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In HPC applications, buffers to be
contributors.
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In traditional communication, the
buffer is sent only when all of the

contributors have finished
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A delay in one contributor delays the
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CQ (100%) Cq (13%) Cc2 (100%) C3 (100%)

In fine-grained communication, T
transmission can be initiated on 101D

completed partitions of buffers \

Potential benefits versus traditional communication:

N

Tx

S

« Early work: receiver has data to work with earlier than otherwise

TX TX

« Early delivery: entire buffer contents may be received earlier than otherwise

See also:
MPI 4.0 Partitioned Communication APl (Chapter 4)
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* Questions
«  What are the impacts of communication overheads?

* How many partitions are most effective for a given buffer size?
«  What are the consequences of the relative completion times of contributors?
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INTRODUCTION

* Questions
«  What are the impacts of communication overheads?

* How many partitions are most effective for a given buffer size?
« What are the consequences of the relative completion times of contributors?
* What happens on real-world networks?
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Strategy: Consider these questions from the perspective of modeling plus benchmarks \

Model: Identify trends in fine-grained communication behavior

Benchmarks: Consider how those trends manifest in real-world networks (or not)

11
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MODELING FINE-GRAINED COMMUNICATION

* LogP family of models
* Long history of providing guidance on the design of parallel algorithms

*  Model communication time as linear function of overheads, inter-message gaps, etc.
* For this study we extend the LogGP variant
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LogGP Model

k Number of bytes to send
L Latency of sending a message between processes
0., 0, |Sender and receiver processor time required
g Minimum time between consecutive messages
G Inter-byte gap
9
|Gk —1)¢ G(k—1
Sender 105G )! 051G )!
Receiver i o] i o]
L L

0s +2G(k—1)+g+ L+ o,
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to tn—1
Sender i . !OSI G(Nb—1) I \
Traditional : | \
Receiver : : o
L ) L
5
Extended LogGP Model
N Number of partitions
b Bytes per part (= k/N)

Time when partiis ready (0 <=/ <N)

delta | delay’ between part 0 and part N-1
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Model Result: Impact of completion times on minimum delay required for benefit
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Model Result: Impact of completion times on minimum delay required for benefit
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Model Result: Impact of completion times on minimum delay required for benefit
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One-before-Many: No amount of
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additional overheads; always
performs worse than traditional
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BENCHMARKING FINE-GRAINED COMMUNICATION

* Benchmarks
« Standard latency (ping-pong) benchmark

« Uses MPI non-blocking sends and receives
- Extended to allow control of when sends are issued (the “completion schedule”)
« Positive skewed beta distribution (analogous to Many-then-One scenario)

Positive skew Negative skew
Beta(a=2,0=6) Beta(a=6.0=2)

140000 A
120000 A
100000 ~
80000 4 . . .
Beta distributions

60000 1

40000

Probability density

20000 -

0_

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Completion time (ps)
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System Compute Network
Manzano Intel Cascade Lake 8268 Intel Omni-Path 100 Series (fat tree)
2.9 GHz
. Intel Xeon ES-2698 2.5 .
Mutrino GHz (Cray XC40) Cray Aries (dragonfly)
Stria ,;r(;nG(IZ_lazwum Thunder-X2 Mellanox ConnectX-5 Infiniband EDR (fat tree)

« Vary total buffer size from 1KiB to 2MiB, number of partitions from 1 (traditional) to 128.

« 25000 trials per configuration across 50 runs.
« Vary maximum possible beta distribution delay from 0 usecs to 20 usecs
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Beta benchmark, Mutrino, 2048B, o« = 2.0, § = 6.0
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Beta positive skew (analogous to many-before-one)
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Beta benchmark, Mutrino, 32768B, o = 2.0, 8 = 6.0
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rndv = 2KiB rndv = 4KiB rndv = 8KiB
35 — 35 35
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All communication p=16is below p=8andp=16are
is rendezvous: threshold: below threshold:
p = 8 outperforms Outperforms p =8 p = 8 once again

p=16 outperforms p =16

Buffer size =
32KiB
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Beta benchmark, Stria, 524288B, a = 2.0, 8 = 6.0
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 OSU bandwidth benchmark

(OSU_bW) 12 9 —e— Window size = 1
—o— Window size = 4

« Window size: number of 107 —— Window size = 16

communication operations @ | —*— Window size = 64 (default)

posted before %

MPI Waitallis called. § 67
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« Bandwidth jump for larger a

window sizes between 32KiB 27

and 64K|B 0 - c o=—C —0

2IB 1éB 12I8B 1KIiB 8KIiB 64II{1B 512IK1B 41\&1B

* So, when 512KiB is split into Message size

16 partitions, each partition
is 32KiB, below the
bandwidth jump
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Model can provide guidance regarding fine-grained communication behavior, especially \
for small or mid-size messages

«  Temucin et al., “A Dynamic Network-Native MPI Partitioned Aggregation Over InfiniBand Verbs"”
Cluster 2023

Understanding application characteristics (e.g. completion schedules) is critical to securing
a benefit from fine-grained communication.

« Marts et al., “Measuring Thread Timing to Assess the Feasibility of Early-bird Message Delivery”,
P2S2 2023

Understanding network details is equally important to securing benefits of fine-grained
communication. The model provides a point of reference for isolating network-specific
behaviors.
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