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Stripline short-circuit loads on the Z pulsed-power machine can \
produce planar shockless compression of solids to 400+ GPa N
AN

Stripline = parallel flat-plate electrodes shorted at one end \

Magnetic (JxB) force induces ramped stress wave in electrode material

* stress wave propagates into ambient sample material, decoupled from
magnetic diffusion front
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Z offers fine control of driving pulse shape over a wide range to \

avoid shock formation or to generate complex loading paths N

N\
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effective loading histories snapshots from hydrodynamic simulations
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Velocimetry optically measures time-resolved rear-surface
motion of samples and electrode “drive”

sample-window interface)

532 nm (green)

shifted light

Laser fiber-coupled to reflector on sample (free surface or

VISAR = Velocity Interferometry System for Any Reflector at

* Velocity « difference in optical phase of doppler-shifted light
reflected at two different times (At = 0.02-1.5 ns)

PDV = Photonic Doppler Velocimetry at 1550 nm (infrared)
* Velocity « beat frequency between reference and doppler-
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Velocity waveform measurements essentially probe Lagrangian

wave speed, i.e., compressibility under uniaxial strain
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Fictive “in-material” measurements - Direct
Lagrangian analysis (DLA) of wave propagation

>

Real measurements at window interface - Inverse
Lagrangian analysis (ILA)
* solution maps u (¢) to u*(¢) by backward integration, self-
consistent with DLA of u* (1)

* most developed approach uses characteristics net in ¢-x, for
mapping, iteratively or non-iteratively

-
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electrode-sample interface
sample-window interface

* requires assumption of single-valued material response c,(u*)

Davis et al, J. Appl. Phys. 116, 204903 (2014)
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Z experiments can also probe shock-release-ramp isentropes .
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- at lower-impedance window interface: shock-release-ramp
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« determine compressibility along isentrope if sample’s Hugoniot known

Now moving toward “gapless” shock-ramp

* pulse shaping to get shock-dwell-ramp inside electrode material
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Windows of higher acoustic impedance than the sample
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complicate analysis of ramp and shock-ramp experiments N
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When/where ILA is not valid, compressibility can be determined \

using forward analysis — Bayesian model calibration (BMC) N

Bayesian model calibration (BMC) )
* requires known input (drive measurement) \
* >10k runs of 1-D MHD computational model to train emulator Brown et al, “Quantifying uncertainty in analysis of
" . . 1 .. . shockless dynamic compression experiments on
- “elastic functional analysis” aligns training data to experiment platinum, Part 2: Bayesian model calibration,” in

preparation for submission to J. Appl. Phys. (2023)
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Francom et al, “Elastic Bayesian model calibration,” arXiv:2305.08834 [stat. ME] (2023)

* non-parametric model for bulk c,(y) on principal isentrope e
- models may include strength, kinetics, etc.
& » calibrate simultaneously to disparate data sets T s
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Important distinctions: uniaxial compression is not hydrostatic, ané\
shockless compression is not (usually) isentropic

strength (resistance to deformation) - deviatoric (non-hydrostatic) component of stress
« wave speed depends strongly on whether material locally deforming elastically or inelastically

- for P-dependent strength, even pure inelastic deformation gives wave speed # bulk quasi-isentrope
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any irreversible process (e.g., plastic deformation) adds entropy - quasi-isentropic loading
* path/history dependent thermal pressure offset from isentrope (with different wave speed)
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Sample thickness constrained by reverberation and pulse shaping ™

uncertainty in ¢, = Ax,/At depends on relative uncertainty in thickness difference
* must maximize difference in thickness between samples

requirement for 1-D shock-free loading limits maximum thickness
o o * imprecision in pulse shaping makes ideal shock-up distance difficult to attain
o
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Electrode thickness constrained by desired MHD coupling
(reverberation inside the electrode)
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Design & analysis aided by 2-D magneto-hydrodynamic (MHD)
simulations in horizontal plane through sample center
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2-D MHD needed to...

« compute dynamic inductance
for use in Z circuit model

« compute dynamic scale length
to relate current & B-field

 quantify and correct for cross-
gap asymmetry (next slide)
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2-D MHD can correct for asymmetry in magnetic drive

Snapshots with line-outs from Alegra simulation of Z2434 mid-height position
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Evolution of ramped compression wave can be sensitive to
structural phase transitions due to changes in sound speed
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Velocimetry of aluminum ramp-compressed to ~400 GPa precisely\
constrains stress at solid-solid phase boundaries
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Shock-ramp loading can probe phase boundaries in P-T, skip
problematic transitions at lower pressure, and more

overdriven shock to known
Hugoniot state in higher-
pressure phase, then ramp

LiF-windowed LiF: shock
state is not on yield surface

Temperature (K)

2500

2000

1500
1000

500

| Low-Density

T
Liquid-Liquid
Critical Point

Liquid

Liquid on SFlock—Ramp

T ; T T

Isentrope ”’
. -~ [ ]

Notional extrapolation of
melt line consistent with
shock-ramp isentrope

Solid on Shock-Ramp |
Isentrope

DAC Melting Data (Ref. 11)

Shock-Ramp Isentrope (This Study) | 1

PO [T SN S T [N T T S B

30 40 50

Pressure (GPa)

" 45-GPa shock

22974 Top Pair 1

a)zz 7 [C] 30
20 = I
s g B[
g g
& 18 - 1 &
o S 20 |
g ] 2
2 16 [ \ 4 E
a Bulk Sound Velocity 3 -
= c 15
o @ L
2 14 1 2
o o
5 100-GPa shock g |
4 - 10
12 = L
Z2920 Top Pair 1
10 » PRI T S I T WA TR TR N TR TR S T N T U T T [ S T T ] 5 -. "
35 4.0 4.5 50 55 6.0
Particle Velocity (km/s)

‘Seag/e et al, Appl. Phys. Let. 120, 165902 (2016)

2.0

3.0

4.0 5.0 6.0
Particle Velocity (km/s)

7.0 8.0

60

LiF-windowed Ce: resolidification
from shock-melted state

Eulerian Sound Velocity (km/s)

AN

AN
AN

b

N\

60 T T T T I T T T T I L] T T T I T T T T ] 1 L T L] I T T T T I T T L 1
Z Data Cerium A
[ ® DFT-MD Liquid-Ce Sound Velocity
55 H ® DFT-MD &-Ce Bulk Sound Velocity |
~ 1| ® DFT-MD &-Ce Longitudinal Sound Velocity .
5.0 |
45
I e
G=138GPa,” ~.---""
- v=046 /. g G=234GPa
a0 r 8 T v=o0m
&
35 | -
s Experimental @ 12.03 +/- 0.08 g/cc -
- @’ G = 14.8 +/- 3.4 GPa
JJ v =047
3.0 'l L I L L L L I 1 'l L 'l I L L L L ] 'l 1 L 1 I L L L L I L L 1 1
10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0

Density (g/cm®)
Seagle et al, Phys. Rev. B102, 054102 (2020) .




