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Motivation & model problem 2

• Atmosphere is the most expensive component of Earth System Models 
• Tracer advection is the dominant cost in atmosphere simulations
• With biogeochemistry 100-1000 tracers are needed 

𝜌 - Density
𝜏	 - Tracer mixing ratio
𝒗	- Velocity 
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Abstract

We present a new optimization-based property-preserving algorithm for passive tracer transport. The al-
gorithm utilizes a semi-Lagrangian approach based on incremental remapping of the mass and the total
tracer. However, unlike traditional semi-Lagrangian schemes, which remap the density and the tracer mix-
ing ratio through monotone reconstruction or flux correction, we utilize an optimization-based remapping
that enforces conservation and local bounds as optimization constraints. In so doing we separate accuracy
considerations from preservation of physical properties to obtain a conservative, second-order accurate trans-
port scheme that also has a notion of optimality. Moreover, we prove that the optimization-based algorithm
preserves linear relationships between tracer mixing ratios. We illustrate the properties of the new algorithm
using a series of standard tracer transport test problems in a plane and on a sphere.
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1. Introduction

Transport algorithms are a key component of fluid dynamics simulations in Earth System Models (ESM).
For example, in the context of ocean and atmosphere modeling many biological and chemical species must
be transported with the flow in an accurate, e�cient and physical property preserving manner. In this paper
we focus on the application of optimization ideas to the development of such property-preserving algorithms
for the transport of passive tracers. Passive tracers model nonreactive species whose concentrations remain
constant along the flow trajectories. The coupled system of partial di↵erential equations (PDEs) governing
the transport of a single passive tracer comprises the scalar transport equation
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+r · ⇢v = 0 on ⌦⇥ [0, T ] and ⇢(x, 0) = ⇢0(x) , (1.1)
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and the tracer mass transport equation

@⇢⌧

@t
+r · ⇢⌧v = 0 on ⌦⇥ [0, T ] and ⌧(x, 0) = ⌧0(x) , (1.2)

where ⇢(x, t) is a positive density function, v = v(x, t) is a given velocity field, and ⌧(x, t) is the tracer
mixing ratio2. Using (1.1) and (1.2) it is easy to see that
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+ v ·r⌧ = 0 , (1.3)

that is, ⌧ is indeed constant along characteristics. This implies that no new extrema can be created during
the transport of the tracer, i.e., ⌧ satisfies a monotonicity property3. Extension of (1.1)–(1.2) to multiple
passive tracers is straightforward and amounts to adding a transport equation (1.2) for the mixing ratio of
each tracer.

Physically consistent ESM simulations require numerical solutions of the coupled PDE system (1.1)–
(1.2) that are conservative and bounds preserving for both the density and the tracer. Often, the system
(1.1)–(1.2) is solved for ⇢ and the tracer mass � := ⇢⌧ because this approach decouples the two equations.
Then, the tracer mixing ratio is derived as ⌧ = �/⇢. However, this approach may introduce new extrema
into ⌧ even when the numerical solutions for ⇢ and � are bounded. This results in a violation of the property
that ⌧ is constant along characteristics and is referred to as compatibility error in the literature [1, 2]. We
seek a method that avoids this compatibility error, while maintaining conservation and bounds preservation
for ⇢ and ⌧ . In the context of atmospheric tracer transport, it is additionally important that a numerical
method preserves functional relationships between two nonreactive species [3]. Although no discretization
method can preserve arbitrary nonlinear relationships between passive tracers, we require, at a minimum,
that the scheme preserve linear relationships.

In the geophysical modeling community semi-Lagrangian schemes are a popular choice to solve the
tracer and density system (1.1)–(1.2) because such schemes allow for time steps much larger than the CFL-
restricted time steps in explicit Eulerian methods. Broadly speaking, semi-Lagrangian advection schemes
fall into one of the following two general categories. The first one comprises methods based on finite volume
discretizations that are inherently mass conservative. In this class of schemes tracer mixing ratios are
typically updated by integrating intersections of cell volumes [4, 2, 5]. The methods in the second category
utilize nodal discretizations that are not inherently conservative. This type of methods uses interpolation to
update tracer mixing ratios followed by application of mass corrections to achieve mass conservation [? 6, 7?
? ]. Preservation of local bounds and monotonicity in these schemes is typically enforced using flux correction
[4] or monotone reconstruction involving slope limiters [2]. Compatibility can be maintained through the use
of a synchronized flux-correction method [1] or by carefully constructing the discrete approach so that the
tracer mixing ratio is computed using an averaging operation applied to separate monotone slope-limited
reconstructions of the tracer and the density [2].

In this paper we build on our previous work [8, 9, 10] to develop an optimization-based algorithm for
the conservative transport of passive tracers, which preserves local solution bounds and linear relationships
between tracers. Our approach combines the idea of incremental remapping as a transport algorithm [2]
with an optimization-based remap of tracer mixing ratio where bounds and mass conservation are enforced
as constraints. In contrast to flux correction and slope-limited reconstruction, which are based on local worst

case scenarios, our optimization approach produces a numerical solution that is a global optimal solution

from a feasible set defined by these constraints. In other words, this solution is always the best possible
with respect to the optimization objective. In fact, one can rigorously show that popular flux correction
techniques can be interpreted as simplified solution procedures for our global optimization problem; see [8]
and [11] for further details.

We have organized the paper as follows. Section 2 introduces relevant notation and definitions and formu-
lates a generic semi-Lagrangian transport scheme that serves as a reference point for the optimization-based

2For simplicity, unless there is a chance for confusion, we use “tracer” and “tracer mixing ratio” interchangeably.
3If v is divergence-free, D⇢/Dt = 0 and the density can also be viewed as a passive tracer.
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Tracer-density system

Why are transport schemes so important for ESM? 

Objectives: A numerical transport algorithm for the solution of the tracer transport equations that is

• Accurate
• Efficient
• Works on unstructured grids
• Property preserving
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←	Conservation of mass and total tracer

←	Preservation of local bounds

←	Preservation of tracer correlations
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schemes the fixed grid plays two distinct role. In the first role, eC(⌦) and C(⌦) are treated as two instances6

of a Lagrangian grid C(⌦), with the same connectivity, at the current time tn and the future time tn+1,
respectively. Thus, if i(t) 2 C(⌦) is an arbitrary cell of this Lagrangian grid, we have that

i(tn) = eci and i(tn+1) = ci (2.3)

The second role of C(⌦) is that of an Eulerian grid on which the numerical solution is sought for a sequence
of time steps 0  t0 < t1 < . . . < tn < tn+1 . . ..

To distinguish the entities on the deformed grid from those on C(⌦) we use the “e” accent. For example,
eci is a cell on eC(⌦), eUh is a piecewise constant space on the deformed grid, euh is a function in eUh with
coe�cient vector eu = (eu1, . . . , euNC ) 2 R

NC and so on.
Let V (t) denote an arbitrary Lagrangian volume moving along a trajectory defined by the local velocity

field v(x, t). We define the measure of V (t) and the mass and the total tracer mass contained in V (t) as

µV (t) =

Z

V (t)
dV , mV (t) =

Z

V (t)
⇢(x, t)dV and qV (t) =

Z

V (t)
⇢(x, t)⌧(x, t)dV , (2.4)

respectively. We also define the volume-averaged density and density-weighted tracer mixing ratio (the
“averaged” quantities) as

⇢V (t) =
mV (t)

µV (t)
and ⌧V (t) =

qV (t)

mV (t)
, (2.5)

respectively. For t = tk and V (tk) = ci for any ci 2 C(⌦) we denote the quantities in (2.9)–(2.5) by µi,k,

mi,k, qi,k, ⇢i,k, and ⌧ i,k, respectively. When V (tk) = eci for some deformed cell eci 2 eC(⌦) we follow our

convention and write eµi,k, emi,k, eqi,k, e⇢i,k, and e⌧ i,k, respectively.

2.2. A generic semi-Lagrangian scheme for tracer transport based on incremental remapping

Using (1.1)–(1.2) and the Reynolds transport theorem it is easy to see that

d

dt
mV (t) = 0 and

d

dt
qV (t) = 0 , (2.6)

that is, the mass and total tracer mass are preserved in Lagrangian volumes. In particular, we have that
mV (tn+1) = mV (tn) and qV (tn+1) = qV (tn). As a result, the averaged quantities at the new time step can be
expressed as

⇢V (tn+1) =
mV (tn+1)

µV (tn+1)
=

mV (tn)

µV (tn+1)
and ⌧V (tn+1) =

qV (tn+1)

mV (tn+1)
=

qV (tn)

mV (tn)
. (2.7)

Equation (2.7) underpins all transport algorithms based on incremental remapping. To explain the main
idea let V (t) be an arbitrary cell i(t) on the Lagrangian grid C(⌦). From (2.3) it follows that V (tn) = eci
and V (tn+1) = ci and (2.7) assumes the form

⇢i,n+1 =
mi,n+1

µi,n+1
=

emi,n

µi,n+1
and ⌧ i,n+1 =

qi,n+1

mi,n+1
=

eqi,n
emi,n

. (2.8)

Assume that the averaged quantities ⇢i,n and ⌧ i,n are given on the Eulerian (fixed) mesh at the current time
tn. Equation (2.23) implies that the values of these quantities at the future time tn+1 can be computed by
remapping mass and total tracer mass at tn from the Eulerian grid to the deformed grid eC(⌦). Of course, to
obtain physically meaningful and accurate solutions the remapped masses emi,n and eqi,n must ensure tracer
compatibility and preserve physical properties such as conservation (2.6). To formalize these requirements
and state a generic semi-Lagrangian transport scheme based on (2.23) we need a few additional definitions.

6In this context context it is customary to refer to eC(⌦) as the departure grid and to C(⌦) - as the arrival grid.
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←	Measure of 𝑉(𝑡)

←	Mass contained in 𝑉(𝑡) 

←	Total tracer in  𝑉(𝑡) 
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mV (tn+1) = mV (tn) and qV (tn+1) = qV (tn). As a result, the averaged quantities at the new time step can be
expressed as

⇢V (tn+1) =
mV (tn+1)

µV (tn+1)
=

mV (tn)

µV (tn+1)
and ⌧V (tn+1) =

qV (tn+1)

mV (tn+1)
=

qV (tn)

mV (tn)
. (2.7)

Equation (2.7) underpins all transport algorithms based on incremental remapping. To explain the main
idea let V (t) be an arbitrary cell i(t) on the Lagrangian grid C(⌦). From (2.3) it follows that V (tn) = eci
and V (tn+1) = ci and (2.7) assumes the form

⇢i,n+1 =
mi,n+1

µi,n+1
=

emi,n

µi,n+1
and ⌧ i,n+1 =

qi,n+1

mi,n+1
=

eqi,n
emi,n

. (2.8)

Assume that the averaged quantities ⇢i,n and ⌧ i,n are given on the Eulerian (fixed) mesh at the current time
tn. Equation (2.23) implies that the values of these quantities at the future time tn+1 can be computed by
remapping mass and total tracer mass at tn from the Eulerian grid to the deformed grid eC(⌦). Of course, to
obtain physically meaningful and accurate solutions the remapped masses emi,n and eqi,n must ensure tracer
compatibility and preserve physical properties such as conservation (2.6). To formalize these requirements
and state a generic semi-Lagrangian transport scheme based on (2.23) we need a few additional definitions.

6In this context context it is customary to refer to eC(⌦) as the departure grid and to C(⌦) - as the arrival grid.
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To develop our method we start with a generic semi-Lagrangian scheme for tracer transport.
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A generic semi-Lagrangian scheme for tracer transport4

We consider a scheme based on backward incremental remapping 

𝐶 Ω  - Fixed (Eulerian) grid with cells 𝑐#

8𝐶 Ω  - Deformed (Lagrangian) grid with cells 𝑐̃#

8𝐶 Ω = Backward Lagrangian increment: the nodes 𝒙# of 𝐶 Ω  are moved 
            backward in time to positions 𝒙(𝑡 − ∆𝑡) by solving for each node

tracer transport algorithm. This algorithm along with some of the implementation details is presented in Sec-
tion 3. Section 4 examines the analytical properties of the new algorithm, including rigorous quantification of
the optimality of its solution. Section 5 presents a comprehensive numerical study of the optimization-based
scheme, including comparisons with an unlimited and slope-limited versions of the generic scheme. The tests
in this section include both standard advection tests in two dimensions as well as more specialized tests for
tracer transport on the sphere. In addition, Section 6 focuses on the so called mass spreading that is a conse-
quence of enforcing mass conservation globally, and presents a simple modification of the optimization-based
scheme that limits mass spreading. Finally, section 7 summarizes our findings and conclusions.

2. Preliminaries

This section introduces the relevant notation and reviews a typical semi-Lagrangian transport scheme
for the density–tracer system (1.1)–(1.2), based on incremental remapping.

2.1. Notation

Throughout the paper ⌦ denotes a fixed computational domain that is either a bounded region in R
2

or a sphere in R
3. Semi-Lagrangian transport schemes based on incremental remapping utilize a fixed grid

C(⌦) and a deformed grid eC(⌦) that can be obtained from C(⌦) in several ways but always has the same
connectivity as the latter4. Solution of the transport equations is defined on the fixed grid, while eC(⌦)
serves an auxiliary purpose and is discarded after every time step.

We assume that the fixed grid C(⌦) has NV vertices xj , j = 1, . . . , NV connected into NC cells ci,
i = 1, . . . , NC . The boundary @ci of each cell consists of sides sj that are oriented by choosing a unit normal
ns

j . We denote the set of all sides in ci by S(ci), the set of all sides in the mesh by S(⌦), and let NS denote
the cardinality of S(⌦). We will also need the NC ⇥NS side-to-cell incidence matrix D with entries

Dij =

8
><

>:

0 if sj /2 S(ci)

1 if sj 2 S(ci) and ns
j = nc

i

�1 if sj 2 S(ci) and ns
j = �nc

i

, (2.1)

where nc
i is the outer normal to @ci. The space of all piecewise constant functions on C(⌦) will be denoted

by Uh, i.e.,
Uh =

�
uh 2 L2(⌦)

��uh|ci = ui 2 R
 
.

The cell values ui form the coe�cient vector u = (u1, . . . , uNC ) 2 R
NC of uh.

In this paper we restrict attention to deformed grids eC(⌦) obtained by moving the nodes5 of the fixed
grid in the velocity field v(x, t) over a time increment �t > 0. Specifically, given a time t we define the
backward Lagrangian increment C(⌦(t ��t)) of the fixed mesh by moving its nodes xj backward in time
to positions x(t��t), where the node trajectories x(s) solve the ODEs

ẋ(s) = v(x, s); x(t) = xj ; j = 1, . . . , NV . (2.2)

The forward Lagrangian increment C(⌦(t+�t)) is defined similarly by moving the nodes of C(⌦) forward
to positions x(t + �t). We shall always assume that �t is such that the Lagrangian increment grids are
valid, i.e., they do not contain any inverted or degenerate cells.
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8
><
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i
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i

, (2.1)
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�
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Define the following quantities at the current time 𝑡$:  
We define the total mass and the total tracer mass at the current time tn on the Eulerian grid as

Mn :=
NCX

i=1

mi,n =
NCX

i=1

⇢i,nµi,n and Qn :=
NCX

i=1

qi,n =
NCX

i=1

⌧ i,nmi,n , (2.9)

respectively. We then define physically motivated local bounds for the averaged density and tracer on a cell
ci 2 C(⌦) by taking the maximum and minimum of these quantities in a neighborhood N(ci) that includes
the cell ci itself and all cells that have a non-empty intersection with ci. Specifically, we set

⇢min
i,n =

8
><

>:

min
j2N(ci)

{⇢j,n} if ci \ @⌦ = ;

min

⇢
min

j2N(ci)
{⇢j,n}, min

x2N(ci)\@⌦
⇢(x, tn)

�
if ci \ @⌦ 6= ;

(2.10)

⇢max
i,n =

8
><

>:

max
j2N(ci)

{⇢j,n} if ci \ @⌦ = ;

max

⇢
max

j2N(ci)
{⇢j,n}, max

x2N(ci)\@⌦
⇢(x, tn)

�
if ci \ @⌦ 6= ; .

(2.11)

The local bounds ⌧min
i and ⌧max

i for the tracer are defined in a similar fashion. We now have the following
formal statement of the tracer transport problem.

Monotone, conservative and compatible tracer transport. Given the averaged quantities ⇢i,n and ⌧ i,n on the
Eulerian grid at the current time tn find accurate approximations ⇢i,n+1 and ⌧ i,n+1 of these quantities on
C(⌦) at the future time tn such that the following two properties are satisfied:

P.1 Monotonicity and compatibility. The local bounds

↵⇢min
i,n  ⇢i,n+1  ↵⇢max

i,n and ⌧min
i,n  ⌧ i,n+1  ⌧max

i,n , (2.12)

hold for all ci 2 C(⌦) and some ↵ > 0.

P.2 Conservation. Let mi,n+1 := ⇢i,n+1µi,n+1 and qi,n+1 = ⌧ i,n+1mi,n+1. Then,

Mn+1 :=
NCX

i=1

mi,n+1 = Mn and Qn+1 :=
NCX

i=1

qi,n+1 = Qn . (2.13)

Remark 2.1. Note that the local bounds for the tracer in (2.12) at the future time are unchanged from the

current time, but the local bounds for the density at tn+1 are di↵erent from those at tn. This is caused by

the fact that the tracer is constant along the characteristics whereas the density in general is not.

Traditional semi-Lagrangian transport schemes based on incremental remapping solve this problem by
using monotone and conservative reconstructions ⇢hn(x) and ⌧hn (x) of the density and the tracer on the
Eulerian grid to remap mass and total tracer mass to the deformed grid. The remap is e↵ected by integration
of these reconstructions over the deformed cells, i.e., we define the remapped quantities as

emi,n =

Z

eci
⇢hn(x)dV and eqi,n =

Z

eci
⇢hn(x)⌧

h
n (x)dV , (2.14)

respectively. The functions ⇢hn(x) and ⌧hn (x) are typically defined on a cell-by-cell basis. We denote the
reconstructed functions on a cell ci 2 C(⌦) by ⇢hi,n(x) and ⌧hi,n(x), respectively. The following definition
formalizes the notions of monotone and conservative reconstruction.
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Statement of the monotone, conservative and compatible tracer transport problem

Given: 𝜌#,$ and 𝜏#,$ on the fixed grid 𝐶 Ω  at current time 𝑡$   
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1. Backward Lagrangian Increment 2. Remap 3. Lagrangian update

Figure 1: The three stages of the generic semi-Lagrangian transport algorithm based on backward incremental remapping.

the reconstructions (2.15) can be satisfied by using slope-limited gradient approximations g⇢,i and g⌧,i to
define (2.17) and (2.18), respectively; see, e.g., [12, 13, 14, 15] for representative examples.

A generic semi-Lagrangian scheme for the tracer transport problem, based on backward7 incremental
remapping, can now be stated as follows; see Figure 1.

Generic semi-Lagrangian tracer transport via incremental remapping.

1. Backward Lagrangian increment. Compute the deformed grid eC(⌦) by solving (2.2) backward in
time for all mesh nodes xj 2 C(⌦).

2. Remap. Use (2.17) and (2.18) to define monotone and conservative reconstructions of the density
and the tracer at the current time tn on the cells of the fixed grid C(⌦). Define the remapped mass
emi,n and total tracer mass eqi,n as in (2.14), i.e., by integrating these reconstructions on the cells of

the deformed mesh eC(⌦).

3. Lagrangian update. Use (2.8) to compute the averaged density and tracer at the new time tn+1 on
the Eulerian grid, i.e., set

⇢i,n+1 =
emi,n

µi,n+1
and ⌧ i,n+1 =

eqi,n
emi,n

. (2.23)

It is straightforward to show that as long as one uses conservative and monotone density and tracer
reconstructions at the remap stage, then the above generic semi-Lagrangian scheme satisfies properties P.1-
P.2, i.e., it produces compatible, monotone and conservative approximations of the cell-averaged density
and density-weighted tracer; see [2] for details. In particular, (2.15) holds for the mean density with

↵ =
eµi,n

µi,n+1
. (2.24)

Although the two principal groups of semi-Lagrangian schemes mentioned in Section 1 use di↵erent ap-
proaches to enforce conservation, the techniques they employ to preserve local solution bounds, i.e., flux
correction and monotone reconstruction, respectively, are conceptually similar. In particular, both of these
techniques are based on local “worst-case” scenarios and commingle accuracy considerations with preserva-
tion of physical properties. This tends to obscure the sources of discretization errors incurred during the
remap stage of the generic scheme and makes it more di�cult to rigorously ascertain that the numerical
solution is optimal in some sense. In the next section we present an alternative, optimization-based ap-
proach for the solution of the tracer remap problem, which avoids this issue by separating the accuracy
considerations from the enforcement of the properties P.1 and P.2. This approach builds on and extends
the ideas of optimization-based remap [10, 9, 8] to the present context.

7Schemes utilizing forward incremental remapping reverse the roles of C(⌦) and eC(⌦), and perform density and tracer
reconstructions on the deformed grid. As a result, the backward approach is more advantageous when one can choose C(⌦) to
be a structured grid.
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A generic semi-Lagrangian scheme for tracer transport6

Solution: the Lagrangian update formula implies  

schemes the fixed grid plays two distinct role. In the first role, eC(⌦) and C(⌦) are treated as two instances6

of a Lagrangian grid C(⌦), with the same connectivity, at the current time tn and the future time tn+1,
respectively. Thus, if i(t) 2 C(⌦) is an arbitrary cell of this Lagrangian grid, we have that

i(tn) = eci and i(tn+1) = ci (2.3)

The second role of C(⌦) is that of an Eulerian grid on which the numerical solution is sought for a sequence
of time steps 0  t0 < t1 < . . . < tn < tn+1 . . ..

To distinguish the entities on the deformed grid from those on C(⌦) we use the “e” accent. For example,
eci is a cell on eC(⌦), eUh is a piecewise constant space on the deformed grid, euh is a function in eUh with
coe�cient vector eu = (eu1, . . . , euNC ) 2 R

NC and so on.
Let V (t) denote an arbitrary Lagrangian volume moving along a trajectory defined by the local velocity

field v(x, t). We define the measure of V (t) and the mass and the total tracer mass contained in V (t) as

µV (t) =

Z

V (t)
dV , mV (t) =

Z

V (t)
⇢(x, t)dV and qV (t) =

Z

V (t)
⇢(x, t)⌧(x, t)dV , (2.4)

respectively. We also define the volume-averaged density and density-weighted tracer mixing ratio (the
“averaged” quantities) as

⇢V (t) =
mV (t)

µV (t)
and ⌧V (t) =

qV (t)

mV (t)
, (2.5)

respectively. For t = tk and V (tk) = ci for any ci 2 C(⌦) we denote the quantities in (2.9)–(2.5) by µi,k,

mi,k, qi,k, ⇢i,k, and ⌧ i,k, respectively. When V (tk) = eci for some deformed cell eci 2 eC(⌦) we follow our

convention and write eµi,k, emi,k, eqi,k, e⇢i,k, and e⌧ i,k, respectively.

2.2. A generic semi-Lagrangian scheme for tracer transport based on incremental remapping

Using (1.1)–(1.2) and the Reynolds transport theorem it is easy to see that

d

dt
mV (t) = 0 and

d

dt
qV (t) = 0 , (2.6)

that is, the mass and total tracer mass are preserved in Lagrangian volumes. In particular, we have that
mV (tn+1) = mV (tn) and qV (tn+1) = qV (tn). As a result, the averaged quantities at the new time step can be
expressed as

⇢V (tn+1) =
mV (tn+1)

µV (tn+1)
=

mV (tn)

µV (tn+1)
and ⌧V (tn+1) =

qV (tn+1)

mV (tn+1)
=

qV (tn)

mV (tn)
. (2.7)

Equation (2.7) underpins all transport algorithms based on incremental remapping. To explain the main
idea let V (t) be an arbitrary cell i(t) on the Lagrangian grid C(⌦). From (2.3) it follows that V (tn) = eci
and V (tn+1) = ci and (2.7) assumes the form

⇢i,n+1 =
mi,n+1

µi,n+1
=

emi,n

µi,n+1
and ⌧ i,n+1 =

qi,n+1

mi,n+1
=

eqi,n
emi,n

. (2.8)

Assume that the averaged quantities ⇢i,n and ⌧ i,n are given on the Eulerian (fixed) mesh at the current time
tn. Equation (2.23) implies that the values of these quantities at the future time tn+1 can be computed by
remapping mass and total tracer mass at tn from the Eulerian grid to the deformed grid eC(⌦). Of course, to
obtain physically meaningful and accurate solutions the remapped masses emi,n and eqi,n must ensure tracer
compatibility and preserve physical properties such as conservation (2.6). To formalize these requirements
and state a generic semi-Lagrangian transport scheme based on (2.23) we need a few additional definitions.

6In this context context it is customary to refer to eC(⌦) as the departure grid and to C(⌦) - as the arrival grid.
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expressed as

⇢V (tn+1) =
mV (tn+1)

µV (tn+1)
=

mV (tn)

µV (tn+1)
and ⌧V (tn+1) =

qV (tn+1)

mV (tn+1)
=

qV (tn)

mV (tn)
. (2.7)

Equation (2.7) underpins all transport algorithms based on incremental remapping. To explain the main
idea let V (t) be an arbitrary cell i(t) on the Lagrangian grid C(⌦). From (2.3) it follows that V (tn) = eci
and V (tn+1) = ci and (2.7) assumes the form

⇢i,n+1 =
mi,n+1

µi,n+1
=

emi,n

µi,n+1
and ⌧ i,n+1 =

qi,n+1

mi,n+1
=

eqi,n
emi,n

. (2.8)

Assume that the averaged quantities ⇢i,n and ⌧ i,n are given on the Eulerian (fixed) mesh at the current time
tn. Equation (2.23) implies that the values of these quantities at the future time tn+1 can be computed by
remapping mass and total tracer mass at tn from the Eulerian grid to the deformed grid eC(⌦). Of course, to
obtain physically meaningful and accurate solutions the remapped masses emi,n and eqi,n must ensure tracer
compatibility and preserve physical properties such as conservation (2.6). To formalize these requirements
and state a generic semi-Lagrangian transport scheme based on (2.23) we need a few additional definitions.

6In this context context it is customary to refer to eC(⌦) as the departure grid and to C(⌦) - as the arrival grid.
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!𝑚!,# ≈ $
̃%!
𝜌(𝑥, 𝑡#) 𝑑𝑥

,𝑞!,# ≈ $
̃%!
𝜌(𝑥, 𝑡#)𝜏(𝑥, 𝑡#) 𝑑𝑥

• We need the average mass C𝑚#,$ and tracer B𝑞#,$ on the cells 𝑐̃# of the deformed mesh 8𝐶 Ω . 

• However, the solution at current time 𝑡$ is given on the cells 𝑐# of the fixed mesh 𝐶 Ω
• Classical schemes use monotone & conservative reconstructions of 𝜌(𝑥, 𝑡$) and 𝜏(𝑥, 𝑡$) on the cells 

𝑐# of the fixed mesh 𝐶 Ω  to compute the integrals on the cells 𝑐̃# of the deformed mesh:

where

𝜌$+(𝑥) ≈ 𝜌(𝑥, 𝑡$)

𝜏$+(𝑥) ≈ 𝜏(𝑥, 𝑡$) 

Definition 2.2. Let ⇢hi,n(x) and ⌧hi,n(x), i = 1, . . . , Nc denote density and tracer reconstructions on the cells

of the Eulerian grid. We say that ⇢hi,n(x) and ⌧hi,n(x) are monotone if they satisfy the physically motivated

local bounds, i.e.,

⇢min
i,n  ⇢hi,n(x)  ⇢max

i,n and ⌧min
i,n  ⌧hi,n(x)  ⌧max

i,n . (2.15)

We call ⇢hi,n(x) and ⌧hi,n(x) conservative if the following identities hold true:

NCX

i=1

emi,n = Mn and

NCX

i=1

eqi,n = Qn , (2.16)

where emi,n and eqi,n are the remapped quantities defined in (2.14).

In this paper we consider linear density reconstructions on the cells of the Eulerian grid defined as

⇢hi,n(x) = ⇢i,n + g⇢,i · (x� xbi), xbi =

R
ci
xdV

µi
, (2.17)

where xbi is the cell barycenter and g⇢,i is an approximation to the gradient of the density. We similarly
define a linear tracer reconstruction on cell ci of the Eulerian grid as

⌧hi,n(x) = ⌧ i,n + g⌧,i · (x� xci) , xci =

R
ci
x⇢hi,n(x)dVR

ci
⇢hi,n(x)dV

, (2.18)

where xci s the center of mass and g⌧,i is an approximation to the gradient of the tracer mixing ratio.
The density reconstruction (2.17) is mean-preserving, that is

Z

ci

⇢hi,n(x)dV = ⇢i,nµi,n . (2.19)

This follows easily from the fact that the gradient term vanishes when integrated over the cell

Z

ci

g⇢,i · (x� xbi)dV = g⇢,i ·
✓Z

ci

xdV � xbi

Z

ci

dV

◆
= 0 . (2.20)

By defining the tracer reconstruction as in (2.18), i.e., by using ⇢hi,n(x) to compute the center of mass, the
integral of the product of the tracer reconstruction and density reconstruction over the cell where they are
defined is also mean preserving, that is,

Z

ci

⇢hi,n(x)⌧
h
i,n(x)dV = ⇢i,n⌧ i,nµi,n . (2.21)

This result can be derived by expanding the integral and rearranging terms as
Z

ci

⇢hi,n(x)⌧
h
i,n(x)dV =

Z

ci

⌧ i,n
�
⇢i,n + g⇢,i · (x� xbi)

�
dV +

Z

ci

(g⌧,i · (x� xci)) ⇢
h
i,n(x)dV . (2.22)

Using the property that the integral of the gradient term vanishes (2.20) the first integral in (2.22) reduces
to ⌧ i,n⇢i,nµi,n. The second integral in (2.22) can be seen to vanish when the terms are rearranged and the
definition of the cell center of mass is used,

g⌧,i ·
✓Z

ci

x⇢hi,n(x)dV � xci

Z

ci

⇢hi,n(x)dV

◆
= 0 .

The mean-preserving properties (2.19) and (2.21) guarantee that the density and tracer reconstructions
(2.17) and (2.18) are conservative in the sense of Definition 2.2. The first property, i.e., the monotonicity of
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Slope-limited gradient reconstructions

• Monotone
• Conservative
• Mean-preserving



We will modify the last two stages of the generic scheme7

𝐶 Ω

𝑐#

𝑐̃#
𝐶 Ω

𝑐#

𝑐̃#

𝜌̅#,$)*
̅𝜏#,$)*C𝑚#,$

B𝑞#,$

𝐶 Ω

𝑐#

𝑐̃#

𝜌#,$+

𝜏#,$+
C𝑚#,$

B𝑞#,$

1. Backward increment 2. Remap 3. Lagrangian update

We define the total mass and the total tracer mass at the current time tn on the Eulerian grid as

Mn :=
NCX

i=1

mi,n =
NCX

i=1

⇢i,nµi,n and Qn :=
NCX

i=1

qi,n =
NCX

i=1

⌧ i,nmi,n , (2.9)

respectively. We then define physically motivated local bounds for the averaged density and tracer on a cell
ci 2 C(⌦) by taking the maximum and minimum of these quantities in a neighborhood N(ci) that includes
the cell ci itself and all cells that have a non-empty intersection with ci. Specifically, we set

⇢min
i,n =

8
><

>:

min
j2N(ci)

{⇢j,n} if ci \ @⌦ = ;

min

⇢
min

j2N(ci)
{⇢j,n}, min

x2N(ci)\@⌦
⇢(x, tn)

�
if ci \ @⌦ 6= ;

(2.10)

⇢max
i,n =

8
><

>:

max
j2N(ci)

{⇢j,n} if ci \ @⌦ = ;

max

⇢
max

j2N(ci)
{⇢j,n}, max

x2N(ci)\@⌦
⇢(x, tn)

�
if ci \ @⌦ 6= ; .

(2.11)

The local bounds ⌧min
i and ⌧max

i for the tracer are defined in a similar fashion. We now have the following
formal statement of the tracer transport problem.

Monotone, conservative and compatible tracer transport. Given the averaged quantities ⇢i,n and ⌧ i,n on the
Eulerian grid at the current time tn find accurate approximations ⇢i,n+1 and ⌧ i,n+1 of these quantities on
C(⌦) at the future time tn such that the following two properties are satisfied:

P.1 Monotonicity and compatibility. The local bounds

↵⇢min
i,n  ⇢i,n+1  ↵⇢max

i,n and ⌧min
i,n  ⌧ i,n+1  ⌧max

i,n , (2.12)

hold for all ci 2 C(⌦) and some ↵ > 0.

P.2 Conservation. Let mi,n+1 := ⇢i,n+1µi,n+1 and qi,n+1 = ⌧ i,n+1mi,n+1. Then,

Mn+1 :=
NCX

i=1

mi,n+1 = Mn and Qn+1 :=
NCX

i=1

qi,n+1 = Qn . (2.13)

Remark 2.1. Note that the local bounds for the tracer in (2.12) at the future time are unchanged from the

current time, but the local bounds for the density at tn+1 are di↵erent from those at tn. This is caused by

the fact that the tracer is constant along the characteristics whereas the density in general is not.

Traditional semi-Lagrangian transport schemes based on incremental remapping solve this problem by
using monotone and conservative reconstructions ⇢hn(x) and ⌧hn (x) of the density and the tracer on the
Eulerian grid to remap mass and total tracer mass to the deformed grid. The remap is e↵ected by integration
of these reconstructions over the deformed cells, i.e., we define the remapped quantities as

emi,n =

Z

eci
⇢hn(x)dV and eqi,n =

Z

eci
⇢hn(x)⌧

h
n (x)dV , (2.14)

respectively. The functions ⇢hn(x) and ⌧hn (x) are typically defined on a cell-by-cell basis. We denote the
reconstructed functions on a cell ci 2 C(⌦) by ⇢hi,n(x) and ⌧hi,n(x), respectively. The following definition
formalizes the notions of monotone and conservative reconstruction.
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tracer transport algorithm. This algorithm along with some of the implementation details is presented in Sec-
tion 3. Section 4 examines the analytical properties of the new algorithm, including rigorous quantification of
the optimality of its solution. Section 5 presents a comprehensive numerical study of the optimization-based
scheme, including comparisons with an unlimited and slope-limited versions of the generic scheme. The tests
in this section include both standard advection tests in two dimensions as well as more specialized tests for
tracer transport on the sphere. In addition, Section 6 focuses on the so called mass spreading that is a conse-
quence of enforcing mass conservation globally, and presents a simple modification of the optimization-based
scheme that limits mass spreading. Finally, section 7 summarizes our findings and conclusions.

2. Preliminaries

This section introduces the relevant notation and reviews a typical semi-Lagrangian transport scheme
for the density–tracer system (1.1)–(1.2), based on incremental remapping.

2.1. Notation

Throughout the paper ⌦ denotes a fixed computational domain that is either a bounded region in R
2

or a sphere in R
3. Semi-Lagrangian transport schemes based on incremental remapping utilize a fixed grid

C(⌦) and a deformed grid eC(⌦) that can be obtained from C(⌦) in several ways but always has the same
connectivity as the latter4. Solution of the transport equations is defined on the fixed grid, while eC(⌦)
serves an auxiliary purpose and is discarded after every time step.

We assume that the fixed grid C(⌦) has NV vertices xj , j = 1, . . . , NV connected into NC cells ci,
i = 1, . . . , NC . The boundary @ci of each cell consists of sides sj that are oriented by choosing a unit normal
ns

j . We denote the set of all sides in ci by S(ci), the set of all sides in the mesh by S(⌦), and let NS denote
the cardinality of S(⌦). We will also need the NC ⇥NS side-to-cell incidence matrix D with entries

Dij =

8
><

>:

0 if sj /2 S(ci)

1 if sj 2 S(ci) and ns
j = nc

i

�1 if sj 2 S(ci) and ns
j = �nc

i

, (2.1)

where nc
i is the outer normal to @ci. The space of all piecewise constant functions on C(⌦) will be denoted

by Uh, i.e.,
Uh =

�
uh 2 L2(⌦)

��uh|ci = ui 2 R
 
.

The cell values ui form the coe�cient vector u = (u1, . . . , uNC ) 2 R
NC of uh.

In this paper we restrict attention to deformed grids eC(⌦) obtained by moving the nodes5 of the fixed
grid in the velocity field v(x, t) over a time increment �t > 0. Specifically, given a time t we define the
backward Lagrangian increment C(⌦(t ��t)) of the fixed mesh by moving its nodes xj backward in time
to positions x(t��t), where the node trajectories x(s) solve the ODEs

ẋ(s) = v(x, s); x(t) = xj ; j = 1, . . . , NV . (2.2)

The forward Lagrangian increment C(⌦(t+�t)) is defined similarly by moving the nodes of C(⌦) forward
to positions x(t + �t). We shall always assume that �t is such that the Lagrangian increment grids are
valid, i.e., they do not contain any inverted or degenerate cells.

Our main focus will be on semi-Lagrangian transport schemes based on backward incremental remapping
in which case the deformed mesh eC(⌦) is the backward Lagrangian increment grid C(⌦(t ��t)). In such

4Note that here we tacitly assume that the computational domain remains fixed, i.e., eC(⌦) and C(⌦) are two di↵erent
partitions of the same domain.

5High-order semi-Lagrangian methods such as CSLAM [5] introduce additional nodes on cell sides to improve the geometric
accuracy of the deformed cells.
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schemes the fixed grid plays two distinct role. In the first role, eC(⌦) and C(⌦) are treated as two instances6

of a Lagrangian grid C(⌦), with the same connectivity, at the current time tn and the future time tn+1,
respectively. Thus, if i(t) 2 C(⌦) is an arbitrary cell of this Lagrangian grid, we have that

i(tn) = eci and i(tn+1) = ci (2.3)

The second role of C(⌦) is that of an Eulerian grid on which the numerical solution is sought for a sequence
of time steps 0  t0 < t1 < . . . < tn < tn+1 . . ..

To distinguish the entities on the deformed grid from those on C(⌦) we use the “e” accent. For example,
eci is a cell on eC(⌦), eUh is a piecewise constant space on the deformed grid, euh is a function in eUh with
coe�cient vector eu = (eu1, . . . , euNC ) 2 R

NC and so on.
Let V (t) denote an arbitrary Lagrangian volume moving along a trajectory defined by the local velocity

field v(x, t). We define the measure of V (t) and the mass and the total tracer mass contained in V (t) as

µV (t) =

Z

V (t)
dV , mV (t) =

Z

V (t)
⇢(x, t)dV and qV (t) =

Z

V (t)
⇢(x, t)⌧(x, t)dV , (2.4)

respectively. We also define the volume-averaged density and density-weighted tracer mixing ratio (the
“averaged” quantities) as

⇢V (t) =
mV (t)

µV (t)
and ⌧V (t) =

qV (t)

mV (t)
, (2.5)

respectively. For t = tk and V (tk) = ci for any ci 2 C(⌦) we denote the quantities in (2.9)–(2.5) by µi,k,

mi,k, qi,k, ⇢i,k, and ⌧ i,k, respectively. When V (tk) = eci for some deformed cell eci 2 eC(⌦) we follow our

convention and write eµi,k, emi,k, eqi,k, e⇢i,k, and e⌧ i,k, respectively.

2.2. A generic semi-Lagrangian scheme for tracer transport based on incremental remapping

Using (1.1)–(1.2) and the Reynolds transport theorem it is easy to see that

d

dt
mV (t) = 0 and

d

dt
qV (t) = 0 , (2.6)

that is, the mass and total tracer mass are preserved in Lagrangian volumes. In particular, we have that
mV (tn+1) = mV (tn) and qV (tn+1) = qV (tn). As a result, the averaged quantities at the new time step can be
expressed as

⇢V (tn+1) =
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and ⌧V (tn+1) =
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=

qV (tn)
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Equation (2.7) underpins all transport algorithms based on incremental remapping. To explain the main
idea let V (t) be an arbitrary cell i(t) on the Lagrangian grid C(⌦). From (2.3) it follows that V (tn) = eci
and V (tn+1) = ci and (2.7) assumes the form

⇢i,n+1 =
mi,n+1

µi,n+1
=

emi,n

µi,n+1
and ⌧ i,n+1 =

qi,n+1
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=
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emi,n

. (2.8)

Assume that the averaged quantities ⇢i,n and ⌧ i,n are given on the Eulerian (fixed) mesh at the current time
tn. Equation (2.23) implies that the values of these quantities at the future time tn+1 can be computed by
remapping mass and total tracer mass at tn from the Eulerian grid to the deformed grid eC(⌦). Of course, to
obtain physically meaningful and accurate solutions the remapped masses emi,n and eqi,n must ensure tracer
compatibility and preserve physical properties such as conservation (2.6). To formalize these requirements
and state a generic semi-Lagrangian transport scheme based on (2.23) we need a few additional definitions.

6In this context context it is customary to refer to eC(⌦) as the departure grid and to C(⌦) - as the arrival grid.
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• Based on local worst-case scenarios
• Mixes accuracy with preservation of properties
• More difficult to ascertain solution optimality

Our changes separate accuracy from property preservation:Monotone reconstruction drawbacks:

• Remap stage: use 2nd order accurate but not monotone 
and/or conservative reconstruction

• Lagrangian update stage: enforce properties by coaching 
this stage into a constrained optimization problem.



Optimization-based semi-Lagrangian tracer transport8

New remap stage

3. Optimization-based tracer transport

The main idea of the optimization-based solution of the tracer transport problem is to remove the burden
of property preservation from the reconstruction process. To that end, we perform the remap step by using
the best possible locally defined linear reconstructions of the density and the tracer. These reconstructions
are not required to be monotone and/or conservative and the sole consideration in their construction is the
accuracy of the remapped mass and total tracer mass.

However, removing this burden necessitates a revision of the third stage of the generic scheme because
a straightforward application of the Lagrangian update formulae (2.8) will not guarantee that P.1 and P.2

hold for the new averaged quantities. Instead, we use (2.8) to define optimization targets that are accurate
but not property-preserving. The solution at the future time is then obtained by minimizing the mismatch
between candidate averaged quantities and the targets subject to constraints enforcing P.1 and P.2.

In so doing we ensure that the numerical solution is a global optimal state from a feasible set defined
by the physical properties, i.e., it is always the best possible, with respect to the optimization objective,
approximate solution that also possesses these physical properties. Moreover, one can show that classical
flux correction techniques can be derived from a simplified version of our global optimization formulation
that admits a closed form solution. In other words, these techniques can be interpreted as producing an
approximation of the global optimal state belonging to a smaller feasible set; see, e.g., [11, 14].

A separate advantage of our approach is that the enforcement of P.1 and P.2 as optimization constraints
is impervious to the mesh structure and/or field representations, thereby enabling property preservation on
arbitrary unstructured meshes. This makes optimization-based tracer transport schemes flexible and easily
adaptable to a wide range of problem configurations.

3.1. Formulation of the optimization-based tracer transport scheme

To obtain the optimization-based tracer transport scheme we shall use the same linear density and tracer
reconstructions as in (2.17) and (2.18), except that now we will not require the gradient approximations
g⌧,i and g⌧,i to be the slope-limited. Instead we will use the best possible, in some sense, locally defined
approximations of these gradients. Two popular techniques to compute gradient approximations are the
Gauss-Green and the Least-Squares approaches. The former is based on the Gauss divergence theorem and
the latter solves an overdetermined linear system. We refer to [19] for a comprehensive survey of these
techniques and their properties. In this work we use a variant of the least-squares approach and define the
gradient approximations on cell ci by a least-squares fit based on the cell-averaged densities and tracers from
the cells adjacent to ci. We denote these approximations by g

LS
⌧,i and g

LS
⌧,i , respectively.

Let ⇢h,LS
n and ⌧h,LS

n be linear reconstructions of the density and the tracer defined on each cell by using
g
LS
⌧,i and g

LS
⌧,i in (2.17) and (2.18), respectively. We define the mass and total tracer mass targets on eC(⌦)

by integrating these reconstructions on the deformed cells, i.e.,

emT

i,n =

Z

eci
⇢h,LS
n (x)dV and eqTi,n =

Z

eci
⇢h,LS
n (x)⌧h,LS

n (x)dV . (3.1)

In contrast to the remapped quantities in (2.14), emT
i,n and eqTi,n are not guaranteed to be conservative and/or

monotone. We then define the targets for the averaged quantities at the new time tn+1 on the fixed grid by
using the Lagrangian update formula (2.8), i.e., we set

⇢Ti,n+1 =
emT

i,n

µi,n+1
and ⌧Ti,n+1 =

eqTi,n
emi,n

, (3.2)

respectively. Again, in contrast to the averaged quantities computed by (2.8) in the last stage of the generic
scheme, the quantities given by (3.2) do not satisfy P.1-P.2. To enforce these properties we will treat their
definitions (2.12) and (2.13) as optimization constraints. The first definition provides a set of local inequality
constraints, whereas the second one defines a global linear equality constraint.
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Definition 2.2. Let ⇢hi,n(x) and ⌧hi,n(x), i = 1, . . . , Nc denote density and tracer reconstructions on the cells

of the Eulerian grid. We say that ⇢hi,n(x) and ⌧hi,n(x) are monotone if they satisfy the physically motivated

local bounds, i.e.,

⇢min
i,n  ⇢hi,n(x)  ⇢max

i,n and ⌧min
i,n  ⌧hi,n(x)  ⌧max

i,n . (2.15)

We call ⇢hi,n(x) and ⌧hi,n(x) conservative if the following identities hold true:

NCX

i=1

emi,n = Mn and

NCX

i=1

eqi,n = Qn , (2.16)

where emi,n and eqi,n are the remapped quantities defined in (2.14).

In this paper we consider linear density reconstructions on the cells of the Eulerian grid defined as

⇢hi,n(x) = ⇢i,n + g⇢,i · (x� xbi), xbi =

R
ci
xdV

µi
, (2.17)

where xbi is the cell barycenter and g⇢,i is an approximation to the gradient of the density. We similarly
define a linear tracer reconstruction on cell ci of the Eulerian grid as

⌧hi,n(x) = ⌧ i,n + g⌧,i · (x� xci) , xci =

R
ci
x⇢hi,n(x)dVR

ci
⇢hi,n(x)dV

, (2.18)

where xci s the center of mass and g⌧,i is an approximation to the gradient of the tracer mixing ratio.
The density reconstruction (2.17) is mean-preserving, that is

Z

ci

⇢hi,n(x)dV = ⇢i,nµi,n . (2.19)

This follows easily from the fact that the gradient term vanishes when integrated over the cell

Z

ci

g⇢,i · (x� xbi)dV = g⇢,i ·
✓Z

ci

xdV � xbi

Z

ci

dV

◆
= 0 . (2.20)

By defining the tracer reconstruction as in (2.18), i.e., by using ⇢hi,n(x) to compute the center of mass, the
integral of the product of the tracer reconstruction and density reconstruction over the cell where they are
defined is also mean preserving, that is,

Z

ci

⇢hi,n(x)⌧
h
i,n(x)dV = ⇢i,n⌧ i,nµi,n . (2.21)

This result can be derived by expanding the integral and rearranging terms as
Z

ci

⇢hi,n(x)⌧
h
i,n(x)dV =

Z

ci

⌧ i,n
�
⇢i,n + g⇢,i · (x� xbi)

�
dV +

Z

ci

(g⌧,i · (x� xci)) ⇢
h
i,n(x)dV . (2.22)

Using the property that the integral of the gradient term vanishes (2.20) the first integral in (2.22) reduces
to ⌧ i,n⇢i,nµi,n. The second integral in (2.22) can be seen to vanish when the terms are rearranged and the
definition of the cell center of mass is used,

g⌧,i ·
✓Z

ci

x⇢hi,n(x)dV � xci

Z

ci

⇢hi,n(x)dV

◆
= 0 .

The mean-preserving properties (2.19) and (2.21) guarantee that the density and tracer reconstructions
(2.17) and (2.18) are conservative in the sense of Definition 2.2. The first property, i.e., the monotonicity of
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In contrast to the remapped quantities in (2.14), emT
i,n and eqTi,n are not guaranteed to be conservative and/or

monotone. We then define the targets for the averaged quantities at the new time tn+1 on the fixed grid by
using the Lagrangian update formula (2.8), i.e., we set
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respectively. Again, in contrast to the averaged quantities computed by (2.8) in the last stage of the generic
scheme, the quantities given by (3.2) do not satisfy P.1-P.2. To enforce these properties we will treat their
definitions (2.12) and (2.13) as optimization constraints. The first definition provides a set of local inequality
constraints, whereas the second one defines a global linear equality constraint.
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Definition 2.2. Let ⇢hi,n(x) and ⌧hi,n(x), i = 1, . . . , Nc denote density and tracer reconstructions on the cells

of the Eulerian grid. We say that ⇢hi,n(x) and ⌧hi,n(x) are monotone if they satisfy the physically motivated

local bounds, i.e.,

⇢min
i,n  ⇢hi,n(x)  ⇢max

i,n and ⌧min
i,n  ⌧hi,n(x)  ⌧max

i,n . (2.15)

We call ⇢hi,n(x) and ⌧hi,n(x) conservative if the following identities hold true:

NCX

i=1

emi,n = Mn and

NCX

i=1

eqi,n = Qn , (2.16)

where emi,n and eqi,n are the remapped quantities defined in (2.14).

In this paper we consider linear density reconstructions on the cells of the Eulerian grid defined as

⇢hi,n(x) = ⇢i,n + g⇢,i · (x� xbi), xbi =

R
ci
xdV

µi
, (2.17)

where xbi is the cell barycenter and g⇢,i is an approximation to the gradient of the density. We similarly
define a linear tracer reconstruction on cell ci of the Eulerian grid as

⌧hi,n(x) = ⌧ i,n + g⌧,i · (x� xci) , xci =

R
ci
x⇢hi,n(x)dVR

ci
⇢hi,n(x)dV

, (2.18)

where xci s the center of mass and g⌧,i is an approximation to the gradient of the tracer mixing ratio.
The density reconstruction (2.17) is mean-preserving, that is

Z

ci

⇢hi,n(x)dV = ⇢i,nµi,n . (2.19)

This follows easily from the fact that the gradient term vanishes when integrated over the cell

Z

ci

g⇢,i · (x� xbi)dV = g⇢,i ·
✓Z

ci

xdV � xbi

Z

ci

dV

◆
= 0 . (2.20)

By defining the tracer reconstruction as in (2.18), i.e., by using ⇢hi,n(x) to compute the center of mass, the
integral of the product of the tracer reconstruction and density reconstruction over the cell where they are
defined is also mean preserving, that is,

Z

ci

⇢hi,n(x)⌧
h
i,n(x)dV = ⇢i,n⌧ i,nµi,n . (2.21)

This result can be derived by expanding the integral and rearranging terms as
Z

ci

⇢hi,n(x)⌧
h
i,n(x)dV =

Z

ci

⌧ i,n
�
⇢i,n + g⇢,i · (x� xbi)

�
dV +

Z

ci

(g⌧,i · (x� xci)) ⇢
h
i,n(x)dV . (2.22)

Using the property that the integral of the gradient term vanishes (2.20) the first integral in (2.22) reduces
to ⌧ i,n⇢i,nµi,n. The second integral in (2.22) can be seen to vanish when the terms are rearranged and the
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g⌧,i ·
✓Z

ci

x⇢hi,n(x)dV � xci

Z

ci

⇢hi,n(x)dV

◆
= 0 .

The mean-preserving properties (2.19) and (2.21) guarantee that the density and tracer reconstructions
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arbitrary unstructured meshes. This makes optimization-based tracer transport schemes flexible and easily
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To obtain the optimization-based tracer transport scheme we shall use the same linear density and tracer
reconstructions as in (2.17) and (2.18), except that now we will not require the gradient approximations
g⌧,i and g⌧,i to be the slope-limited. Instead we will use the best possible, in some sense, locally defined
approximations of these gradients. Two popular techniques to compute gradient approximations are the
Gauss-Green and the Least-Squares approaches. The former is based on the Gauss divergence theorem and
the latter solves an overdetermined linear system. We refer to [16] for a comprehensive survey of these
techniques and their properties. In this work we use a variant of the least-squares approach and define the
gradient approximations on cell ci by a least-squares fit based on the cell-averaged densities and tracers from
the cells adjacent to ci. We denote these approximations by g
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⇢,i and g
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⌧,i , respectively.

Let ⇢h,LS
n and ⌧h,LS

n be linear reconstructions of the density and the tracer defined on each cell by using
g
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⇢,i and g

LS
⌧,i in (2.17) and (2.18), respectively. We define the mass and total tracer mass targets on eC(⌦)
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In contrast to the remapped quantities in (2.14), emT
i,n and eqTi,n are not guaranteed to be conservative and/or

monotone. We then define the targets for the averaged quantities at the new time tn+1 on the fixed grid by
using the Lagrangian update formula (2.8), i.e., we set

⇢Ti,n+1 =
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i,n

µi,n+1
and ⌧Ti,n+1 =
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respectively. Again, in contrast to the averaged quantities computed by (2.8) in the last stage of the generic
scheme, the quantities given by (3.2) do not satisfy P.1-P.2. To enforce these properties we will treat their
definitions (2.12) and (2.13) as optimization constraints. The first definition provides a set of local inequality
constraints, whereas the second one defines a global linear equality constraint.
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To specify local bounds for the density at tn+1 we use the value of ↵ given in (2.24), i.e., we set

⇢min
i,n+1 = ⇢min

i,n
eµi,n

µi,n+1
and ⇢max

i,n+1 = ⇢max
i,n

eµi,n

µi,n+1
, (3.3)

respectively. The local bounds for the tracer at tn+1 remain the same as for tn; see Remark 2.1. We can
now state the optimization-based solution of the tracer transport problem as follows.

Optimization-based semi-Lagrangian tracer transport via incremental remapping.

1. Backward Lagrangian increment. Compute the deformed grid eC(⌦) by solving (2.2) backward in
time for all mesh nodes xj 2 C(⌦).

2. Remap. Use ⇢h,LS
n and ⌧h,LS

n to compute the mass and total tracer mass targets according to (3.1).

3. Lagrangian update.

• Density: Solve the constrained optimization problem
8
>>>><

>>>>:

minimize
1

2

NCX

i=1

µ2
i,n+1(⇢i,n+1 � ⇢Ti,n+1)

2 subject to

NCX

i=1

⇢i,n+1µi,n+1 = Mn and ⇢min
i,n+1  ⇢i,n+1  ⇢max

i,n+1; i = 1, ..., NC .

(3.4)

Set ⇢i,n+1 = ⇢OPT

i,n+1 and mOPT
i,n+1 := ⇢OPT

i,n+1µi,n+1 where ⇢OPT

i,n+1 is the optimal solution of (3.4).

• Tracer: Solve the constrained optimization problem
8
>>>><

>>>>:

minimize
1

2

NCX

i=1

(⌧ i,n+1 � ⌧Ti,n+1)
2 subject to

NCX

i=1

⌧ i,n+1m
OPT

i,n+1 = Qn and ⌧min
i,n  ⌧ i,n+1  ⌧max

i,n ; i = 1, ..., NC .

(3.5)

Set ⌧ i,n+1 = ⌧OPT

i,n+1, where ⌧OPT

i,n+1 is the optimal solution of (3.5).

In the next section we discus some implementation details to facilitate reproducibility of the numerical
results in Section 5.

3.2. Implementation details

Our implementation of the optimization-based tracer transport algorithm uses an equivalent formulation
of (3.4) in terms of the mass, developed in [9, 8]. In so doing we are able to reuse a well-tested, verified
and e�cient implementation of the optimization-based density remap algorithm. In this formulation the
optimization targets are the masses emT

i,n instead of the averaged cell densities. The local bounds for these
masses are defined by

mmin
i,n+1 = ⇢min

i,n eµi,n and mmax
i,n+1 = ⇢max

i,n eµi,n , (3.6)

while the first equation in (2.13) defines the global linear equality constraint to enforce conservation of mass.
The equivalent mass-based optimization problem can then be stated as follows:

• Density: Solve the constrained optimization problem
8
>>>><

>>>>:

minimize
1

2

NCX

i=1

(mi,n+1 �mT

i,n+1)
2 subject to

NCX

i=1

mi,n+1 = Mn and mmin
i,n+1  mi,n+1  mmax

i,n+1; i = 1, ..., NC .

(3.7)

Set ⇢OPT

i,n+1 = mOPT
i,n+1/µi,n+1 where mOPT

i,n+1 is the optimal solution of (3.7).
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Figure 1: The three stages of the generic semi-Lagrangian transport algorithm based on backward incremental remapping.

the reconstructions (2.15) can be satisfied by using slope-limited gradient approximations g⇢,i and g⌧,i to
define (2.17) and (2.18), respectively; see, e.g., [12, 13, 14, 15] for representative examples.

A generic semi-Lagrangian scheme for the tracer transport problem, based on backward7 incremental
remapping, can now be stated as follows; see Figure 1.

Generic semi-Lagrangian tracer transport via incremental remapping.

1. Backward Lagrangian increment. Compute the deformed grid eC(⌦) by solving (2.2) backward in
time for all mesh nodes xj 2 C(⌦).

2. Remap. Use (2.17) and (2.18) to define monotone and conservative reconstructions of the density
and the tracer at the current time tn on the cells of the fixed grid C(⌦). Define the remapped mass
emi,n and total tracer mass eqi,n as in (2.14), i.e., by integrating these reconstructions on the cells of

the deformed mesh eC(⌦).

3. Lagrangian update. Use (2.8) to compute the averaged density and tracer at the new time tn+1 on
the Eulerian grid, i.e., set

⇢i,n+1 =
emi,n

µi,n+1
and ⌧ i,n+1 =

eqi,n
emi,n

. (2.23)

It is straightforward to show that as long as one uses conservative and monotone density and tracer
reconstructions at the remap stage, then the above generic semi-Lagrangian scheme satisfies properties P.1-
P.2, i.e., it produces compatible, monotone and conservative approximations of the cell-averaged density
and density-weighted tracer; see [2] for details. In particular, (2.15) holds for the mean density with

↵ =
eµi,n

µi,n+1
. (2.24)

Although the two principal groups of semi-Lagrangian schemes mentioned in Section 1 use di↵erent ap-
proaches to enforce conservation, the techniques they employ to preserve local solution bounds, i.e., flux
correction and monotone reconstruction, respectively, are conceptually similar. In particular, both of these
techniques are based on local “worst-case” scenarios and commingle accuracy considerations with preserva-
tion of physical properties. This tends to obscure the sources of discretization errors incurred during the
remap stage of the generic scheme and makes it more di�cult to rigorously ascertain that the numerical
solution is optimal in some sense. In the next section we present an alternative, optimization-based ap-
proach for the solution of the tracer remap problem, which avoids this issue by separating the accuracy
considerations from the enforcement of the properties P.1 and P.2. This approach builds on and extends
the ideas of optimization-based remap [10, 9, 8] to the present context.

7Schemes utilizing forward incremental remapping reverse the roles of C(⌦) and eC(⌦), and perform density and tracer
reconstructions on the deformed grid. As a result, the backward approach is more advantageous when one can choose C(⌦) to
be a structured grid.
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•          and             are 2nd order accurate but not guaranteed to be monotone and/or conservative

3. Optimization-based tracer transport

The main idea of the optimization-based solution of the tracer transport problem is to remove the burden
of property preservation from the reconstruction process. To that end, we perform the remap step by using
the best possible locally defined linear reconstructions of the density and the tracer. These reconstructions
are not required to be monotone and/or conservative and the sole consideration in their construction is the
accuracy of the remapped mass and total tracer mass.

However, removing this burden necessitates a revision of the third stage of the generic scheme because
a straightforward application of the Lagrangian update formulae (2.8) will not guarantee that P.1 and P.2

hold for the new averaged quantities. Instead, we use (2.8) to define optimization targets that are accurate
but not property-preserving. The solution at the future time is then obtained by minimizing the mismatch
between candidate averaged quantities and the targets subject to constraints enforcing P.1 and P.2.

In so doing we ensure that the numerical solution is a global optimal state from a feasible set defined
by the physical properties, i.e., it is always the best possible, with respect to the optimization objective,
approximate solution that also possesses these physical properties. Moreover, one can show that classical
flux correction techniques can be derived from a simplified version of our global optimization formulation
that admits a closed form solution. In other words, these techniques can be interpreted as producing an
approximation of the global optimal state belonging to a smaller feasible set; see, e.g., [8, 11].

A separate advantage of our approach is that the enforcement of P.1 and P.2 as optimization constraints
is impervious to the mesh structure and/or field representations, thereby enabling property preservation on
arbitrary unstructured meshes. This makes optimization-based tracer transport schemes flexible and easily
adaptable to a wide range of problem configurations.

3.1. Formulation of the optimization-based tracer transport scheme

To obtain the optimization-based tracer transport scheme we shall use the same linear density and tracer
reconstructions as in (2.17) and (2.18), except that now we will not require the gradient approximations
g⌧,i and g⌧,i to be the slope-limited. Instead we will use the best possible, in some sense, locally defined
approximations of these gradients. Two popular techniques to compute gradient approximations are the
Gauss-Green and the Least-Squares approaches. The former is based on the Gauss divergence theorem and
the latter solves an overdetermined linear system. We refer to [16] for a comprehensive survey of these
techniques and their properties. In this work we use a variant of the least-squares approach and define the
gradient approximations on cell ci by a least-squares fit based on the cell-averaged densities and tracers from
the cells adjacent to ci. We denote these approximations by g

LS
⇢,i and g

LS
⌧,i , respectively.

Let ⇢h,LS
n and ⌧h,LS

n be linear reconstructions of the density and the tracer defined on each cell by using
g
LS
⇢,i and g

LS
⌧,i in (2.17) and (2.18), respectively. We define the mass and total tracer mass targets on eC(⌦)

by integrating these reconstructions on the deformed cells, i.e.,

emT
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eci
⇢h,LS
n (x)dV and eqTi,n =

Z

eci
⇢h,LS
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n (x)dV . (3.1)

In contrast to the remapped quantities in (2.14), emT
i,n and eqTi,n are not guaranteed to be conservative and/or
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Density:

Tracer:

To specify local bounds for the density at tn+1 we use the value of ↵ given in (2.24), i.e., we set

⇢min
i,n+1 = ⇢min

i,n
eµi,n

µi,n+1
and ⇢max

i,n+1 = ⇢max
i,n

eµi,n

µi,n+1
, (3.3)

respectively. The local bounds for the tracer at tn+1 remain the same as for tn; see Remark 2.1. We can
now state the optimization-based solution of the tracer transport problem as follows.

Optimization-based semi-Lagrangian tracer transport via incremental remapping.

1. Backward Lagrangian increment. Compute the deformed grid eC(⌦) by solving (2.2) backward in
time for all mesh nodes xj 2 C(⌦).

2. Remap. Use ⇢h,LS
n and ⌧h,LS

n to compute the mass and total tracer mass targets according to (3.1).

3. Lagrangian update.

• Density: Solve the constrained optimization problem
8
>>>><

>>>>:

minimize
1

2

NCX

i=1

µ2
i,n+1(⇢i,n+1 � ⇢Ti,n+1)

2 subject to

NCX
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i,n+1 is the optimal solution of (3.4).
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>>>><
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Set ⌧ i,n+1 = ⌧OPT

i,n+1, where ⌧OPT

i,n+1 is the optimal solution of (3.5).

In the next section we discus some implementation details to facilitate reproducibility of the numerical
results in Section 5.

3.2. Implementation details

Our implementation of the optimization-based tracer transport algorithm uses an equivalent formulation
of (3.4) in terms of the mass, developed in [9, 8]. In so doing we are able to reuse a well-tested, verified
and e�cient implementation of the optimization-based density remap algorithm. In this formulation the
optimization targets are the masses emT

i,n instead of the averaged cell densities. The local bounds for these
masses are defined by

mmin
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while the first equation in (2.13) defines the global linear equality constraint to enforce conservation of mass.
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i,n+1 is the optimal solution of (3.7).
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respectively. The local bounds for the tracer at tn+1 remain the same as for tn; see Remark 2.1. We can
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Theorem 1. Existence & uniqueness

The feasible sets of the optimization problems are non-empty & have unique solutions 
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Theorem 2. Global optimality of the optimization-based solution

indicates the normal to the side, is positive or negative. The index is chosen to ensure that the cell that
contains the majority of the swept region is used in the integral. Therefore, we have that

k =

(
i if µ⇤(rj)Dij < 0

m if µ⇤(rj)Dij > 0
. (3.10)

Note that the surjective property of the side-to-cell incidence matrix implies

NCX

i=1

X

sj2S(ci)

Dij

Z

rj

⇢h,LS
n (x)|cidV = 0 ,

that is, the sum of the fluxes is zero by construction and therefore the target is mass conserving.

4. Analytical properties

We start by discussing the optimality of the solution of the optimization-based tracer transport algorithm.
Then, we present the optimality conditions for the tracer optimization problem (3.5), discuss the preservation
of total tracer mass and local bounds, and prove that (3.5) preserves linear correlations between tracers.

4.1. Optimality of the optimization-based solution

Let ⇢Gi,n+1 and ⌧Gi,n+1 be a solution of the generic semi-Lagrangian scheme in Section 2.2 and let ⇢OPT

i,n+1

and ⌧OPT

i,n+1 be the solution of the optimization-based scheme defined in Section 3. Both of these solutions
satisfy properties P.1–P.2 and so, it is of considerable interest to examine if one of them can be deemed
“better” in some sense. The following theorem provides some information about the relationship between
these two solutions.

Theorem 4.1. Let ⇢i,n and ⌧ i,n be a solution of the tracer transport problem on the fixed grid C(⌦) at the
current time tn.Then the generic and the optimization-based solution satisfy the following inequalities

1

2

NCX

i=1

µ2
i,n+1(⇢

OPT

i,n+1 � ⇢Ti,n+1)
2  1

2

NCX

i=1

µ2
i,n+1(⇢

G

i,n+1 � ⇢Ti,n+1)
2

1

2

NCX

i=1

(⌧OPT

i,n+1 � ⌧Ti,n+1)
2  1

2

NCX

i=1

(⌧Gi,n+1 � ⌧Ti,n+1)
2 ,

(4.1)

where ⇢Ti,n+1 and ⌧Ti,n+1 are given by (3.2).

Theorem 4.1 quantifies the statement in Section 3 that the optimization-based solution is the best possible
with respect to the optimization objective, approximate solution that also satisfies properties P.1–P.2. The
significance of this result stems from the fact that by adjusting the objective and the definition of the target
one can tailor the optimization-based scheme to specific problem features, an option that is di�cult to realize
within the framework of the generic scheme.

4.2. Optimality conditions, mass conservation and local bounds

For notational simplicity from now on we drop the time index from the designation of the various
quantities. For example, unless there is a chance of confusion we will write ⇢i instead of ⇢i,n+1.

Optimization problems of the type (3.4) and (3.5)) are known as singly linearly constrained quadratic
programs with simple bounds. In [17] Dai and Fletcher propose fast algorithms for their solution, with
robust globalization strategies for the case when the initial guess is far away from the solution. In [9] we use
a simple and e�cient algorithm without globalization to solve the equivalent mass form (3.7) of the density
remap problem (3.4), which is analogous in form to the tracer remap problem (3.5). Our scheme is robust
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that is, the sum of the fluxes is zero by construction and therefore the target is mass conserving.

4. Analytical properties

We start by discussing the optimality of the solution of the optimization-based tracer transport algorithm.
Then, we present the optimality conditions for the tracer optimization problem (3.5), discuss the preservation
of total tracer mass and local bounds, and prove that (3.5) preserves linear correlations between tracers.

4.1. Optimality of the optimization-based solution

Let ⇢Gi,n+1 and ⌧Gi,n+1 be a solution of the generic semi-Lagrangian scheme in Section 2.2 and let ⇢OPT

i,n+1

and ⌧OPT

i,n+1 be the solution of the optimization-based scheme defined in Section 3. Both of these solutions
satisfy properties P.1–P.2 and so, it is of considerable interest to examine if one of them can be deemed
“better” in some sense. The following theorem provides some information about the relationship between
these two solutions.

Theorem 4.1. Let ⇢i,n and ⌧ i,n be a solution of the tracer transport problem on the fixed grid C(⌦) at the
current time tn.Then the generic and the optimization-based solution satisfy the following inequalities

1

2

NCX

i=1

µ2
i,n+1(⇢

OPT

i,n+1 � ⇢Ti,n+1)
2  1

2

NCX

i=1

µ2
i,n+1(⇢

G

i,n+1 � ⇢Ti,n+1)
2

1

2

NCX

i=1

(⌧OPT

i,n+1 � ⌧Ti,n+1)
2  1

2

NCX

i=1

(⌧Gi,n+1 � ⌧Ti,n+1)
2 ,

(4.1)

where ⇢Ti,n+1 and ⌧Ti,n+1 are given by (3.2).

Theorem 4.1 quantifies the statement in Section 3 that the optimization-based solution is the best possible
with respect to the optimization objective, approximate solution that also satisfies properties P.1–P.2. The
significance of this result stems from the fact that by adjusting the objective and the definition of the target
one can tailor the optimization-based scheme to specific problem features, an option that is di�cult to realize
within the framework of the generic scheme.

4.2. Optimality conditions, mass conservation and local bounds

For notational simplicity from now on we drop the time index from the designation of the various
quantities. For example, unless there is a chance of confusion we will write ⇢i instead of ⇢i,n+1.

Optimization problems of the type (3.4) and (3.5)) are known as singly linearly constrained quadratic
programs with simple bounds. In [17] Dai and Fletcher propose fast algorithms for their solution, with
robust globalization strategies for the case when the initial guess is far away from the solution. In [9] we use
a simple and e�cient algorithm without globalization to solve the equivalent mass form (3.7) of the density
remap problem (3.4), which is analogous in form to the tracer remap problem (3.5). Our scheme is robust
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Theorem 3. Preservation of tracer correlations

The optimization-based Lagrangian update stage preserves linear tracer correlations.

Generic scheme

The optimization-based solution is 
the best possible, with respect to the 

targets, approximate solution that 
also satisfies properties P.1–P.2. 

What about the cost?

qn+1 = argmin
q

qTMq+ cTq+ c0 subject to  
wTq =wTq n

qmin ≤ q ≤ qmax

"
#
$

%$

☞ A “singly linearly constrained QP with simple bounds”
☞ QP structure admits a fast O(N) optimization algorithm.

Conservation

Local bounds
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Numerical examples in 2D: Convergence 12

Tracer profile:

�x �t min ⌧ max ⌧ l2 error ⌧ l2 error ⇢

UL 0.05 0.025 0.0 0.9635 0.9373 0.1503
0.025 0.0125 0.0 1.3937 0.5723 0.1127
0.0125 0.00625 0.0 1.0436 0.3781 0.08745

SL 0.05 0.025 0.0 1.0000 2.557 0.1481
0.025 0.0125 0.0 1.0000 1.398 0.1099
0.0125 0.00625 0.0 1.0000 1.145 0.08693

OBT 0.05 0.025 0.0 0.8599 0.7627 0.1585
0.025 0.0125 0.0 0.9760 0.3871 0.1183
0.0125 0.00625 0.0 1.0000 0.3557 0.09235

Table 1: Comparison of tracer bounds and l2 errors of ⌧ and ⇢ with respect to the exact solution for the unlimited method
(UL), the slope limited method (SL), and the optimization-based method (OBT) for the one-dimensional compatibility test.

the boundary of the domain so that boundary conditions can be handled very simply. In all cases we use
the fourth-order Runge-Kutta method to define departure points for the algorithm and assume a constant
initial density distribution equal to one.

5.2.1. Convergence

To test the convergence rate of the OBT tracer algorithm we use a smooth Gaussian distribution

⌧ = sin(⇡x)4 sin(⇡y)4 exp(��(x� x0)
2 + (y � y0)

2),

centered at (x0, y0) = (0.25, 0.5) with � = 40 as the initial configuration of the tracer mixing ratio. Surface
plots of the tracer mixing ratio at the initial time and at the midpoint of the deformation in the swirling
velocity field are shown in Figure 6.

We transport the Gaussian tracer mixing ratio in the swirling velocity field for four grid resolutions:
32 ⇥ 32, 64 ⇥ 64, 128 ⇥ 128, and 256 ⇥ 256. For each case we compute l2 and l1 errors, and record the
maximum and minimum values of the tracer mixing ratio at the final time, which are shown in Table 2.
Although the unlimited case (UL) has the lowest errors, it violates the lower bound of the distribution for
all resolutions. Plots of the errors in Figure 7 show that the OBT l2 errors are very similar to the UL errors
and better than the slope limited (SL) errors. The l1 error rates for OBT and SL are reduced from the UL
rates as is typical with most bound preserving methods, but the OBT errors are better than the SL errors
for this case. A slice along the x-axis through the center of the Gaussian distribution, shown in Figure 8,
illustrates di↵erences in the algorithms. In general, the slope-limited algorithm crops the top of distributions
more than the optimization-based method.

Table 2 also includes computational times, relative to the UL baseline computational times. The
optimization-based algorithm performs well in comparison to the slope-limited and unlimited cases. The
computational times are very similar for all three methods, illustrating the serial e�ciency of the global
optimization algorithm used to implement the OBT scheme.

5.2.2. Combo Test

In order to evaluate the performance of the optimization-based approach for non-smooth distributions,
we consider an initial tracer mixing ratio that consists of a smooth hump given by ⇢(x1, x2, 0) = 0.25(1 +
cos(⇡r(x1, x2)), where r(x1, x2) = min{

p
(x1 � 0.25)2 + (x2 � 0.5)2, 0.15}/0.15, and a cone and a slotted

cylinder of radius 0.15 and height 1, centered at (0.5,0.25) and (0.5,0.75), respectively [18]. The slot in the
cylinder is created by removing the region [0.475,0.525]⇥[0.6,0.85].

We evolve the initial tracer in the swirling velocity field, shown in surface plots of the tracer distribution
at the initial time and final time for the optimization-based transport algorithm (OBT), the slope limited
algorithms (SL), and the unlimited case (UL) (Figure 9). The results for OBT and SL are quite similar in
the surface plots. However di↵erences are more apparent in Figure 10, where slices of the solution along
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Gaussian distribution at

Velocity field*

is defined as

⇢0(x) =

8
<

:

1� x for � 1  x  0
1 for 0  x  1
0 otherwise,

and the initial tracer mixing ratio is

⌧0(x) =

8
<

:

1 for 0.75  |x|  1.0
0.2 for |x| < 0.75
0 otherwise.

Using these expressions the initial tracer mass is defined as �0(x) = ⇢(x, 0)⌧(x, 0). The initial distributions,
shown in Figure 4, are transported in the velocity field v(x) = �x, resulting in exact solutions at time t

⇢(x, t) = et⇢0(xe
t), ⌧(x, t) = ⌧0(xe

t), �(x, t) = et�0(xe
t).

We evaluate the transport of the initial conditions in the velocity field over a domain [�1.5, 1.5] up to a
final time of t = 1 using time steps �t = 0.025, 0.0125, 0.00625 and corresponding spatial discretizations
�x = 0.05, 0.025, 0.0125.

Density Tracer Density*Tracer

Figure 4: Initial distributions of density, tracer mixing ratio and product of density and tracer mixing ratio for a mesh resolution
of �x = 0.0125

In the slope limited (SL) case compatibility is ensured by the use of limiting applied to the gradients
of the reconstructions for ⌧ and ⇢. In contrast the optimization-based approach applies bounds constraints
directly on ⌧ ensuring that ⌧ and � = ⌧⇢ satisfy bounds when ⇢ satisfies bounds. Results for the unlimited
case (UL), the slope limited case (SL), and the optimization-based transport (OBT) algorithm are shown
in Figure 5. The SL scheme and OBT scheme both preserve bounds and conserve density and tracer. This
test is particularly challenging at the edges of the density distribution where the exact density goes to zero
and any small spread in the density will result in the spread of the tracer. The density errors are slightly
higher for the OBT algorithms than for the SL algorithm, however, the errors in the final tracer mixing
ratio are quite a bit higher for the latter scheme due to the spread of the tracer mixing ratio in areas where
the density is small, but nonzero.

5.2. Tracer transport in a plane

In this section we evaluate the optimization-based tracer transport algorithm on a series of two-dimensional
test cases in the plane. For all test cases we use the following non-divergent swirling velocity field from Lev-
eque [18] with period T = 2.5

u = sin2(⇡x) sin(2⇡y) cos(⇡t/T )

v = � sin2(⇡y) sin(2⇡x) cos(⇡t/T ).
(5.3)

The velocity field is constructed so that after a full cycle when t = T a density or tracer distribution will
return to its initial position thereby facilitating error analysis. Additionally, the velocity field is zero on

17

(*)R. J. LeVeque, High-resolution conservative algorithms for advection in incompressible flow, SIAM Journal on Numerical Analysis 33 (1996) 627–665. 
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Velocity field*

is defined as

⇢0(x) =

8
<

:

1� x for � 1  x  0
1 for 0  x  1
0 otherwise,

and the initial tracer mixing ratio is

⌧0(x) =

8
<

:

1 for 0.75  |x|  1.0
0.2 for |x| < 0.75
0 otherwise.

Using these expressions the initial tracer mass is defined as �0(x) = ⇢(x, 0)⌧(x, 0). The initial distributions,
shown in Figure 4, are transported in the velocity field v(x) = �x, resulting in exact solutions at time t

⇢(x, t) = et⇢0(xe
t), ⌧(x, t) = ⌧0(xe

t), �(x, t) = et�0(xe
t).

We evaluate the transport of the initial conditions in the velocity field over a domain [�1.5, 1.5] up to a
final time of t = 1 using time steps �t = 0.025, 0.0125, 0.00625 and corresponding spatial discretizations
�x = 0.05, 0.025, 0.0125.

Density Tracer Density*Tracer

Figure 4: Initial distributions of density, tracer mixing ratio and product of density and tracer mixing ratio for a mesh resolution
of �x = 0.0125

In the slope limited (SL) case compatibility is ensured by the use of limiting applied to the gradients
of the reconstructions for ⌧ and ⇢. In contrast the optimization-based approach applies bounds constraints
directly on ⌧ ensuring that ⌧ and � = ⌧⇢ satisfy bounds when ⇢ satisfies bounds. Results for the unlimited
case (UL), the slope limited case (SL), and the optimization-based transport (OBT) algorithm are shown
in Figure 5. The SL scheme and OBT scheme both preserve bounds and conserve density and tracer. This
test is particularly challenging at the edges of the density distribution where the exact density goes to zero
and any small spread in the density will result in the spread of the tracer. The density errors are slightly
higher for the OBT algorithms than for the SL algorithm, however, the errors in the final tracer mixing
ratio are quite a bit higher for the latter scheme due to the spread of the tracer mixing ratio in areas where
the density is small, but nonzero.

5.2. Tracer transport in a plane

In this section we evaluate the optimization-based tracer transport algorithm on a series of two-dimensional
test cases in the plane. For all test cases we use the following non-divergent swirling velocity field from Lev-
eque [18] with period T = 2.5

u = sin2(⇡x) sin(2⇡y) cos(⇡t/T )

v = � sin2(⇡y) sin(2⇡x) cos(⇡t/T ).
(5.3)

The velocity field is constructed so that after a full cycle when t = T a density or tracer distribution will
return to its initial position thereby facilitating error analysis. Additionally, the velocity field is zero on

17

𝑇 = 2.5

𝑥 = 0.5𝑥 = 0.25

𝑦 = 0.25𝑦 = 0.75

(*)R. J. LeVeque, High-resolution conservative algorithms for advection in incompressible flow, SIAM Journal on Numerical Analysis 33 (1996) 627–665. 
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Velocity field*

is defined as

⇢0(x) =

8
<

:

1� x for � 1  x  0
1 for 0  x  1
0 otherwise,

and the initial tracer mixing ratio is

⌧0(x) =

8
<

:

1 for 0.75  |x|  1.0
0.2 for |x| < 0.75
0 otherwise.

Using these expressions the initial tracer mass is defined as �0(x) = ⇢(x, 0)⌧(x, 0). The initial distributions,
shown in Figure 4, are transported in the velocity field v(x) = �x, resulting in exact solutions at time t

⇢(x, t) = et⇢0(xe
t), ⌧(x, t) = ⌧0(xe

t), �(x, t) = et�0(xe
t).

We evaluate the transport of the initial conditions in the velocity field over a domain [�1.5, 1.5] up to a
final time of t = 1 using time steps �t = 0.025, 0.0125, 0.00625 and corresponding spatial discretizations
�x = 0.05, 0.025, 0.0125.

Density Tracer Density*Tracer

Figure 4: Initial distributions of density, tracer mixing ratio and product of density and tracer mixing ratio for a mesh resolution
of �x = 0.0125

In the slope limited (SL) case compatibility is ensured by the use of limiting applied to the gradients
of the reconstructions for ⌧ and ⇢. In contrast the optimization-based approach applies bounds constraints
directly on ⌧ ensuring that ⌧ and � = ⌧⇢ satisfy bounds when ⇢ satisfies bounds. Results for the unlimited
case (UL), the slope limited case (SL), and the optimization-based transport (OBT) algorithm are shown
in Figure 5. The SL scheme and OBT scheme both preserve bounds and conserve density and tracer. This
test is particularly challenging at the edges of the density distribution where the exact density goes to zero
and any small spread in the density will result in the spread of the tracer. The density errors are slightly
higher for the OBT algorithms than for the SL algorithm, however, the errors in the final tracer mixing
ratio are quite a bit higher for the latter scheme due to the spread of the tracer mixing ratio in areas where
the density is small, but nonzero.

5.2. Tracer transport in a plane

In this section we evaluate the optimization-based tracer transport algorithm on a series of two-dimensional
test cases in the plane. For all test cases we use the following non-divergent swirling velocity field from Lev-
eque [18] with period T = 2.5

u = sin2(⇡x) sin(2⇡y) cos(⇡t/T )

v = � sin2(⇡y) sin(2⇡x) cos(⇡t/T ).
(5.3)

The velocity field is constructed so that after a full cycle when t = T a density or tracer distribution will
return to its initial position thereby facilitating error analysis. Additionally, the velocity field is zero on
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𝑇 = 2.5
𝑡 = 0 𝑡 = 2.5𝑡 = 1.25

(*)R. J. LeVeque, High-resolution conservative algorithms for advection in incompressible flow, SIAM Journal on Numerical Analysis 33 (1996) 627–665. 



Tracer transport on a sphere: setup and convergence15

Velocity field* - deformational, div-free field
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Figure 8: Slice of the Gaussian tracer distribution at the final time for a resolution of 128x128 (a). The slope limited algorithm
exhibits more clipping of the top of the distribution than the OBT algorithm, which can can be seen more clearly when we
zoom in around the maximum (b).

the computation as seen in Figure 12, where the l2 error in the di↵erence between & and (�1.2⌧ + 1.0) as a
function of time is plotted.

5.3. Tracer transport on a sphere

In this section we evaluate the optimization-based tracer transport algorithm on a series of test cases
on the sphere. In all test cases we use a non-divergent deformational velocity field from Nair and Lauritzen
[19], which is defined in terms of latitude (✓) and longitude (�) as

u(�, ✓, t) = 2 sin2(�) sin(2✓) cos (⇡t/T )

v(�, ✓, t) = 2 sin (2(�)) cos(✓) cos (⇡t/T )

As in the Cartesian case, the velocity field is constructed so that after a full cycle when t = T a density or
tracer distribution will return to its initial position and the initial density distribution is set to a constant of
one. In all cases we use the fourth-order Runge-Kutta method to define departure points for the algorithm.

5.3.1. Convergence

To test the convergence rate of tracer mixing ratio we use a distribution consisting of two smooth
Gaussian hills initially centered at (�1, ✓1) = (3⇡/2, 0) and (�2, ✓2) = (5⇡/2, 0) defined by

⌧(�, ✓) = exp(�5((X �Xi)
2 + (Y � Yi)

2 + (Z � Zi)
2) i = 1, 2 (5.4)

where Xi = cos�i cos ✓i, Yi = sin�i cos ✓i, and Zi = sin ✓i [20]. Figure 13 displays the tracer distribution at
the initial time (t = 0), the time of maximum deformation (t = 2.5) and the final time (t = 5). Errors are
given in Table 3 and plots of error and shown in Figure 14. As in the Cartesian case the absolute errors are
better for OBT than for the SL scheme, although both bound preserving methods have larger errors than
the UL case. As expected, the SL method exhibits a greater cut-o↵ of the peak of the distribution as seen
in Figure 15.

5.3.2. Notched Cylinder Test

The behavior of the algorithm for discontinuous tracer distributions is tested using two slotted cylinders
with radii r = 1/2, height h = 1, and initial positions (�1, ✓1) = (5⇡/6, 0) and (�2, ✓2) = (7⇡/6, 0). The
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(*)R. D. Nair, P. H. Lauritzen, A class of deformational flow test cases for linear transport problems on the sphere, J. Comp. Phys. 229 (2010) 8868 – 8887. 
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Tracer transport on a sphere: 2 notched cylinders16
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Tracer transport on a sphere: tracer correlations17
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How much does it cost?18

Scheme Mesh Relative 
time ℓ𝟐 error Min Max Exact max

Unlimited 
(benchmark)

32×32 1.00 1.958e-01 -0.054 0.340

0.42585
64×64 1.00 5.954e-02 -0.079 0.402

128×128 1.00 1.1132e-02 -0.105 0.423

256×256 1.00 1.6020e-03 -0.105 0.426

Slope Limited

32×32 1.05 2.3030e-01 0 0.281

0.42585
64×64 1.06 7.3340e-02 0 0.362

128×128 1.11 1.5930e-02 0 0.402

256×256 1.19 2.9830e-03 0 0.418

OBT

32×32 1.10 2.0540e-01 0 0.323

0.42585
64×64 1.08 6.2220e-02 0 0.391

128×128 1.07 1.2120e-02 0 0.416

256×256 1.14 1.8360e-03 0 0.423

Red = best result



Extensions: semi-Lagrangian spectral element scheme19

Departure 
Points

Arrival 
Points

pij = x(tn )

ρh (pij, tn+1) = ρ(tn+1)  and  qh (pij, tn+1) = q(tn+1)

Start with a generic SE+SL (SESL) scheme: 

1. Determine GL departure points 

2. Determine solution at arrival points

Then proceed as follows to find the tracer at tn+1 (density is similar) 

3. Set optimization target to SE+SL solution:

4. Determine local solution bounds:

5. Set solution at the new time step by solving

q̂ := qh (pij, tn+1)

qij
min ≤ q(pij, tn+1) ≤ qij

max

qn+1
* = argmin

q∈Qr
q− q̂

0

2 subject to  
qdx

Ω

∫ = qn dx
Ω

∫

qij
min ≤ qij ≤ qij

max

&

'
(

)(

Conservation

Local bounds

The structure of the 
optimization problem is 
identical to the one before! 

☞QP structure admits a fast O(N) optimization algorithm.
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Mass conservation

For the same tracer 
distribution and flow field, the 
error in total tracer mass 
reveals the lack of mass 
conservation in the underlying 
SESL scheme and the recovery 
of conservation by the OBT 
approach

OBT SESL performs well on challenging 
idealized chemistry test where total 
sum of species should remain constant 
as long as advection scheme preserves 
linear relationships.

X2
k1�! 2X

X +X
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Conclusions21

Optimization-based tracer transport offers a robust and flexible alternative to traditional 
limiter-based transport techniques.

• Ensures global mass conservation and bounds preservation,
• Provably preserves linear tracer correlations,
• Robust and efficient (cost similar to conventional slope limiters),
• Formulation applicable to finite volume, finite element, and spectral element discretizations.

• Spectral element optimization-based transport has been implemented in the High-Order 
Method Modeling Environment (HOMME), the code on which DOE’s E3SM dynamical 
core is based.


