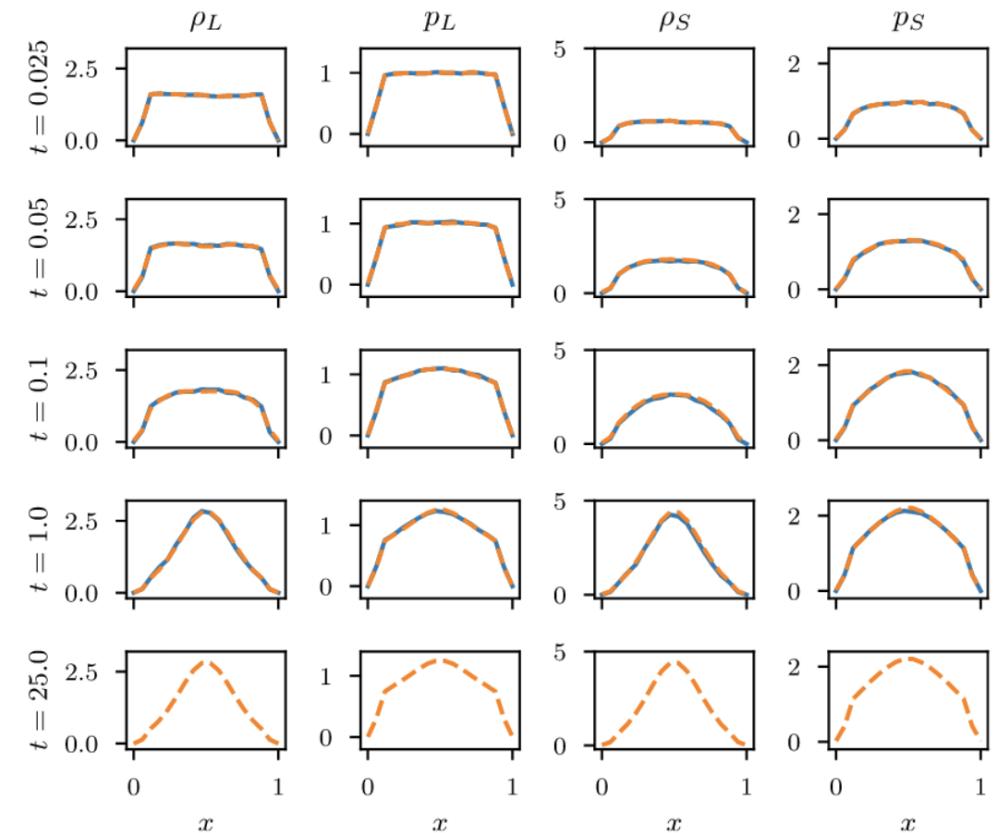


MOR-Physics parameterization

¹Patel and Desjardins, arXiv:1810.08552, 2018

²Patel et al., *CMAME*, 2021

MOR-Physics^{1,2}



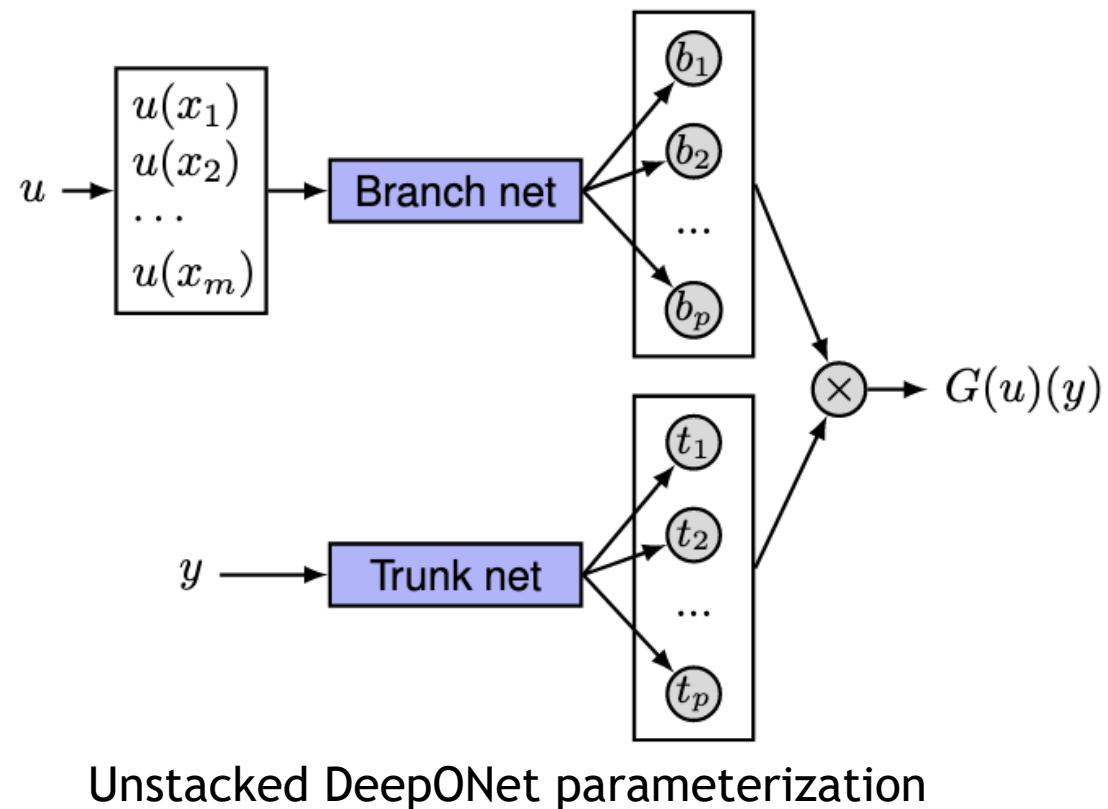
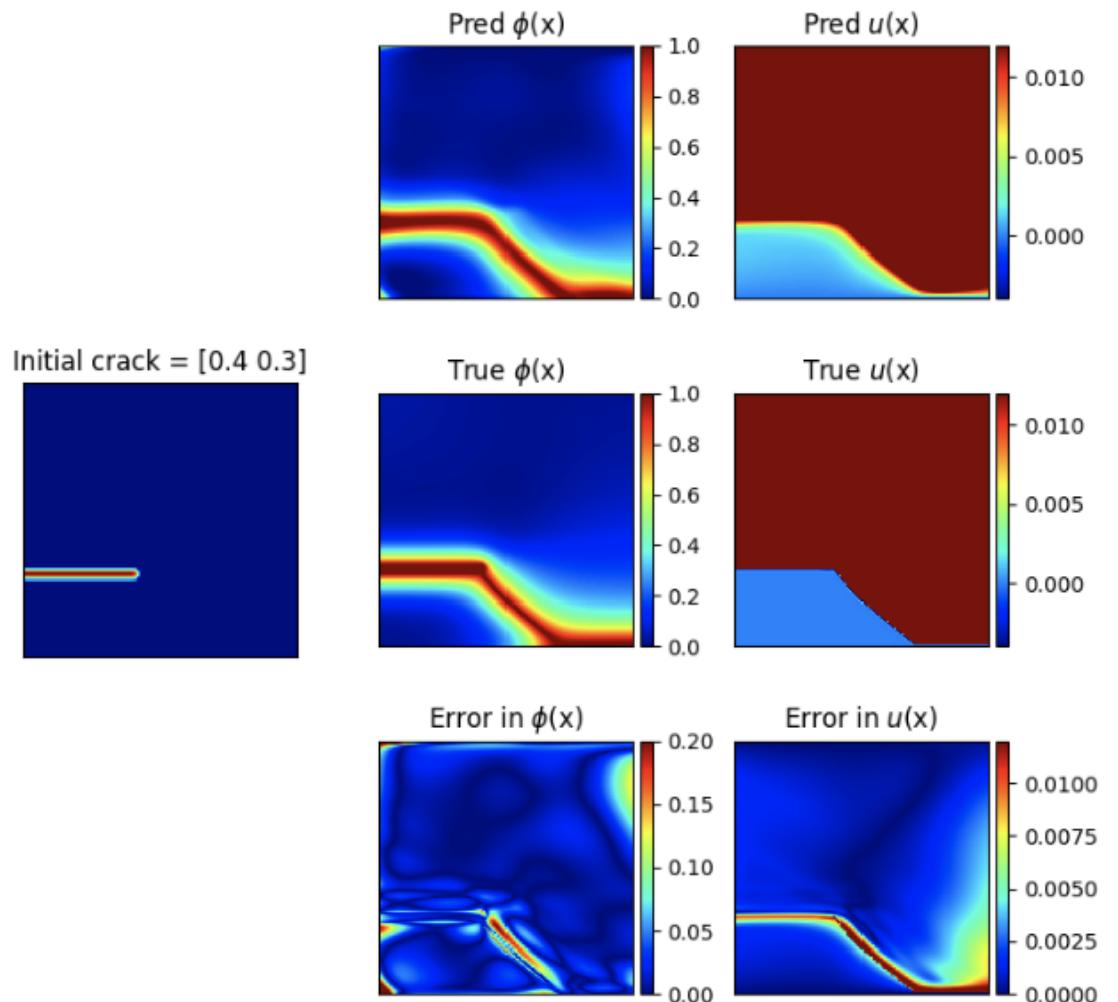
MOR-physics learns dynamics of colloidal system from molecular dynamics simulations. Generalizes to unseen concentration and colloid diameter

¹Patel and Desjardins, arXiv:1810.08552, 2018

²Patel et al., CMAME, 2021

Operator learning methods

DeepONet¹

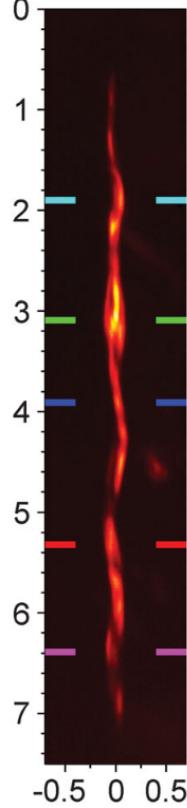


¹Lu, Jin and Karniadakis, *Nature*, 2021

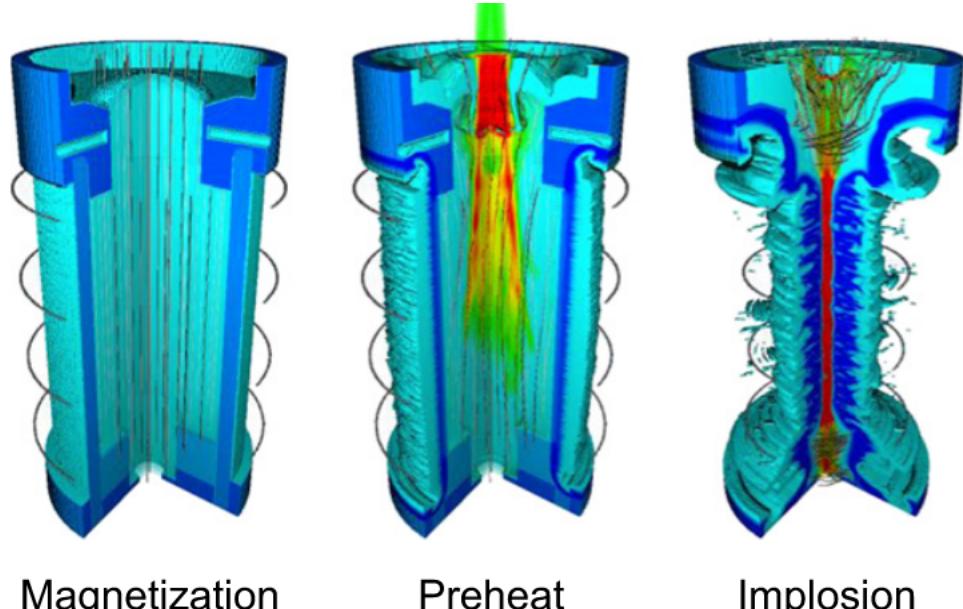
¹Goswami et al., *CMAME*, 2022

Variational DeepONet learns crack path under shear loading. Generalizes to unseen crack tip locations.²

Potential operator learning application at Z – PDE discovery



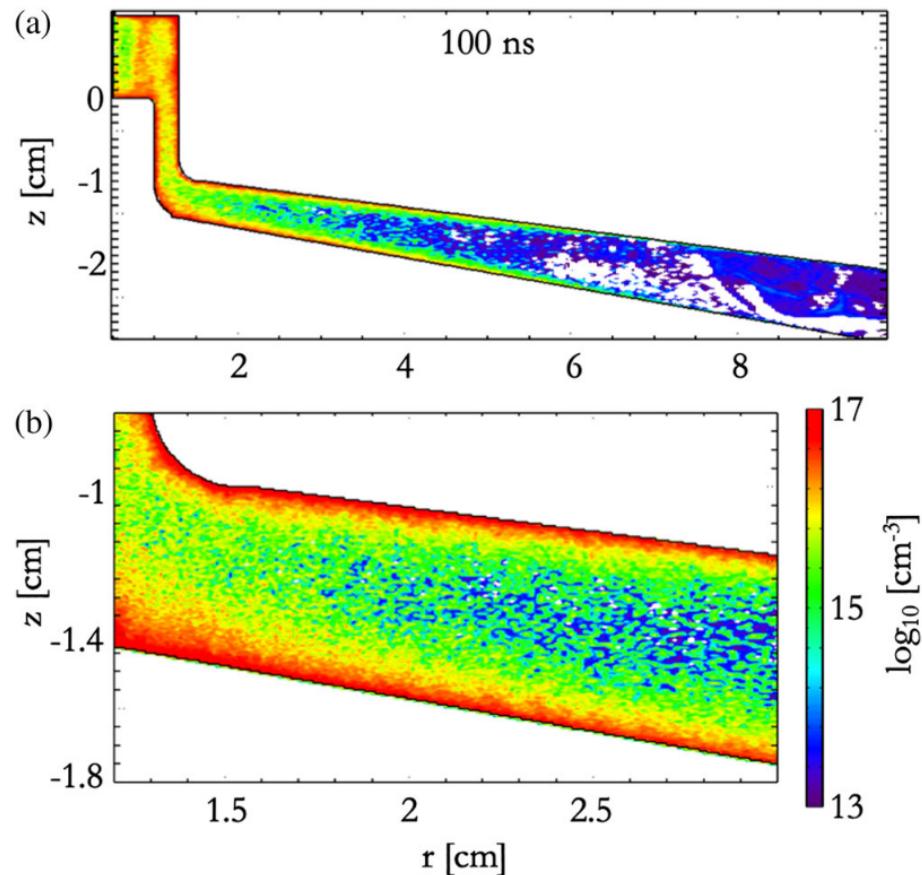
Learn operators
that correct
current MagLIF
models?



MagLIF Simulations. Reproduced from [1]

Image of stagnation
column from MagLIF
experiment.
Reproduced from [1]

Potential operator learning application at Z – coarse graining



Particle-in-cell simulation

Transport equations for moments
with operator learned closures

Potential operator learning application at Z – coarse graining



Particle-in-cell simulation

Transport equations for moments
with operator learned closures

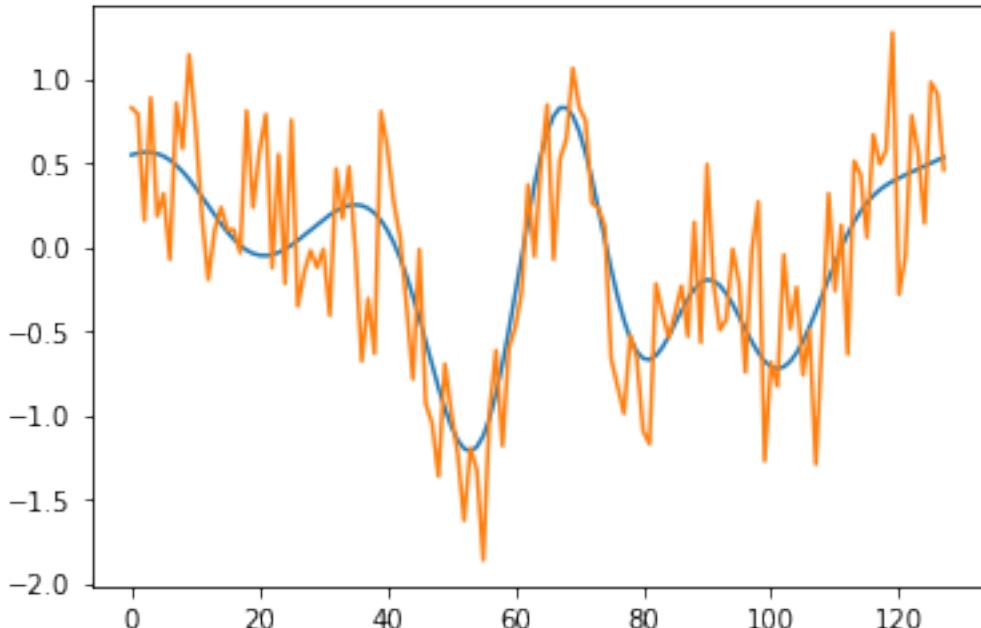
Both examples
involve noisy data

Noisy independent variables lead to biased estimates in ordinary least-squares (OLS) operator regression

Find $L\hat{u} \approx \partial_x \hat{u}^2$

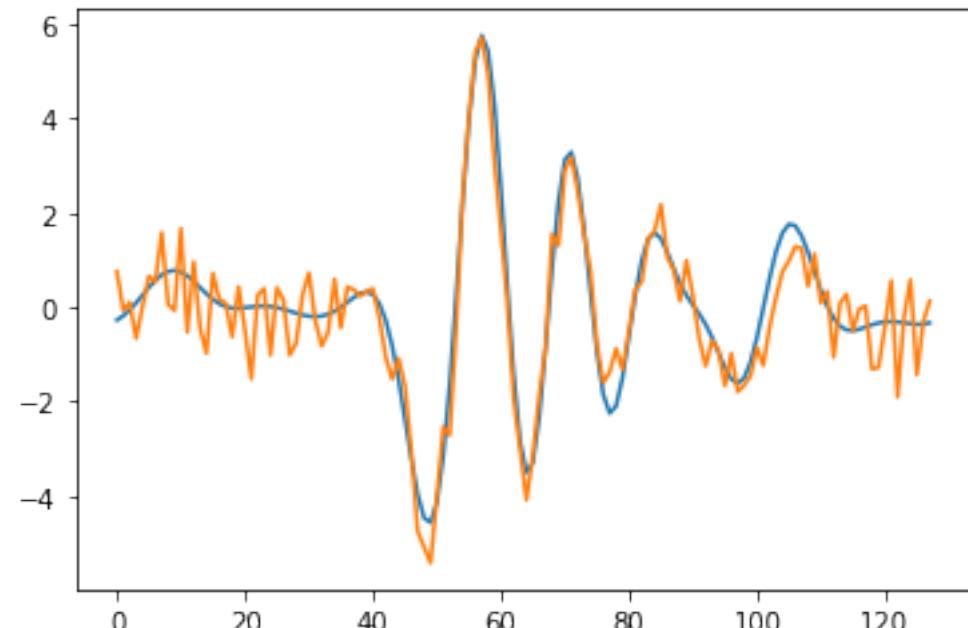
$$u = \hat{u} + \epsilon_u$$

$$\epsilon_u \sim \mathcal{GP}(0, \sigma_u \delta_{x,x'})$$



$$v = \partial_x \hat{u}^2 + \epsilon_v$$

$$\epsilon_v \sim \mathcal{GP}(0, \sigma_v \delta_{x,x'})$$

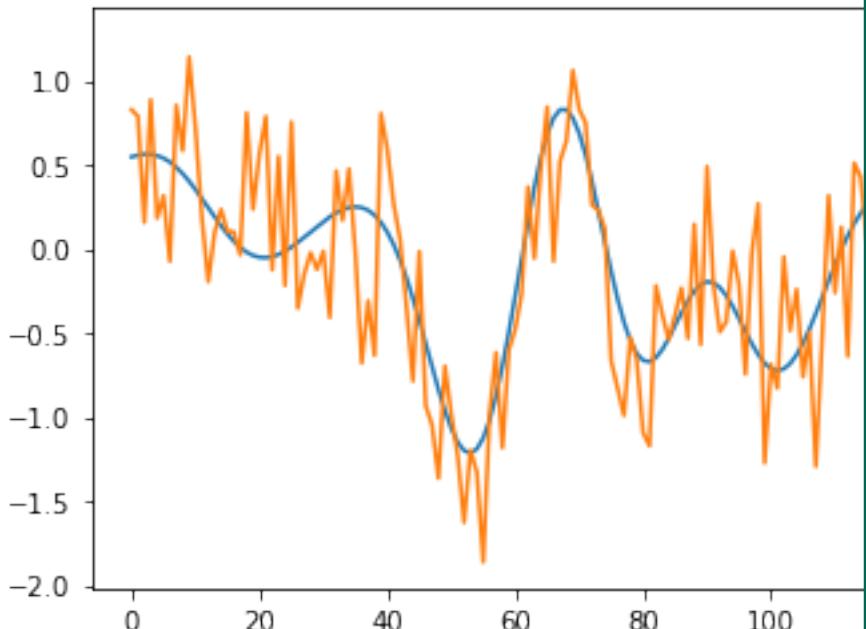


Noisy independent variables lead to biased estimates in ordinary least-squares (OLS) operator regression

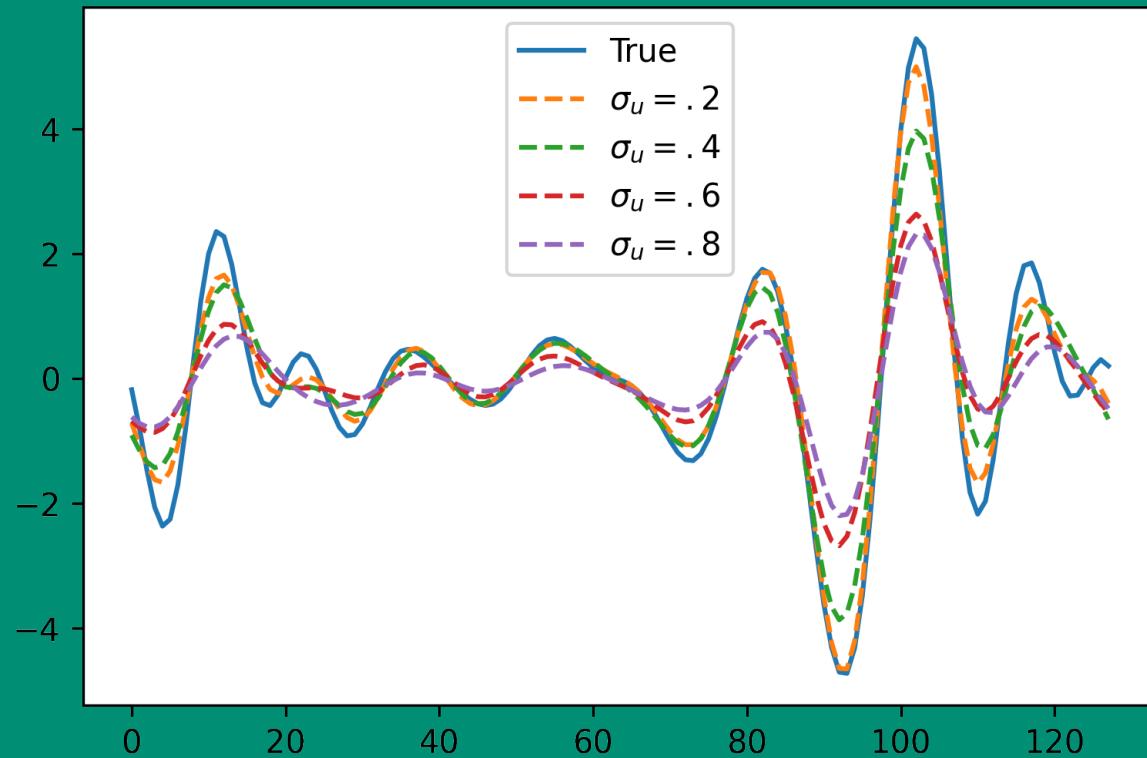
OLS:

$$\min_L \|L(u) - v\|_V^2$$

$$\epsilon_u \sim \mathcal{GP}(0, \sigma_u \delta_{x,x'})$$



Action of learned operators on noiseless test u :

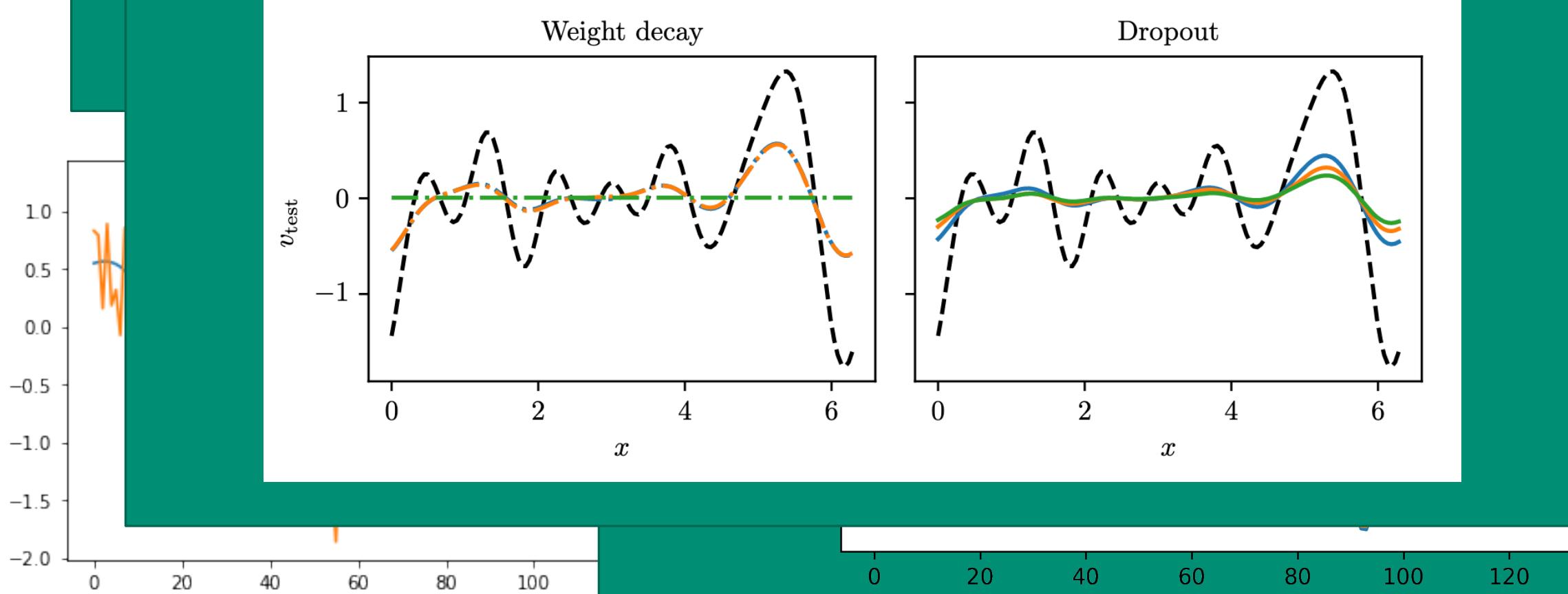


Noisy independent variables lead to biased estimates in ordinary least-squares (OLS) operator regression

Standard neural network regularization does not remove bias

OLS

ML



Noisy independent variables lead to biased estimates in ordinary least-squares (OLS) operator regression

Standard neural network regularization does not remove bias

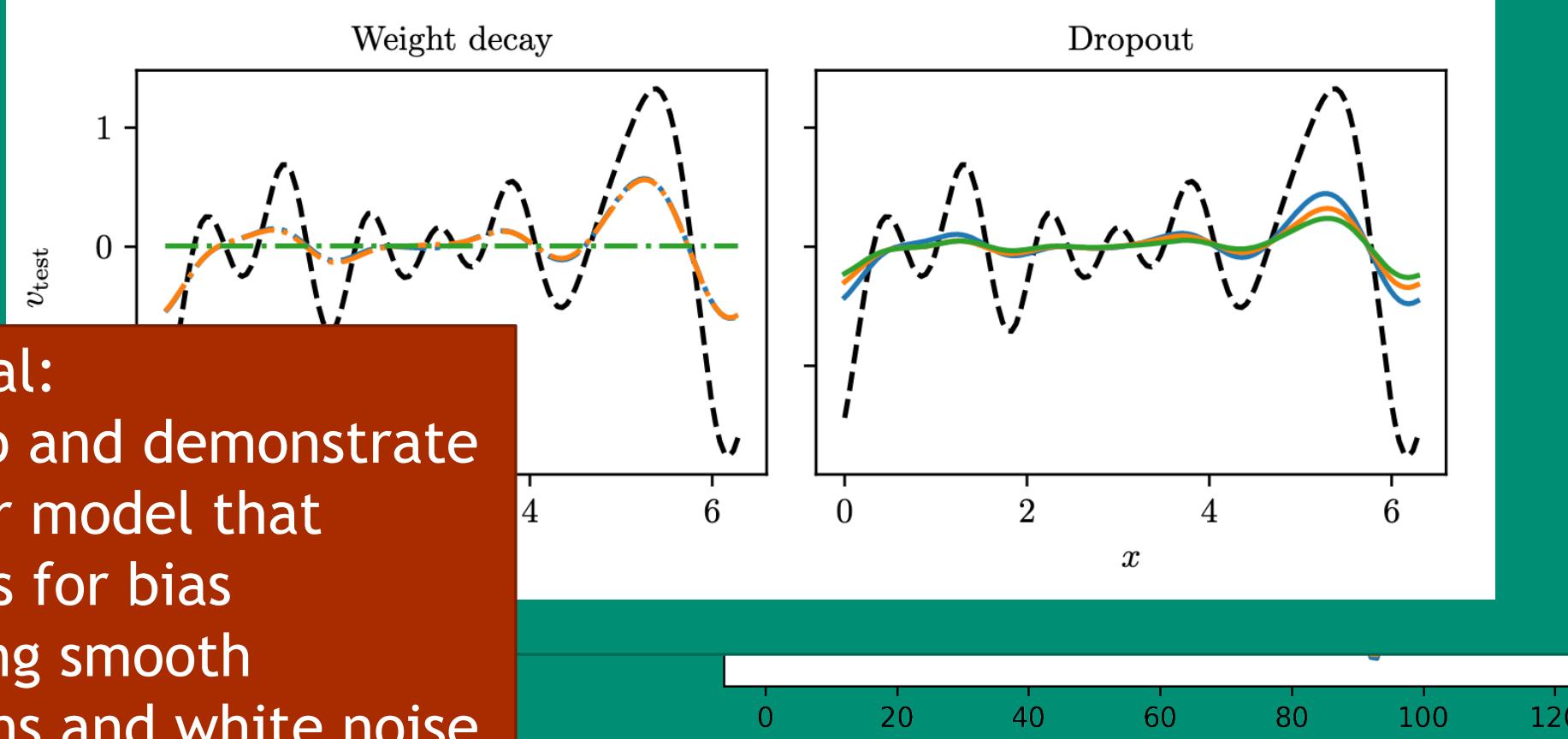
OLS

LI

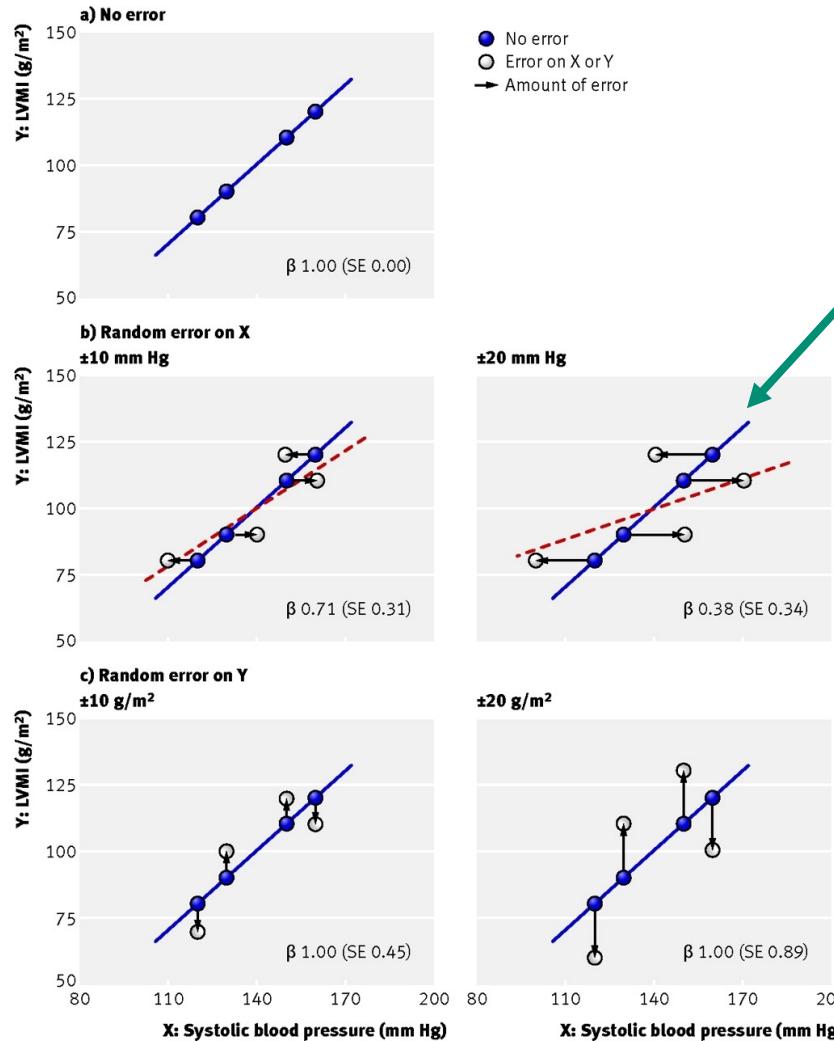
MLP

Project goal:

- Develop and demonstrate an error model that corrects for bias
- Assuming smooth functions and white noise



Attenuation bias for scalar linear regression



Slope is underpredicted
by OLS with error in x

True slope vs. predicted slope via OLS:

$$m^* = m \frac{\text{var}(x)}{\text{var}(x) + \text{var}(\epsilon_x)}$$

Error-in-variable (EiV) models for standard regression

- Given,

(x, y) where $x = \hat{x} + \epsilon_x$ and $y = f(\hat{x}) + \epsilon_y$

- Find f
- Tools are narrowly tailored
- Deming regression and total least-squares – variance/covariance must be known
- Thesis with review of EiV models: Zwanig, *Estimation in nonlinear functional error-in-variables models*, 1997

Generalization of attenuation bias to discrete linear operators

Given (u, v) where $u = \hat{u} + \epsilon_u$ and $v = L(\hat{u}) + \epsilon_v$

Let U, V be finite dimensional and L be linear

Assume enough data such that the sample statistics converge

The optimum of the OLS problem,

$$\min_L \|L(u) - v\|_V^2$$

is $L = E[vu^T](E[uu^T] + \sigma_u I)^{-1}$

With norm upperbound,

$$\|L\| \leq \frac{\|E[vu^T]\|}{\|E[uu^T] + \sigma_u I\|}$$

Error model,

$$\begin{bmatrix} \tilde{u}^i - u^i \\ L\tilde{u}^i - v^i \end{bmatrix} \sim \mathcal{GP} \left(0, \begin{bmatrix} \sigma_u \delta_{x,x'} & 0 \\ 0 & \sigma_v \delta_{x,x'} \end{bmatrix} \right)$$

Use maximum likelihood estimation (MLE)

$$\max_{L, \tilde{u}, \sigma_u, \sigma_v} \prod_i P \left(\begin{bmatrix} \tilde{u}^i - u^i \\ L\tilde{u}^i - v^i \end{bmatrix} \right)$$

Assume \hat{u} is a smooth function and introduce a filter

$$\max_{L, \mathcal{G}, \sigma_u, \sigma_v} \prod_i P \left(\begin{bmatrix} \mathcal{G}u^i - u^i \\ L\tilde{u}^i - v^i \end{bmatrix} \right)$$

Smooth spectral filter,

$$\mathcal{G}u = \mathcal{F}^{-1} \operatorname{erfc}(a(\kappa - \kappa_c)) \mathcal{F}u$$

Error model,

$$\begin{bmatrix} \tilde{u}^i - u^i \\ L\tilde{u}^i - v^i \end{bmatrix} \sim \mathcal{GP} \left(0, \begin{bmatrix} \sigma_u \delta_{x,x'} & 0 \\ 0 & \sigma_v \delta_{x,x'} \end{bmatrix} \right)$$

Use maximum likelihood estimation (MLE)

$$\max_{L, \tilde{u}, \sigma_u, \sigma_v} \prod_i P \left(\begin{bmatrix} \tilde{u}^i - u^i \\ L\tilde{u}^i - v^i \end{bmatrix} \right)$$

Methods of parameterizing the operator

1. MOR-Physics
2. DeepONet

Assume \hat{u} is a smooth function and introduce a filter

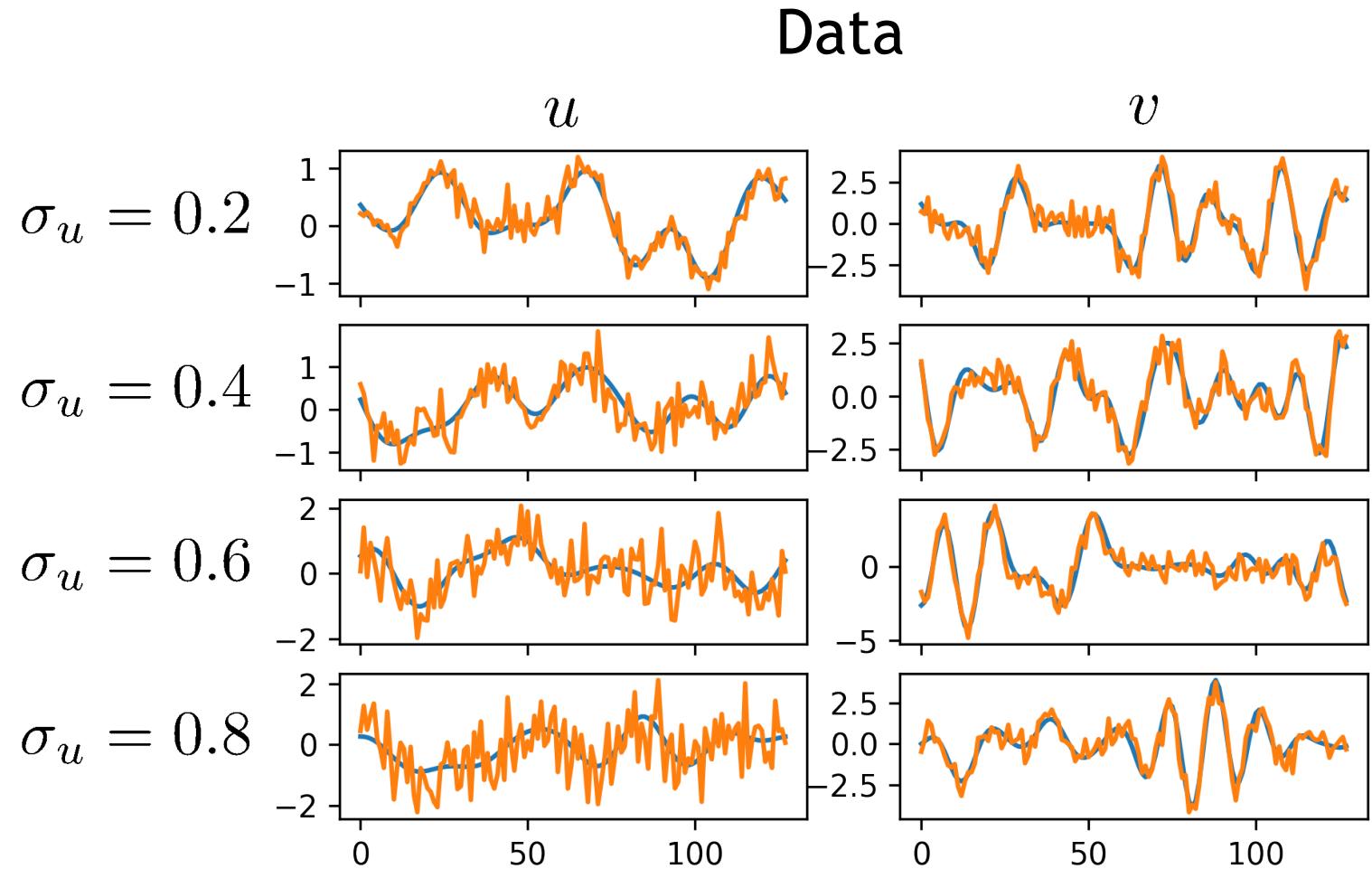
$$\max_{L, \mathcal{G}, \sigma_u, \sigma_v} \prod_i P \left(\begin{bmatrix} \mathcal{G}u^i - u^i \\ L\tilde{u}^i - v^i \end{bmatrix} \right)$$

Smooth spectral filter,

$$\mathcal{G}u = \mathcal{F}^{-1} \operatorname{erfc}(a(\kappa - \kappa_c)) \mathcal{F}u$$

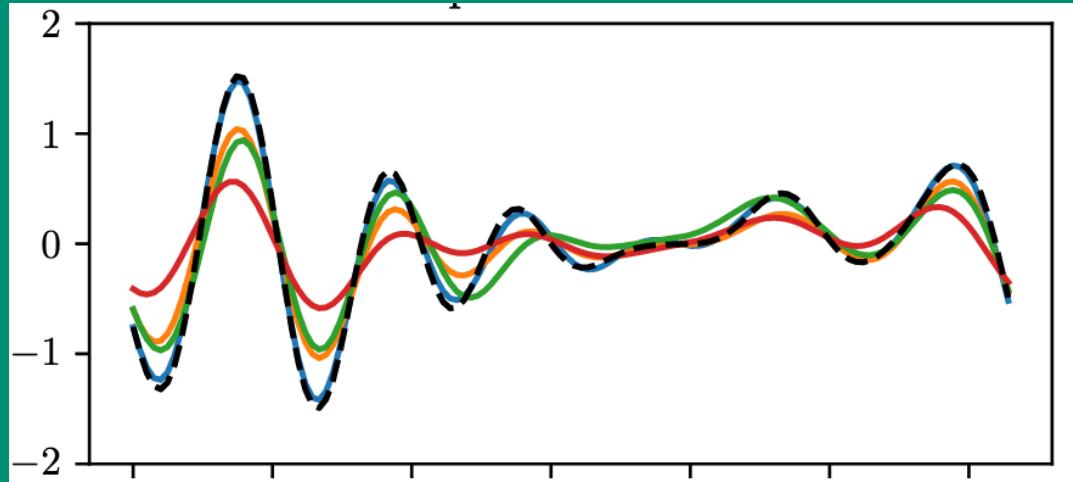
Recover Burgers
operator,

$$Lu = \partial_x u^2$$

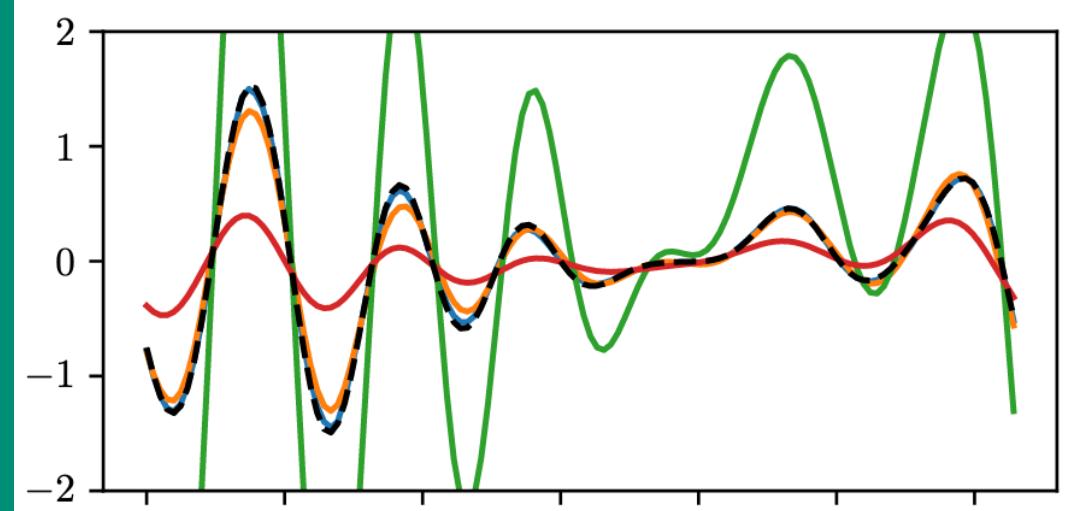


EiV model reduces attenuation bias in learning the Burgers operator – MOR-Physics

Action of OLS operator on clean u

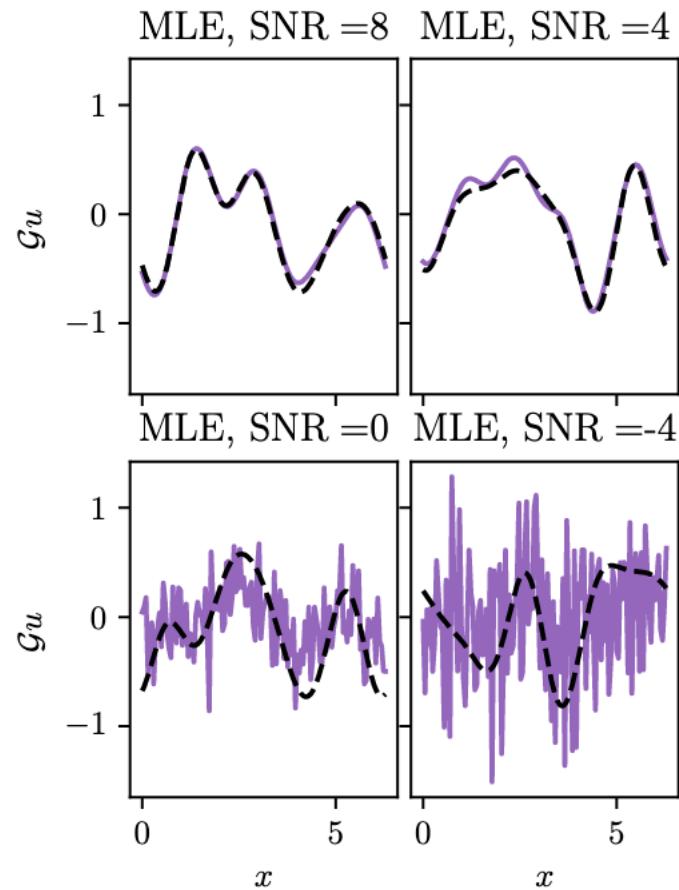


Action of EiV operator on clean u



EiV model improves recovery of true Burgers operator in the presence of noisy independent variables. (*Left*) Underlying smooth function \hat{u} (----) and training u for $\text{SNR} = 8$ (—), $\text{SNR} = 4$ (—), $\text{SNR} = 0$ (—), and $\text{SNR} = -4$ (—). (*Right*) Action of true Burgers operator (----) on noiseless test \mathbf{u}_{test} and action of learned operators from data with decreasing SNR for OLS (*Top right*) and EiV (*Bottom right*).

MLE fails to find good filters



Effect of cutoff wavenumber prior on filter for EiV model. *(Left)* Action of MLE estimate of filters on noisy u^i (—) for decreasing SNR and corresponding noiseless \hat{u}^i (----). *(Right)* Action of MAP estimate of filters (κ_c prior) on u^i with hyperparameters, $\beta_{\kappa_c} = 10$ (—), $\beta_{\kappa_c} = 20$ (—), $\beta_{\kappa_c} = 40$ (—), and $\beta_{\kappa_c} = 80$ (—).

Smoothness prior

Use a smooth spectral filter $\mathcal{G}u = \mathcal{F}^{-1}\text{erfc}(a(\kappa - \kappa_c))\mathcal{F}u$

Use a Beta distribution for prior (approximation $\mathcal{U}(10, 1)$),

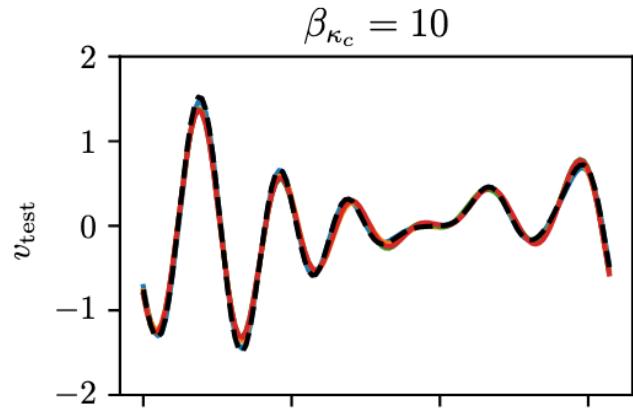
$$\kappa_c/\beta \sim \text{Beta}(1 + \delta, 1 + \delta)$$

Maximum a posteriori estimation (MAP),

$$\max_{L, \mathcal{G}, \sigma_u, \sigma_v} \prod_i P\left(\begin{bmatrix} \mathcal{G}u^i - u^i \\ L\tilde{u}^i - v^i \end{bmatrix}\right) P(\kappa_c/\beta)$$

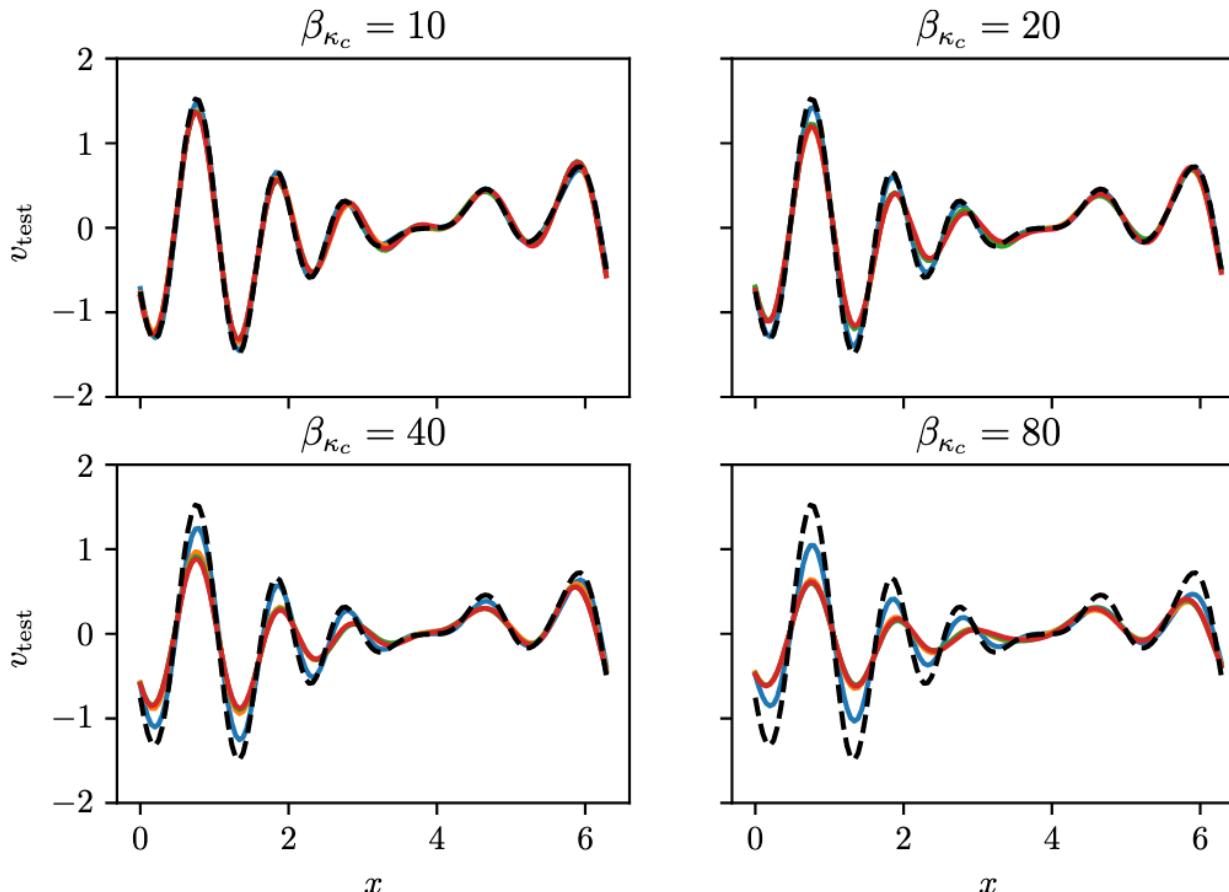
a, δ, β are hyperparameters

Smoothness prior robustly recovers operator with EiV model and is insensitive to hyperparameters



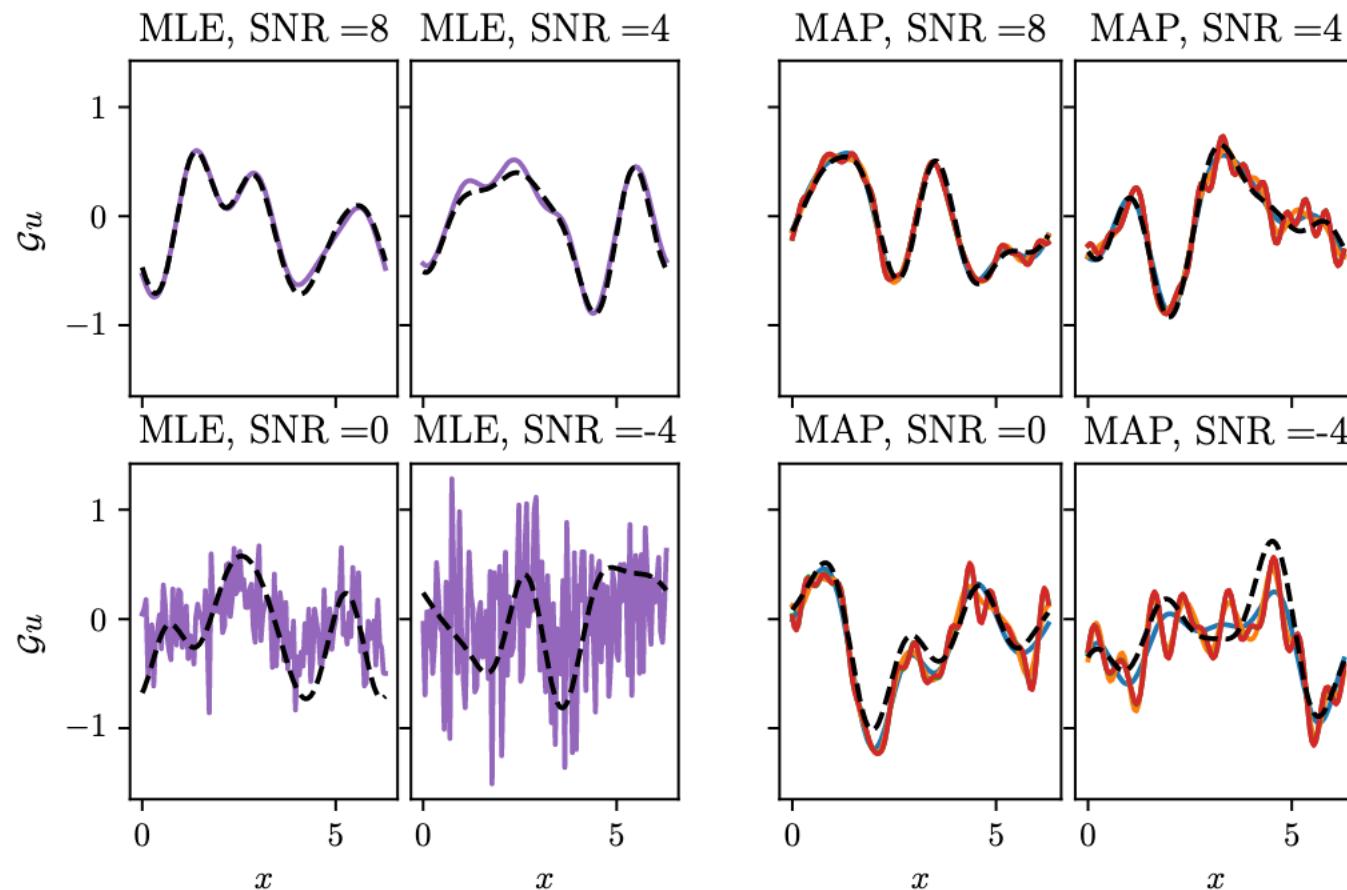
Cutoff wavenumber prior improves EiV model. Action of EiV operator on u_{test} learned from $\text{SNR} = 8$ (—), $\text{SNR} = 4$ (—), $\text{SNR} = 0$ (—), and $\text{SNR} = -4$ (—) for various β_{κ_c} . Action of true operator (----).

Smoothness prior robustly recovers operator with EiV model and is insensitive to hyperparameters



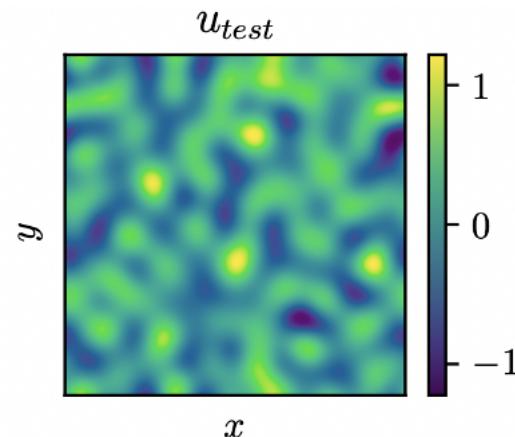
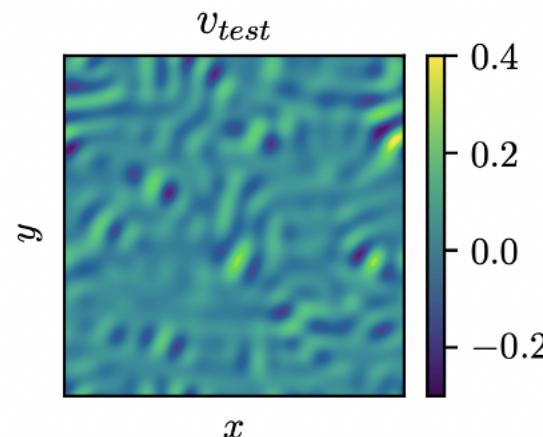
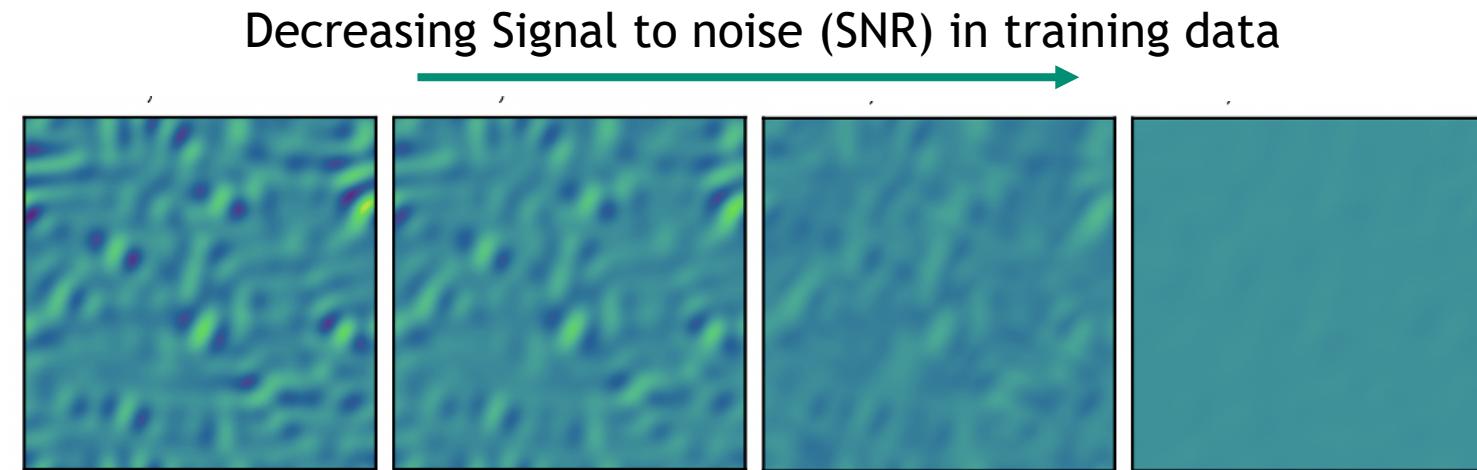
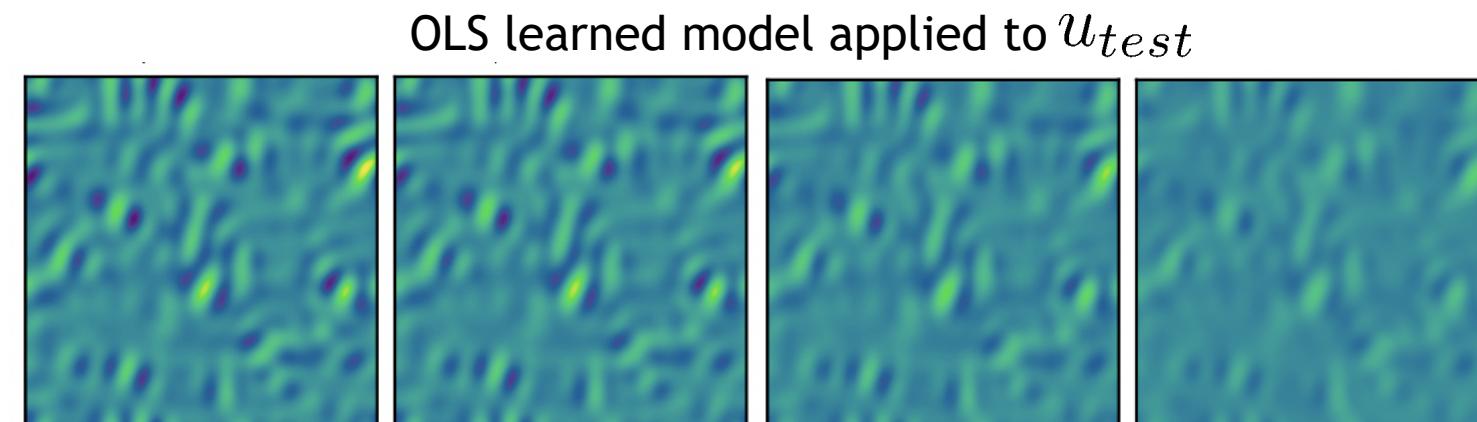
Cutoff wavenumber prior improves EiV model. Action of EiV operator on u_{test} learned from $\text{SNR} = 8$ (—), $\text{SNR} = 4$ (—), $\text{SNR} = 0$ (—), and $\text{SNR} = -4$ (—) for various β_{κ_c} . Action of true operator (----).

Effect of smoothness prior on filter

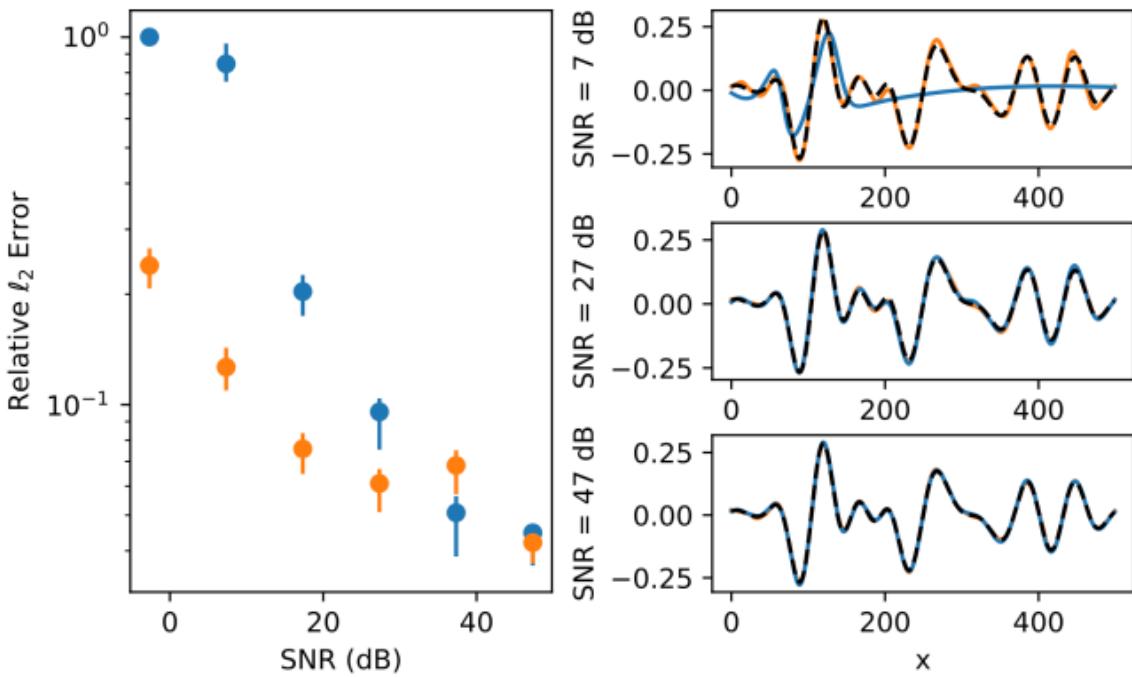


Effect of cutoff wavenumber prior on filter for EiV model. (Left) Action of MLE estimate of filters on noisy u^i (—) for decreasing SNR and corresponding noiseless \hat{u}^i (----). (Right) Action of MAP estimate of filters (κ_c prior) on u^i with hyperparameters, $\beta_{\kappa_c} = 10$ (—), $\beta_{\kappa_c} = 20$ (—), $\beta_{\kappa_c} = 40$ (—), and $\beta_{\kappa_c} = 80$ (—).

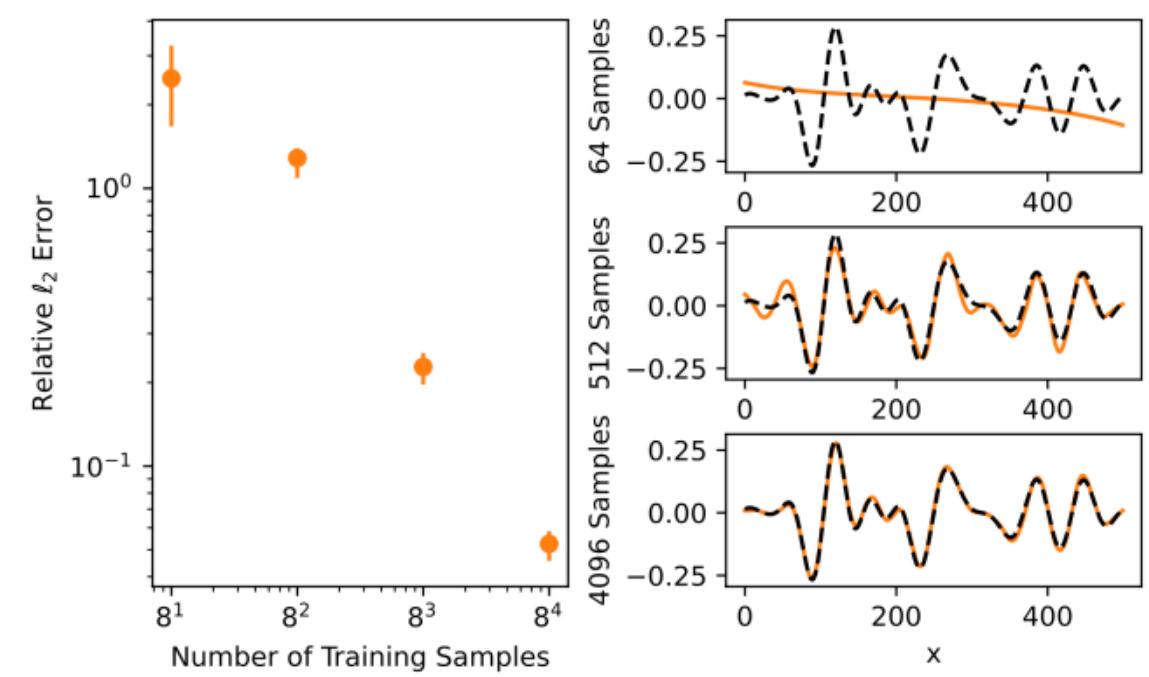
EiV model reduces attenuation bias in learning the 2D Burgers operator – MOR-Physics



Statistics on learning the Burgers operator with EiV vs. OLS – DeepONets

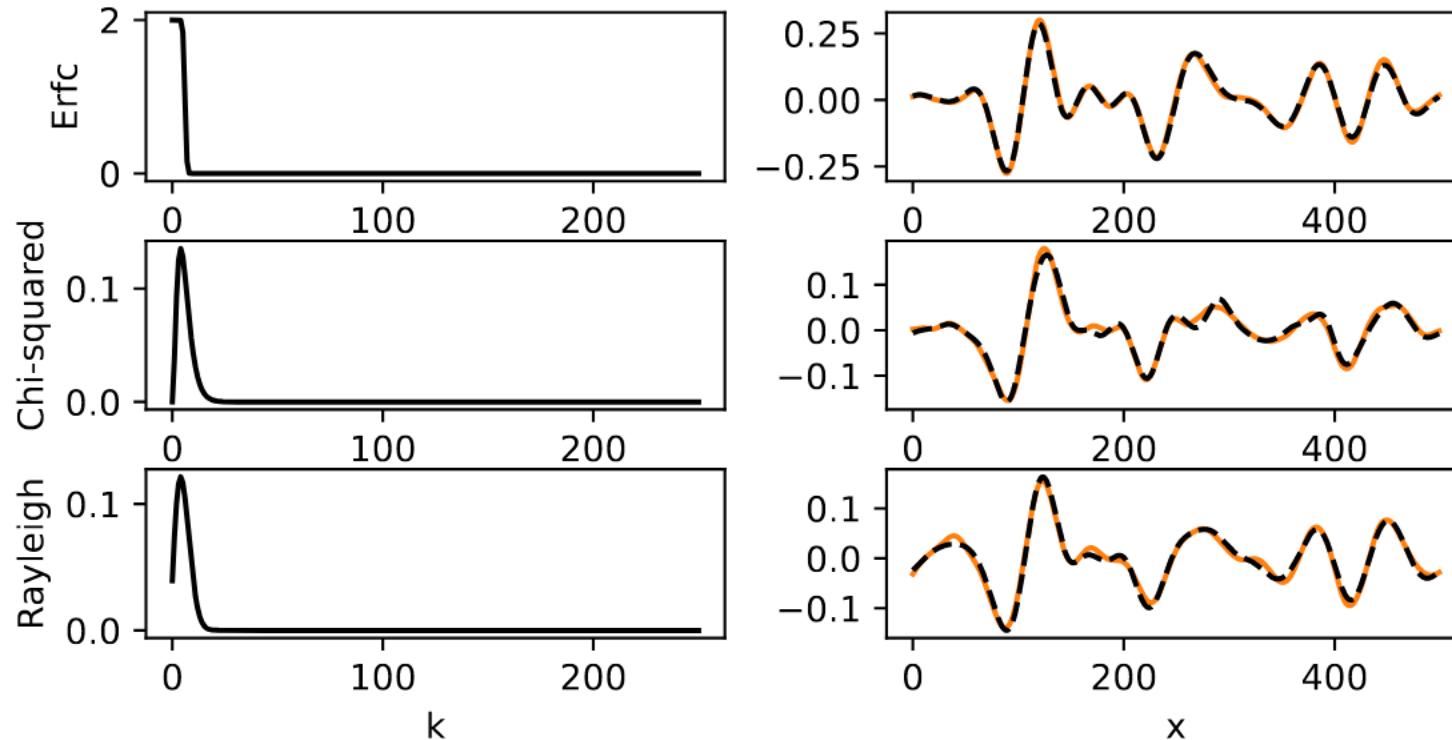


OLS (●) and EiV (●) test error vs. SNR



EiV (●) test error vs. number of samples

EiV model is robust to various distributions of the smooth underlying input functions – DeepONet



Effect of spectral filter used to generate input signals. (*Left*) Frequency content of u_{test} . (*Right*) Action of true (----) and DeepONet EiV (—) operators on u_{test} .

Extension of operator inference and EiV model to time-dependent PDEs

For PDEs of the form,

$$\partial_t \hat{u} = \mathcal{L} \hat{u}$$

We seek to infer \hat{u} given time independent white noise corrupted solutions,

$$u = \hat{u} + \epsilon_u$$

The OLS loss is computed as,

$$\min_{\mathcal{L}} \|\mathcal{P}(u(t=0), t_f) - u(t_f)\|_U^2$$

where \mathcal{P} is the evolution operator for the PDE (approximated via forward Euler)

The EiV model is

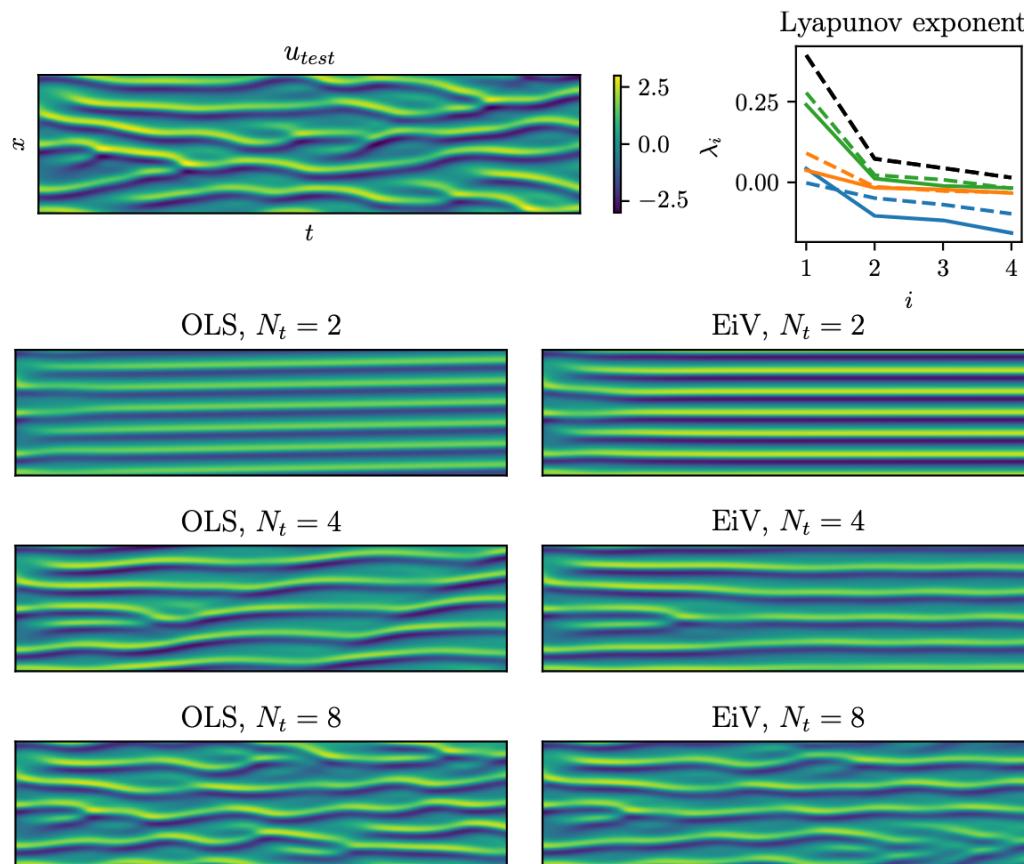
$$\begin{bmatrix} \mathcal{G}u(\cdot, 0)^i - u(\cdot, 0)^i \\ L\mathcal{G}u(\cdot, t_f)^i - u(\cdot, t_f)^i \end{bmatrix} \sim \mathcal{GP} \left(0, \begin{bmatrix} \sigma_u \delta_{x,x'} & 0 \\ 0 & \sigma_u \delta_{x,x'} \end{bmatrix} \right)$$

Where MAP estimation is computed as shown previously

Inferring the Kuramoto–Sivashinsky Equation with EiV vs. OLS – MOR-Physics

Kuramoto–Sivashinsky (KS) Equation:

$$\partial_t u + 0.5 \partial_x u^2 + \partial_x^2 u + \partial_x^4 u = 0$$



OLS and EiV models perform similarly for KS equation inference. (Top left) Noiseless test data, u_{test} . (Bottom left) OLS and (Bottom right) EiV inferred operators for increasing hyperparameter, N_t . (Top right) Lyapunov exponents for true equation (----); OLS equation with $N_t = 2$ (----), $N_t = 4$ (----), $N_t = 8$ (----); and EiV equation with $N_t = 2$ (—), $N_t = 4$ (—), $N_t = 8$ (—).

Failure to account for error in the independent variables leads to biased estimates for operator regression

Developed an error-in-variables model to correct for bias

Demonstrated this error model with MOR-Physics and DeepONet

Future work

- Explore the full posterior distribution of operators
 - Besides the MAP, how do other plausible operators behave?
 - UQ - The action of operators sampled from the posterior will give error bars
- Other error models, e.g. multiplicative noise
- Relax smoothness assumption

Manuscript,

- Patel et al., *PMLR*, 2022