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This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do
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Motivation & model problem

Why are transport schemes so important for ESM?

« Atmosphere is the most expensive component of Earth System Models
« Tracer advection is the dominant cost in atmosphere simulations
« With biogeochemistry 100-1000 tracers are needed

Tracer-density system
dp

—

_ - Densit
o Y =0 Dr _or ’ U
_ —=—+v-Vr=0 t - Tracer mixing ratio
o Dt ~ ot |
aL LV pro =0 v - Velocity
t

—

Objectives: A numerical transport algorithm for the solution of the tracer transport equations that is

 Accurate M= f p dx Q = j pT dx « Conservation of mass and total tracer
. Efficient & 0
. Works on unstructured grids 7] p™" <p<p™m* M <7 <M Preservation of local bounds

« Property preserving : .
(=at+b < Preservation of tracer correlations




‘ Background

o

To develop our method we start with a generic semi-Lagrangian scheme for tracer transport.
« Semi-Lagrangian schemes are popular in the geophysical modeling community because they
allow much larger time steps than the CFL- restricted time steps in explicit Eulerian methods.
Nomenclature
_ my (t) .
By (1) = / av « Measure of V(t) Pv(t) = « Volume averaged density
V(¢) KV (t)
my (1) = / p(x,t)dV « Mass contained inV(t) Tvy) = e, Density weighted tracer
V(t) My (t)
qv (t) =/ p(x,t)7(x,t)dV < Total tracer in V(t)
Vi) Lagrangian volume
Mathematical basis for semi-Lagrangian schemes
d - MV (tns1) _ MV (tn)
—my ) =0 > DV (1) = =
di Mass and total tracer V) BV ) Lagrangian update I
mass are preserved in ) formulas for the
Lagrangian volumes averaged quantities
if]v —0 , = _ Wltng) _ QV(ta)
dat Ve Viint) My (t,11) MV (t,)



A generic semi-Lagrangian scheme for tracer transport

We consider a scheme based on backward incremental remapping

C(Q) - Fixed (Eulerian) grid with cells ¢; V(ty):= ¢

C(Q) - Deformed (Lagrangian) grid with cells ¢;  V(tx):= ¢;

C ()= Backward Lagrangian increment: the nodes x; of C(Q) are moved
backward in time to positions x(t — At) by solving for each node

Define the following quantities at the current time ¢,;:

(

Nc Nc
§ : § : —min __
MTL — m’L7TL - pl n/’l/’L n i,n - < . { { }
=1 =1 min mln n
\ JEN (ci Pi
.
Nc Nc
Qn = E Qin = E TinMMin ﬁ?}ﬁx =X
i=1 i=1 max 4 max { jn}
\ JEN(c;

Total mass and total tracer mass

. Ui kr mi,k! qi,k! P

(ISEN(Ci)ﬁaQ

zEN (c;)NON

~

. ﬁi,ki mi,k! Eii,k! pi,k’
o(s) =
x(t) =x;

min {pj nr ifen

JEN(¢;

min

T:

T;

ik’ “Lk

k

v(zx,s)

C(Q)
A
f—---l Ci
l‘ /”6: /’
v ] ,/',
&___‘,
NoQ =10

p(w,tn)} if ¢; NOQ # ()

max {pj nt ifenoQ=10

JEN (ci)

max

p(w,tn)} if ¢; N OQ # ()

Physically motivated local density bounds (similar for t)
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A generic semi-Lagrangian scheme for tracer transport

Statement of the monotone, conservative and compatible tracer transport problem

Given: p, . and 7;, on the fixed grid C(Q) at current time t,

Find: p

in+1

P1. Monotonicity and compatibility: for all ¢c; € C(Q)

—min —Imnax

AP <Py S OPE and PN <F L < TR

and 7; 4+, ON the fixed grid €(Q) at future time t, 4, satisfying

where

O =

lji,n
Hi n+1

E

C(Q)

e

P in

#

©

¢

Note that 7 is constant along the characteristics but in general p is not. Thus, the local bounds for
Tin+1 are unchanged from those at the current time t,, but the local bounds for p, . ., are different!

P2. Conservation of mass and total tracer mass

N¢ N¢
Mn—l—l = Zmi,n—l-l — Mn and Qn—l—l = Z(h’,n+1 — Qn
=1 1=1



s |I A generic semi-Lagrangian scheme for tracer transport @!

Solution: the Lagrangian update formula implies

Pyt = MV (tny1) _ MV (tn) 5 _ Mipt1 Mg ~ f (o t) dx
. = = —_— Dl = = L R ,
i KV (tp41) KV (tp41) et Hin+1 Hin+1 L & P n
where
_ AV (tn41) Qv (t,) _ Qin+1 Qin _ f
TV (b)) = = > Tintl = = — o R x, t.)T(x,t,)dx
(tnt1) MY () My, in e Fim qin . p(x, t)T(x, ty)

l

« We need the average mass i;,, and tracer §;, on the cells ¢ of the deformed mesh €(Q).
« However, the solution at current time t,, is given on the cells ¢; of the fixed mesh C(Q)

« C(lassical schemes use monotone & conservative reconstructions of p(x, t,) and t(x, t,) on the cells
c; of the fixed mesh C(Q) to compute the integrals on the cells ¢; of the deformed mesh:

h ~ —_— _h e fCi .’de
pn(X) ~ p(x' tn) P n(w) — pi,n + 8p,i- (w - wbi)? Ly, —
| T Hi « Monotone I
Slope-limited gradient reconstructions mmp - Conservative
« Mean-preserving
h, : el @av

tho) =t t,) = Tin(®) =Tin+8ri (T —2e,), @,

Lt ()av |



7 ‘ We will modify the last two stages of the generic scheme

| |
1. Backward increment

x(t) = x;

Monotone reconstruction drawbacks:

Based on local worst-case scenarios
Mixes accuracy with preservation of properties
More difficult to ascertain solution optimality

2. Remap 3. Lagrangian update
s —t
/pi,n . /pl,n+1
~ tin ?:%/fi,n+1
o Min Ci Ty Ci
“io- — 9 ~o-
- [~ ,
din 7 .q“n A
l 1
C(Q) C()
~ h — o ﬁ:’/i,n
»= [ o) P =
in = | Phl@)rh@)av Ting1 =

(]

Our changes separate accuracy from property preservation:
- Remap stage: use 2" order accurate but not monotone
and/or conservative reconstruction

« Lagrangian update stage: enforce properties by coaching
this stage into a constrained optimization problem.
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Optimization-based semi-Lagrangian tracer transport @!
New remap stage
m;ljn = [ IOZ,LS(w)dV — p,,hi’LS — pz’,n + gﬁ,‘f (ZE o wbi) gﬁf :
ci Least-square; reconstruction
CZ-T,n _ /~ LS ()7 S ()0 T#’LS - gf‘f (@, ) gff of the gradients on cell ¢;

(2

~

* m; , and E]}In are 2nd order accurate but not guaranteed to be monotone and/or conservative

New Lagrangian update stage. Part 1 - definition of targets & local bounds at future time ¢, ;

~ T —~ ~ ~
. 1,1 min min 1,1 max max ,Mn — ’
Pint1 i n41 nnt o Hin41 bt o i n+1 Hin41 I
qr
Tingl = =2 Tracer is constant along characteristics: reuse bounds from t,, I
’ min
T _ .
* Pim+1and 7)., are 27 order accurate but not guaranteed to be monotone and/or conservative I



o 1 Optimization-based semi-Lagrangian tracer transport

New Lagrangian update stage. Part 2 - enforce properties at future time ¢, 4

r Ne
e s s 1 2 — =T 2 ;
minimize g Wi ns1(Pins1 = Pint1) subject to

. : Set
Density: ¢ i=1 — oPT

min —max

Nc
E ﬁi,n—i—l:ui,n—{—l — Mn and ﬁi,n—l—l < ﬁi,n—kl < Pin+13 1= 1, ...,NC
=1

¢ Ne
minimize ! E (Fima1 —Tp001)? subject to
. 2 — 1,M i,m+1 ‘ Set ?i,n—l—l —
Tracer: ¢ i=
— OPT =min ~ = —max,
g Tint1Mi i1 = Qn and 7" <701 <75 1=1,...,Ne.
=1

Theorem 1. Existence & uniqueness

The feasible sets of the optimization problems are non-empty & have unique solutions

Pin+1 =

E
|

mi,n—l—l = pi,n-|—1,uz',n—|—1



Properties
Theorem 2. Global optimality of the optimization-based solution

1
2 —OPT —T 2 B —T 2
2 Z Hin+1 (P n+l — P n+1 ? < ) Z Mz‘,n+1(/0i,n+1 Pi n+1)

=1 =1
Generic scheme
Nc

1 —OPT =T 2
5 Z(Ti,n+1 Ti n—l—l Z(Tz n+1 — T n—|—1)

[\3|P—‘

Theorem 3. Preservation of tracer correlations

o

The optimization-based solution is
the best possible, with respect to the
targets, approximate solution that
also satisfies properties P.1-P.2.

The optimization-based Lagrangian update stage preserves linear tracer correlations.

What about the cost?

ax

q,, =argminq' Mq+c¢'q+¢, subjectto {
q

== A “singly linearly constrained QP with simple bounds”
w QP structure admits a fast O(N) optimization algorithm.

q™ =q=q™ <—— Local bounds

T T i I
wiq=wygq, < Conservation



Compatibility test

11 ‘ Numerical examples in 1D
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12 ‘ Numerical examples in 2D: Convergence

I2 error

Tracer profile:

7 = sin(rz)* sin(my)* exp(—B(z — 20)* + (y — y0)*)
(%o, o) = (0.25,0.25); B = 40

Velocity field”
u = sin?(mx) sin(27y) cos(nt /T)
v = — sin?(my) sin(27x) cos(nt /T)
T =25

107} E
107} I
—— OBT
——SL
_3/l=~ ~2nd Order |
10 32 64 128

grid resolution

256

error

—2|| —— OBT
—e— S|
—— U|_
-~ -2nd Order
32 64 128 256

grid resolution

{
i

o
\
|

=T=25 Initial
-=-=-UL
SL
— OBT
0.4}
0.35} I
0.3 : : :
0.25 0.3 0.35 0.4 0.45
y=0.5

™R, J. LeVeque, High-resolution conservative algorithms for advection in incompressible flow, SIAM Journal on Numerical Analysis 33 (1996) 627-665. I



‘ Numerical examples in 2D: Solid body rotation

Tracer profile:

« Zalesak cylinder +
« cone+
« Gaussian hump

Velocity field”
u = sin?(rx) sin(27y) cos(nt/T)
v = — sin?(wy) sin(2mx) cos(nt/T)
T =25

HlH“ _
|

H‘“‘ L
\I\H

|

I

1 L.

0.2 0.2
Y X

™R, J. LeVeque, High-resolution conservative algorithms for advection in incompressible flow, SIAM Journal on Numerical Analysis 33 (1996) 627-665.
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I2 error

14 ‘ Numerical examples in 2D: Linear tracer correlation

Tracers profile:

T = 0.4(1 + COS(T[T(XJ y)))
E=-12t+1

r(x,y) = min{||x — x|, 79}/70

Velocity field”
u = sin®(mx) sin(27y) cos(wt/T)
v = —sin?(7y) sin(27x) cos(wt/T)
T =25

0.5 1 15 2 25
Time

™R, J. LeVeque, High-resolution conservative algorithms for advection in incompressible flow, SIAM Journal on Numerical Analysis 33 (1996) 627-665.




s | Tracer transport on a sphere: setup and convergence

Tracer profile - 2 Gaussian hills 5

Velocity field* - deformational, div-free field ) 1 . .
u(X, 0,t) = 2sin?(\) sin(26) cos (7t /T)
v(A, 0,t) = 2sin (2(N)) cos(0) cos (nt/T) 6

Grid resolution: 0.75°

I2 error

10 " ——OBT 0
| —e—SL ]
| —e— UL

||~~~ 2nd Order

10

3 1.5 0.75 0.375
grid resolution

t =05 I

™R. D. Nair, P. H. Lauritzen, A class of deformational flow test cases for linear transport problems on the sphere, J. Comp. Phys. 229 (2010) 8868 - 8887. I



16 ‘ Tracer transport on a sphere: 2 notched cylinders

Unlimited Slope limited OBT

min = —0.020 min = 0.100 min = 0.100
max = 1.140 max = 0.999 max = 1.000

Latitude-longitude projection used for better representation of the results I



Grid resolution: 0.75°

7 | Tracer transport on a sphere: tracer correlations

107

Tracers profile: two cosine bells

I2 error

107"%f

and §=-0.87+0.9

L= 0.5(1 + cos(mry/r)) ifrp<r,i=1,2
0 otherwise




18 ‘ How much does it cost?

Relative
. £, error
time

32%32 1.00 1.958e-01 -0.054 0.340
. 64X64 1.00 5.954e-02 -0.079 0.402
Unlimited 0.42585
(benchmark) 128x128 1.00 1.1132e-02  -0.105 0.423 '
256x256  1.00 1.6020e-03  -0.105 0.426
32%32 1.05 2.3030e-01 0 0.281
64X64 1.06 7.3340e-02 0 0.362 L
Slope Limited 0.42585
128x128 1.1 1.5930e-02 O 0.402
256x256  1.19 2.9830e-03 0 0.418
32%32 1.10 2.0540e-01 O 0.323
64X64 1.08 6.2220e-02 0 0.391
OBT 0.42585
128x128  1.07 1.2120e-02 0 0.416 |
256x256  1.14 1.8360e-03 0 0.423

Red = best result



19 | Extensions: semi-Lagrangian spectral element scheme @!

Start with a generic SE+SL (SESL) scheme: Arrival
_ Points |
1. Determine GL departure points — p, = x(t,)
2. Determine solution at arrival points — 0, (P;>t,)=p(,,) and q,(p;.t,..)=q(,.,)
Then proceed as follows to find the tracer at ¢, ; (density is similar)
3. Setoptimization target to SE+SL solution: g :=g,(p;.t,.)
_ Departure
4. Determine local solution bounds: a; =qPst,.)=q; Points
5. Set solution at the new time step by solving
) , [qdx=[g,dc <—— Conservation The structure of the I
G =afgmrmH61—61H0 subjectto o Q optimization problem is I
aee q; =q;<q;  <—— Local bounds identical to the one before!

e=QP structure admits a fast O(N) optimization algorithm. I



20 ‘ Numerical examples

Mass conservation

Relative Error in Total Tracer Mass

1072

For the same tracer
distribution and flow field, the
error in total tracer mass

1074

5 | reveals the lack of mass
"oy 1 conservation in the underlying
10712} - SESL scheme and the recovery
o st | of conservation by the OBT
approach

10-16 . . . .
0 1 2 3 4 5
Time

Linear correlation

OBT SESL performs well on challenging

idealized chemistry test where total Xo LiND) ¢
sum of species should remain constant k

as long as advection scheme preserves
linear relationships.




Optimization-based tracer transport offers a robust and flexible alternative to traditional
limiter-based transport techniques.

« Ensures global mass conservation and bounds preservation,

« Provably preserves linear tracer correlations,

« Robust and efficient (cost similar to conventional slope limiters),

- Formulation applicable to finite volume, finite element, and spectral element discretizations.
« Spectral element optimization-based transport has been implemented in the High-Order

Method Modeling Environment (HOMME), the code on which DOE’s E3SM dynamical
core is based.

I
>1 | Conclusions @!
I



