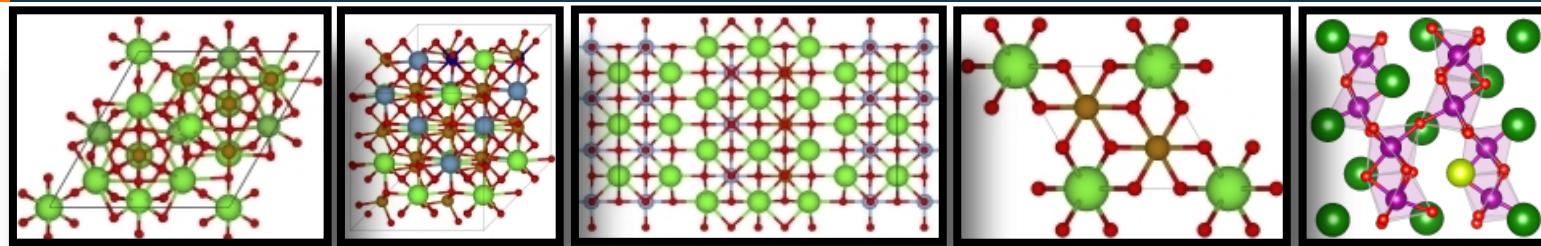


Sandia
National
Laboratories

From data-driven modeling to systems level co-design: progress in materials discovery and optimization for hydrogen storage and generation



Matthew Witman, Anuj Goyal, Stephan Lany, Pinwen Guan, Anthony
McDaniel, Kriston Brooks, Claudia Zlotea, Vitalie Stavila, Mark Allendorf, ***et al.***

Senior Member of the Technical Staff

Energy Nanomaterials Department

Sandia National Laboratories

Lawrence Livermore National Laboratory

UPPSALA
UNIVERSITET

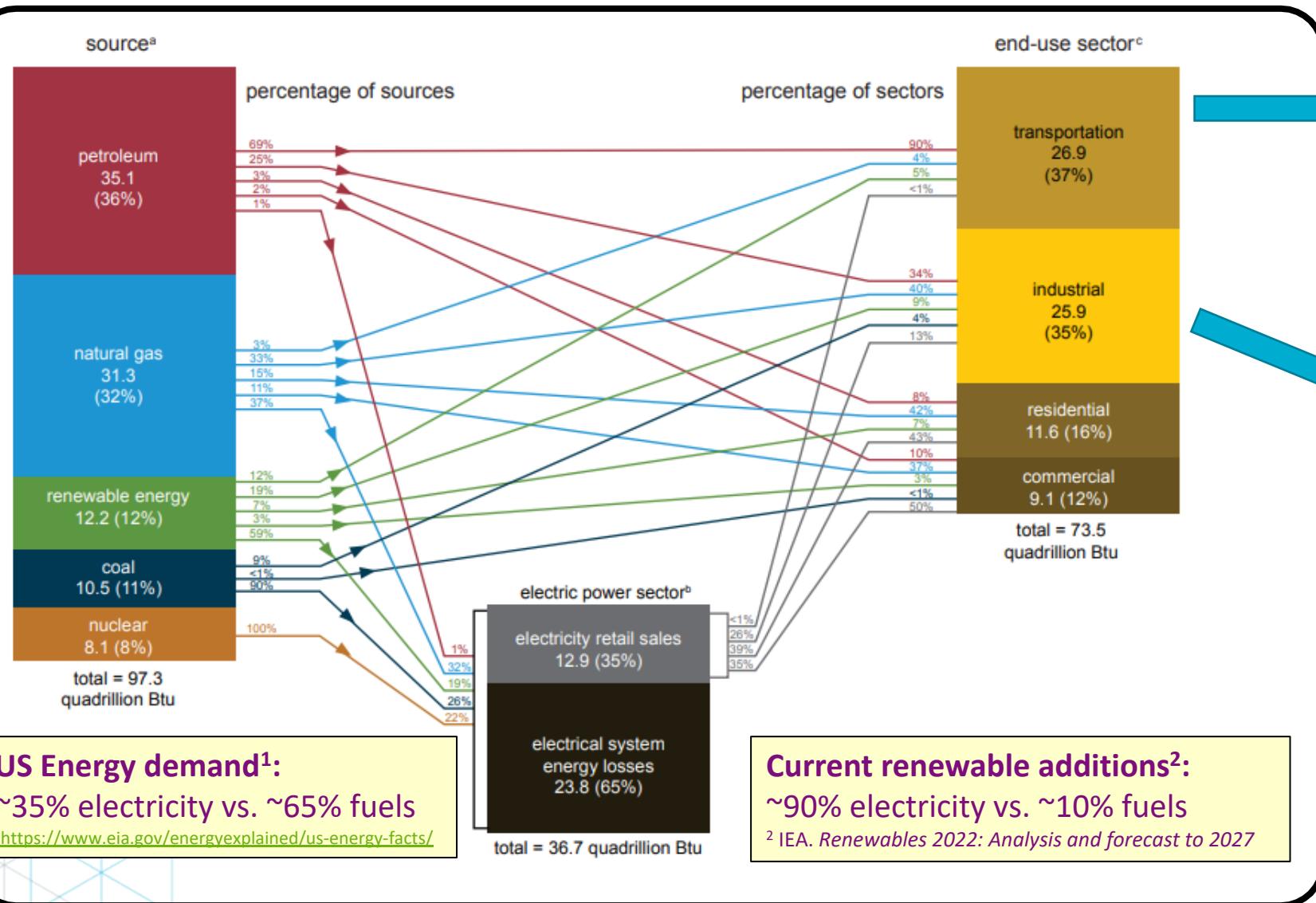
The University of
Nottingham

BROWN

Mark Allendorf	Stephan Lany	Tadashi Ogitsu	Claudia Zlotea	Martin Sahlberg	Sanliang Ling	Boyuan Xu
Vitalie Stavila	Anuj Goyal	Brandon Wood	Nayely Pineda-Romero	Gustav Ek	David Grant	Yue Qi
Tony McDaniel	Nick Wunder	Tae Wook Heo	Anis Bouzidi	Rebecca Clulow	Gavin Walker	
Jamie Trindell	Max Gallant				Matthew Wadge	
Josh Sugar	Rachel Hurst					
Andrea Ambrosini	Tom Gennet	 Pacific Northwest NATIONAL LABORATORY				
Laura Achola	Noemi Leick	Kriston Brooks				
Jeffery Chames		Sam Sprik				
Robert Horton						
Lennie Klebanoff						
Sapan Agarwal						
Justin Wong						Experiments
Reese Jones						Machine Learning
Emily Allendorf						First principles/DFT
Catalin Spataru						Data infrastructure
Norm Bartelt						
Pinwen Guan						
<p>Sandia authors gratefully acknowledge research support from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Hydrogen and Fuel Cell Technologies Office through the Hydrogen Storage Materials Advanced Research Consortium (HyMARC) and HydroGEN. This work was supported by the Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories.</p>						

Better hydrogen energy materials to improve energy security and mitigate green house gas emissions *will be critical*

A massive mismatch between energy demand and new renewable capacity



Reasonable to expect full electrification of ...?

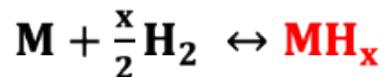
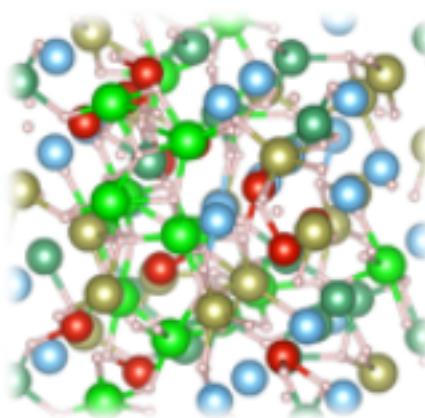
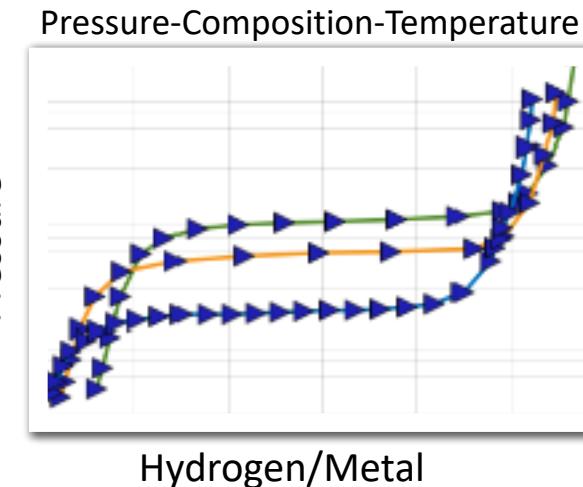
Heavy duty vehicles
(~40% of transportation demand)
Trucks?
Maritime?
Aviation?

Heat-based industrial applications
(~35% of total demand)
Chemicals?
Steel production?
Cement?
Ammonia synthesis?

First Energy Earthshot Aims to Slash the Cost of Clean Hydrogen by 80% to \$1 per Kilogram in One Decade

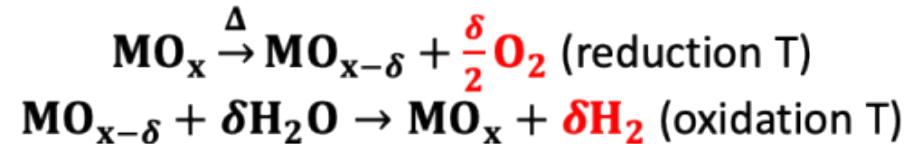
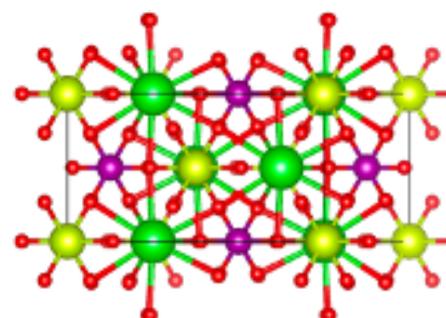
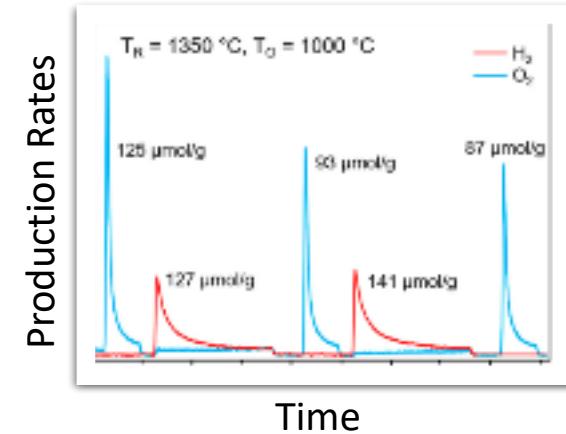
More H₂ energy material development needed: but trial-and-error development by **experiments** and/or **1st principles calculation** is too costly

Application #1: High entropy alloy hydrides for H₂ storage



Experiments: Measure PCT curves (ΔH , ΔS , and capacity)
1st principles: Low-sample estimation of ΔH

Application #2: Metal oxides for solar thermochemical (STCH) H₂ generation



Experiments: Measure H₂ / O₂ production rates
1st principles: Compute ΔH of oxygen vacancy formation

Months to synthesize and fully characterize and test a material

Months to predict even just a proxy for performance for a small # of materials

Part I:

Accelerated screening of oxides for high-temperature clean-energy applications

- graph neural networks / defect property predictions / first principles thermodynamics

Part II:

Towards Pareto optimal high entropy alloy hydrides

- statistical learning models / graph neural networks / metal-hydrogen phase diagrams / experiments

Part III:

The importance of systems level co-design in evaluating hydrogen storage materials

- Experiments + systems-level modeling

Part I:

Accelerated screening of oxides for high-temperature clean-energy applications

- graph neural networks / defect property predictions / first principles thermodynamics

Part II:

Towards Pareto optimal high entropy alloy hydrides

- statistical learning models / graph neural networks / metal-hydrogen phase diagrams / experiments

Part III:

The importance of systems level co-design in evaluating hydrogen storage materials

- Experiments + systems-level modeling

Part I:

Accelerated screening of oxides for high-temperature clean-energy applications

- graph neural networks / defect property predictions / first principles thermodynamics

Part II:

Towards Pareto optimal high entropy alloy hydrides

- statistical learning models / graph neural networks / metal-hydrogen phase diagrams / experiments

Part III:

The importance of systems level co-design in evaluating hydrogen storage materials

- Experiments + systems-level modeling

Part I:

Accelerated screening of oxides for high-temperature clean-energy applications

- graph neural networks / defect property predictions / first principles thermodynamics

Part II:

Towards Pareto optimal high entropy alloy hydrides

- statistical learning models / graph neural networks / metal-hydrogen phase diagrams / experiments

Part III:

The importance of systems level co-design in evaluating hydrogen storage materials

- Experiments + systems-level modeling

Part I:

Defect GNN accelerated screening of oxides for high-temperature clean-energy applications

Sandia
National
Laboratories

NATIONAL RENEWABLE ENERGY LABORATORY

Lawrence
Livermore
National
Laboratory

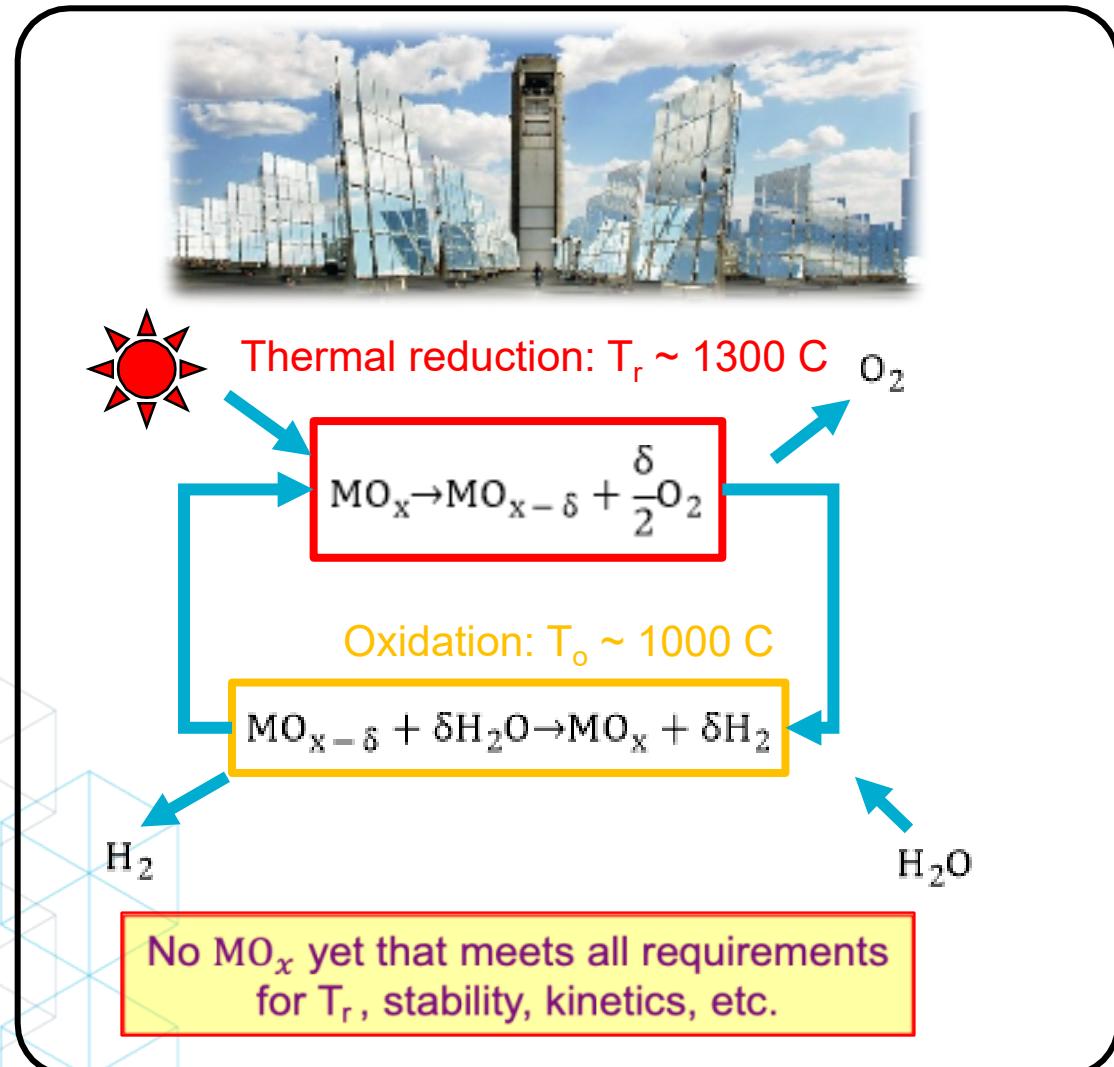
BROWN

Key concepts:

- Graph neural networks to directly predict *relaxed vacancy properties* from the host structure
- High-throughput screening of vacancy formation enthalpies
- New oxides for water-splitting, fuel cells, CO₂ conversion, and thermochemical energy storage

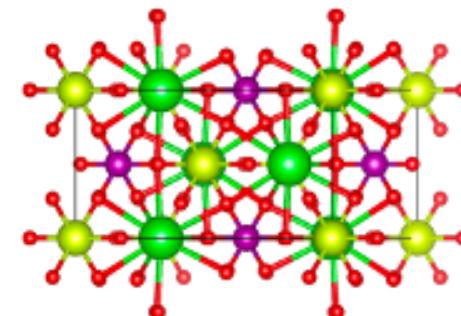
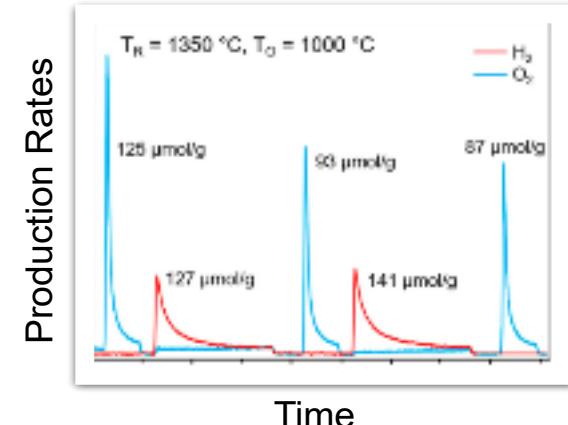
Solar thermochemical water splitting (STCH) is one of several prominent pathways to *green* (CO_2 emissions free) H_2

Direct 2 step redox cycle (*nb.* >300 proposed cycles...) ^[1]



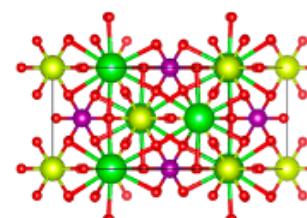
Top candidates (BCM-12R) are well-studied & characterized

Experiments: Directly measure and evaluate H_2 and O_2 production rates



~Month to synthesize, characterize, test 1 material

1st principles (DFT): Compute oxygen vacancy formation enthalpy (e.g., ΔH_d^0) of all sites

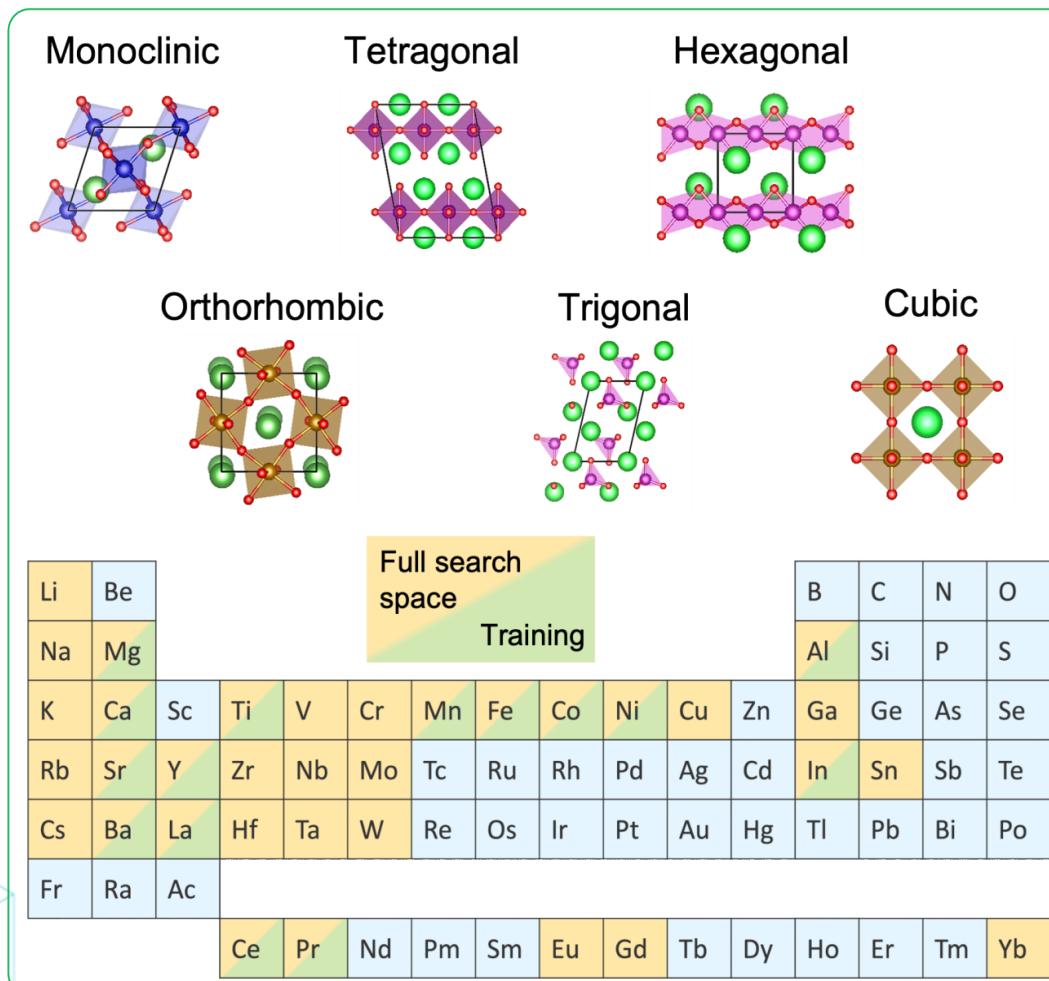


Thermodynamic “sweet-spot”:
At least one $\Delta H_d^0 \in [2.3, 4.0] \text{ eV}$
All $\Delta H_d^0 > 2.3 \text{ eV}$

~Month to compute this proxy for handful of materials

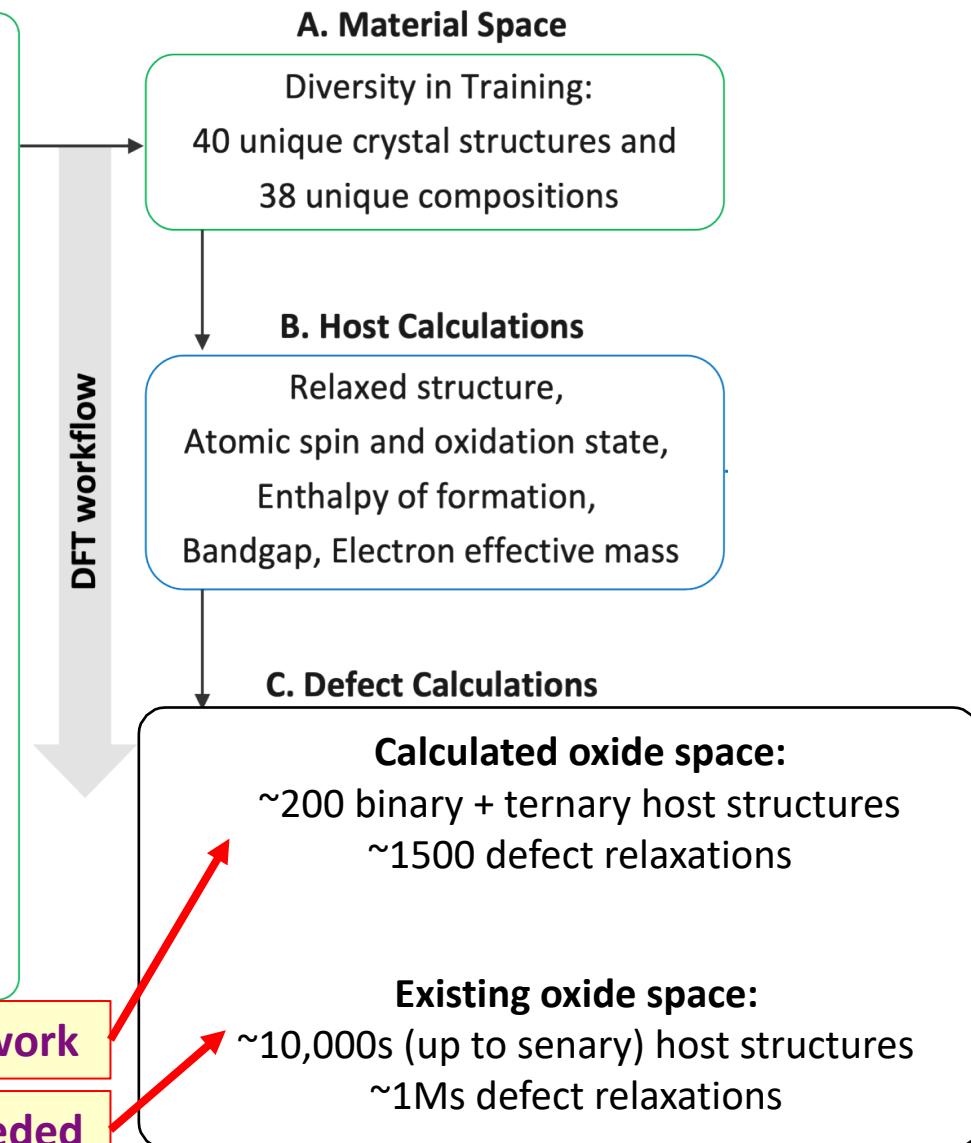
[1] www.energy.gov/eere/fuelcells/hydrogen-production-thermochemical-water-splitting

Search for materials with $\Delta H_d^0 \in [2.3, 4.0]$ eV rapidly encounters computational barriers (A. Goyal)



~1 years' work

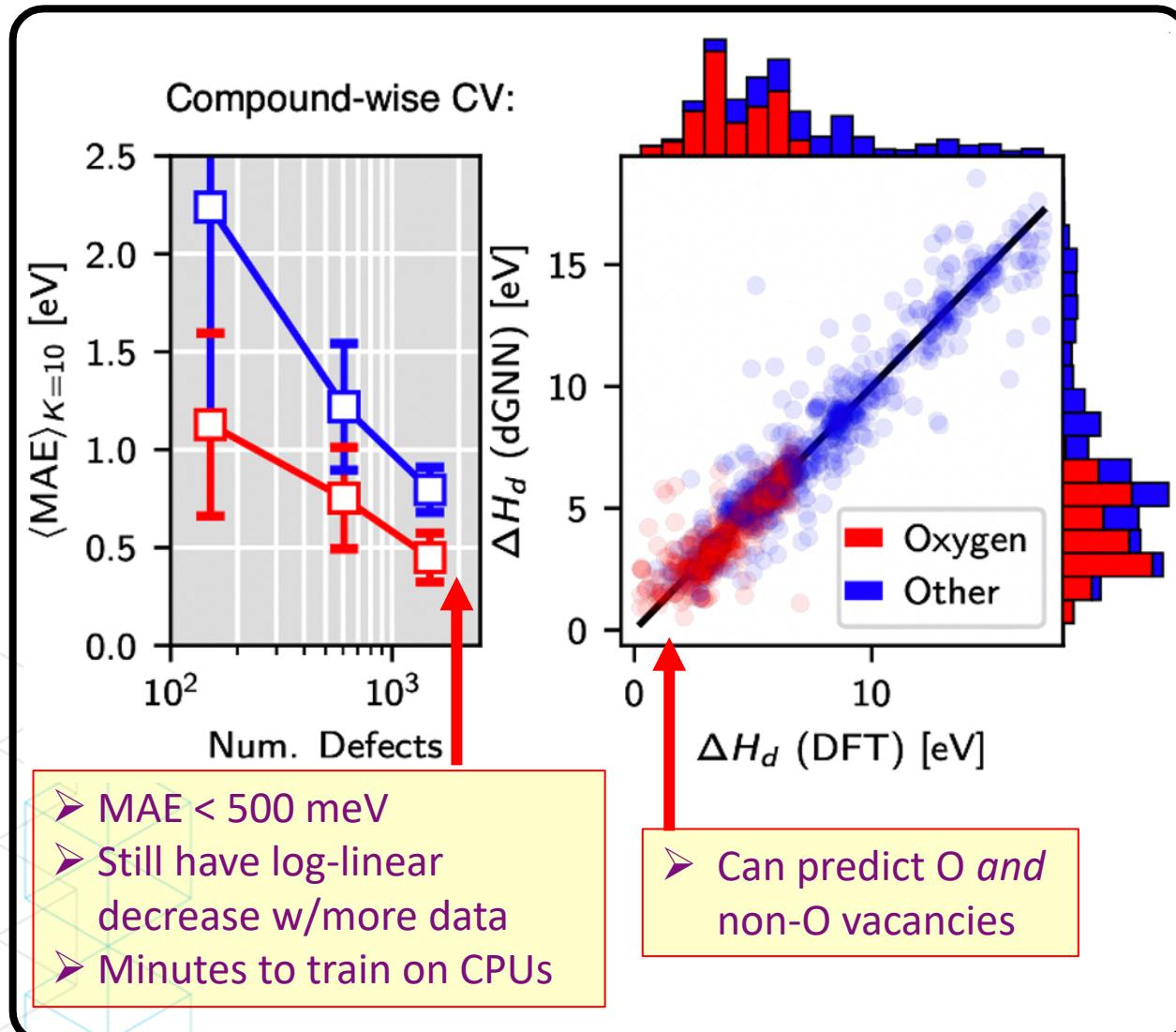
100s years' work... so more efficient model needed



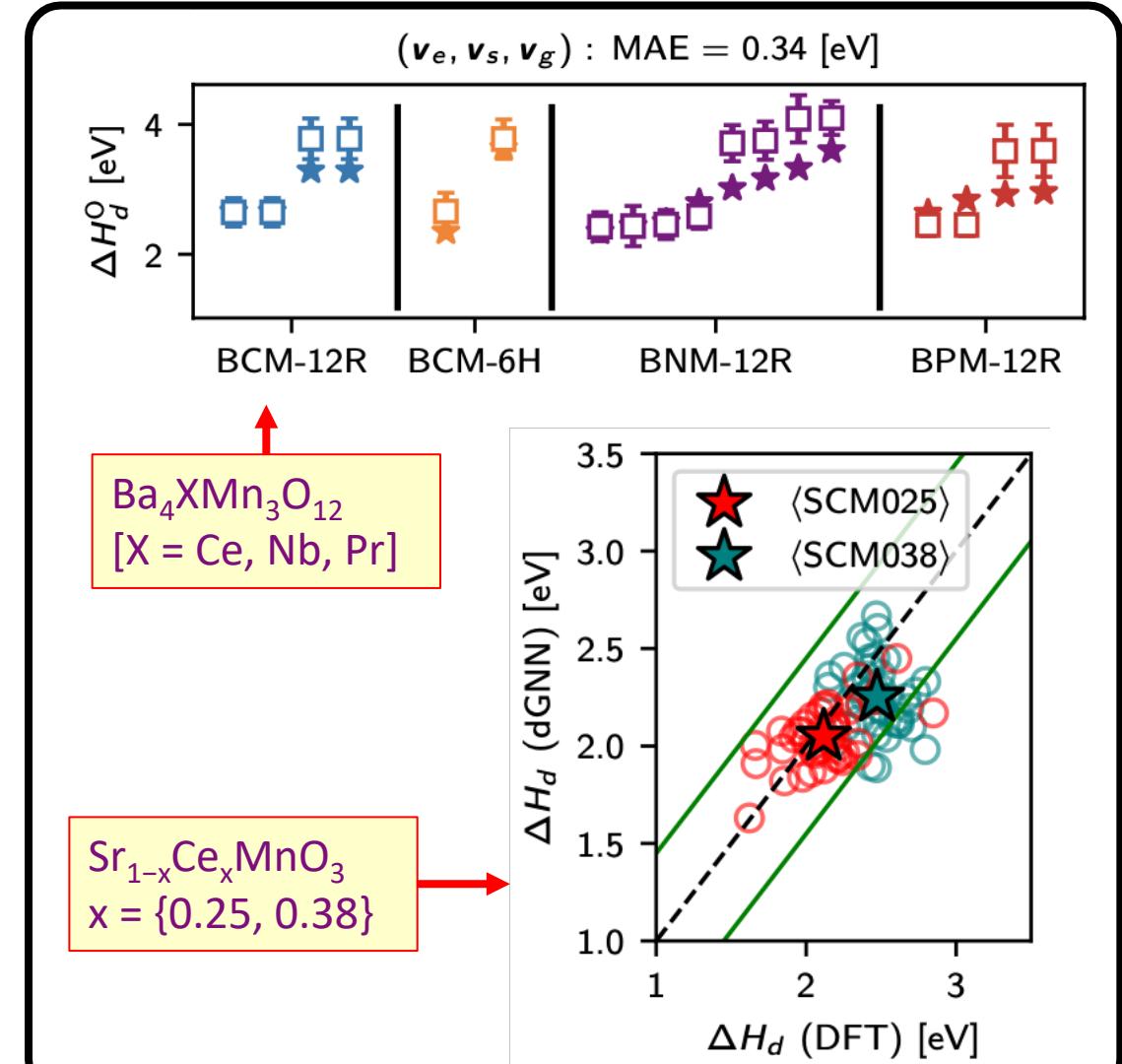
Defect GNN surrogate models for vacancy formation enthalpy supercell relaxations



Benchmark accuracy was met for HT screening



Additional tests on more complicated materials than the training set (quaternaries & solid solutions)

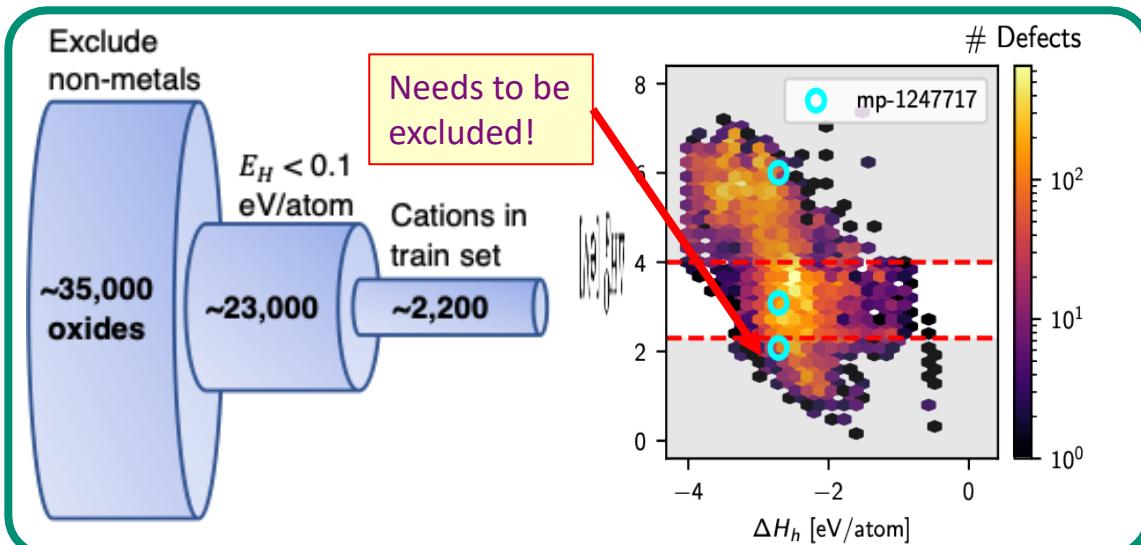


High-throughput screening 2,000 oxides (50,000 unique defects) rediscovers known water-splitting oxides and identifies new ones (~10 top candidates)

(1) Co-design of host defects and stability for water-splitting

Metric	Requirement
Frac. of defects w/ $\Delta H_d^0 > 2.3$ eV	$x_{\min} = 1$
Frac. of defects w/ $\Delta H_d^0 \in [2.3, 4.0]$ eV	$x_{\text{rng}} > 0$
Host stability criteria (ranges intersect)	$\Delta\mu'_{O_2} \cap \Delta\mu_{O_2}^{\phi_H < X} \neq \emptyset$
Operating range for STCH	
Range where host's grand energy above hull (ϕ_H) is $< X$	

(2) Screen the Materials Project for all defects



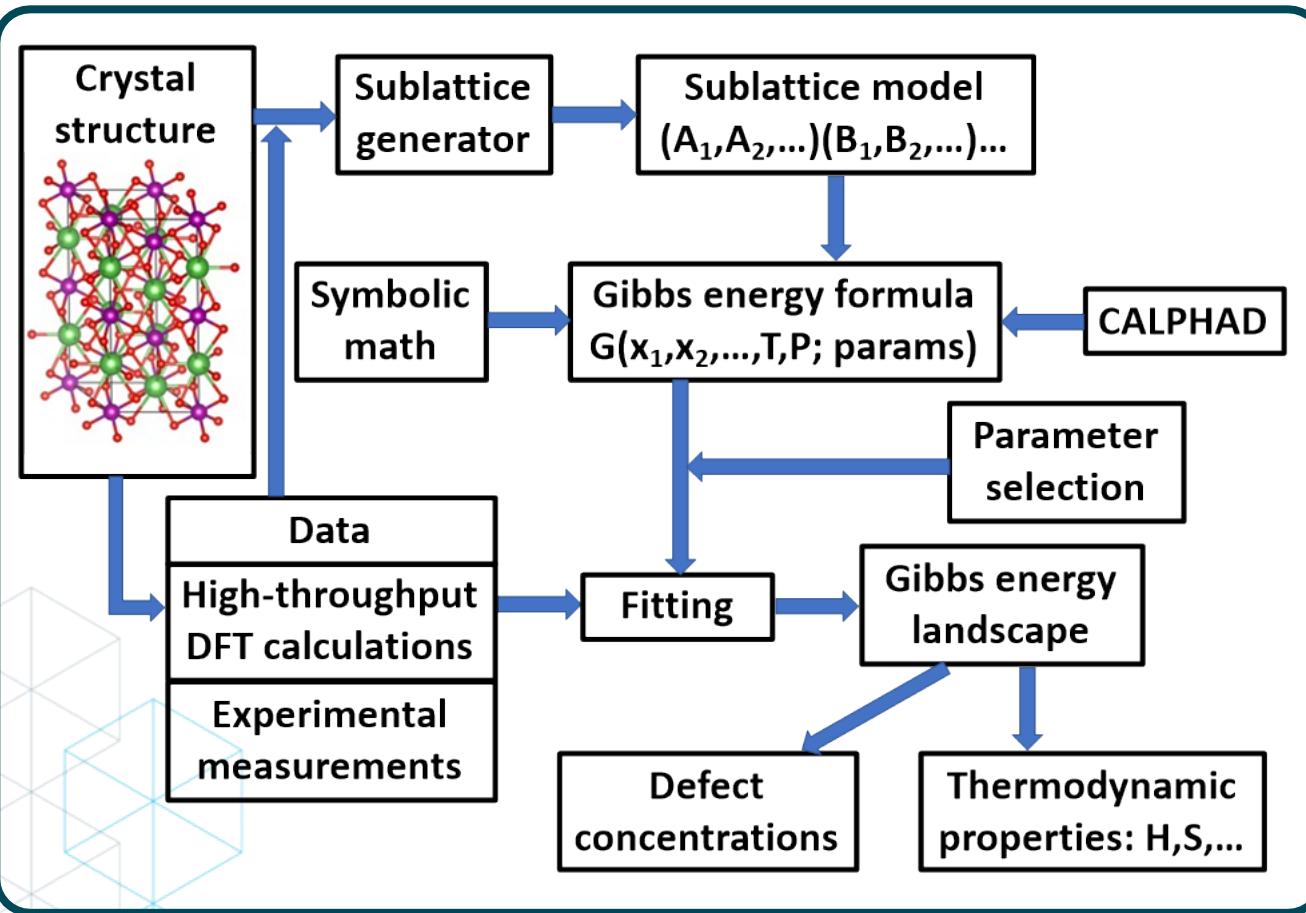
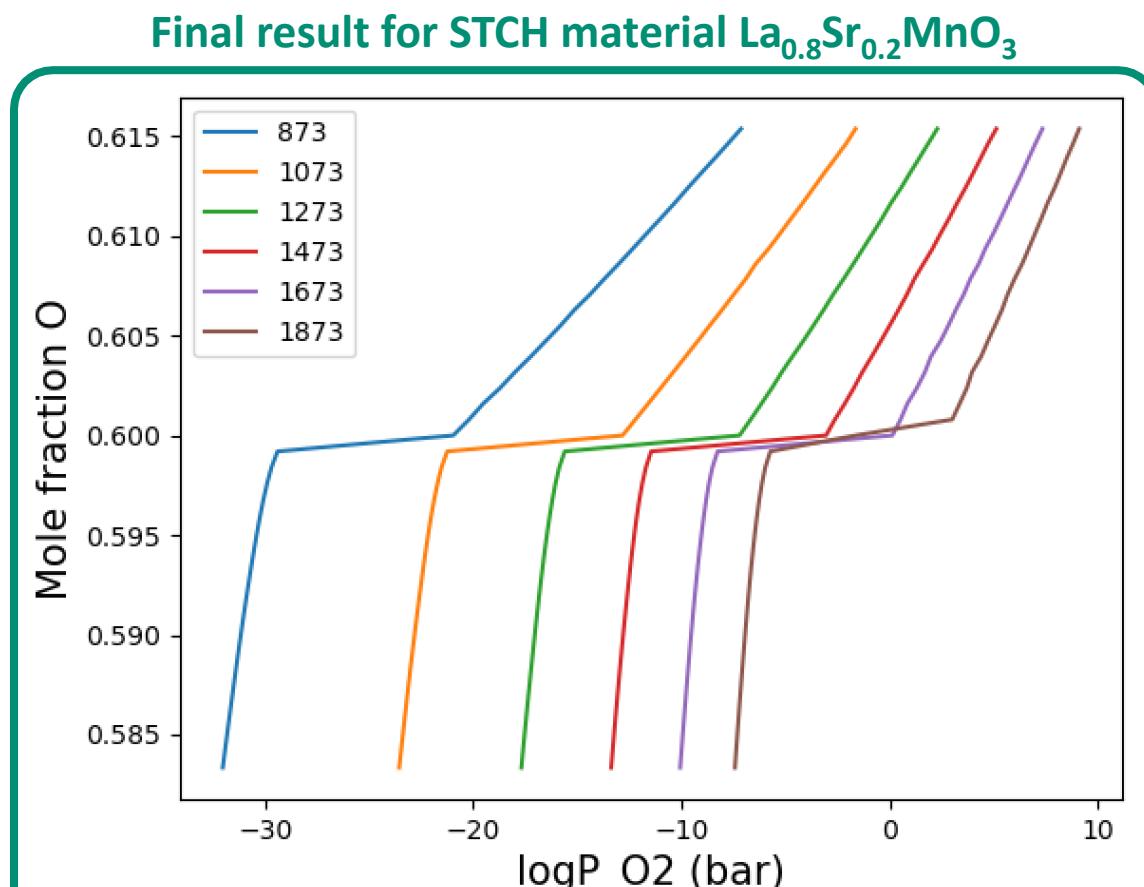
(3) Identify and filter increasingly promising targets

197 formulas (48 training)	114 formulas (33 training)	34 formulas (17 training)	16 formulas (11 training)	9 formulas (9 training)
$\triangleright x_{\min,1} = 1$	$\triangleright x_{\min,2} = 1$	$\triangleright x_{\min,3} = 1$	$\triangleright x_{\min,3} = 1$	$\triangleright x_{\min,3} = 1$
$\triangleright x_{\text{rng},1} > 0$	$\triangleright x_{\text{rng},2} > 0$	$\triangleright x_{\text{rng},3} > 0$	$\triangleright x_{\text{rng},3} > 0$	$\triangleright x_{\text{rng},3} = 1$
$\triangleright \Delta\mu_{O_2}^{\phi_H < 0.1}$	$\triangleright \Delta\mu_{O_2}^{\phi_H < 0.1}$	$\triangleright \Delta\mu_{O_2}^{\phi_H < 0.05}$	$\triangleright \Delta\mu_{O_2}^{\phi_H < 0}$	$\triangleright \Delta\mu_{O_2}^{\phi_H = 0}$
<chem>Sr6Ti3FeO14</chem> (mp-1645141)	<chem>La2MnCoO6</chem> (mp-19208)	<chem>BaSr(FeO2)4</chem> (mp-1228024)	<chem>Ba5SrLa2Fe4O15</chem> (mp-698793)	<chem>Ba3In2O6</chem> (mp-20352)

- Filter candidates with increasingly certain performance
- Mainly identifies known, synthesizable compounds
- ~100 are not AXO_3 , $A_{n+1}X_nO_{3n+1}$, $Fe_{3-n}M_nO_4$, CeO_2 , etc.
- Rediscovered complex, known water-splitting materials (not in training data) like BCM, SCM, and **new ones!**

If more complex defects (interacting vacancies and substitutions) can be predicted in high-throughput, full phase diagram predictions can be computed in high-throughput

General, automatic workflow development for modeling defect thermodynamics of ionic compounds (P. Guan)



- Predicts O off-stoichiometry as a $f(T, pO_2)$
- Currently, only as fast as DFT

Part I:

Accelerated screening of oxides for high-temperature clean-energy applications

- graph neural networks / defect property predictions / first principles thermodynamics

Part II:

Towards Pareto optimal high entropy alloy hydrides

- statistical learning models / graph neural networks / metal-hydrogen phase diagrams / experiments

Part III:

The importance of systems level co-design in evaluating hydrogen storage materials

- Experiments + systems-level modeling

Part II: Towards Pareto optimal high entropy alloys for H₂ storage¹⁻⁷

Key concepts:

- Compositional ML models can predict critical hydride properties
- High-throughput screening and synthesis of destabilized high entropy alloy hydrides
- Targeting multi-dimensional Pareto optimal materials for experiments
- First principles PCT modeling

¹Witman, Ling, Grant, Walker, Agarwal, Stavila, Allendorf. *J. Phys. Chem. Lett.*, 11 (1), **2020**

²Witman, Ek, Ling, Chames, Agarwal, Wong, Allendorf, Sahlberg, Stavila. *Chem. Mater.* 30 (11), **2021**

³Ek, Nygard, Pavan, Montero, Henry, Sorby, Witman, et al. *Inorg. Chem.*, 60 (2), **2021**

⁴Witman, Stavila. *Submitted Patent*, **2022**

⁵Pineda-Romero, Witman, Stavila, Zlotea, *Intermetallics*, **2022**

⁶Witman, et al. *J. Mater. Chem A*, 11, **2023**

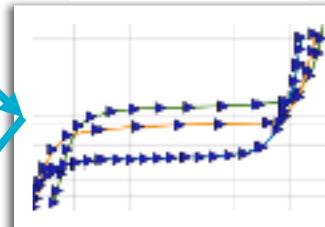
⁷Pineda-Romero, Witman, et al. *In prep.*, **2023**

(1) $\ln(P_{eq}^o/P_o)$ target property

H_2 Metal Hydride

$$\ln(P_{eq}^o/P_o) = -\frac{\Delta H}{R(25^\circ C)} + \frac{\Delta S}{R}$$

PCT curves



- Data manually accumulated from experimental literature in HydPARK database (pre "ML days")
- **Only** 400 / 2500 examples usable for ML training

(2) Featurization for compositional ML model

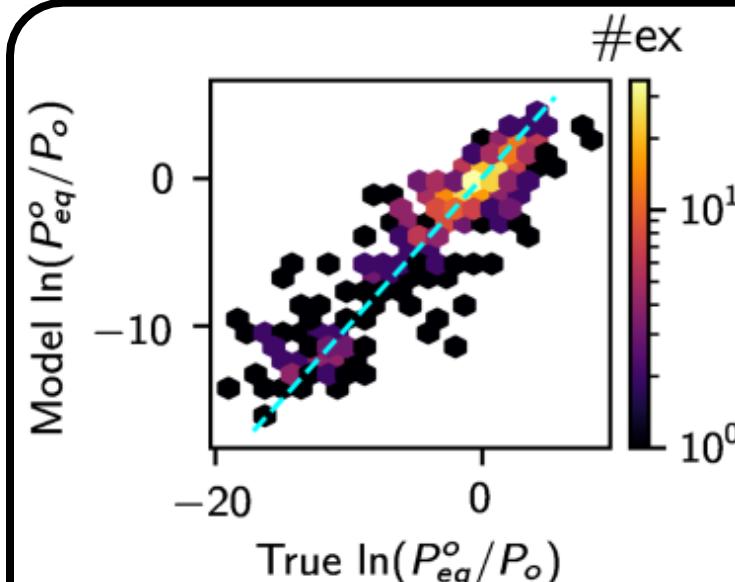
Magpie features¹ → (mean, stddev., etc) on elemental properties and their at.%

$$TiFe_{0.92}Nb_{0.08} \rightarrow \mathbf{x} = \{\bar{v}_{pa}, \bar{r}_{cov}, \bar{\chi}, \dots\} \in \mathbb{R}^{145}$$

$$\bar{v}_{pa} = \sum_i f_i v_i$$

$v_i \equiv$ ground state vol. per atom

$f_i \equiv$ composition frac. of element i

(3) Gradient boosting regression (GBR) model validation and explainability

GBR model predicts $\ln(P_{eq}^o/P_o)$ with K-fold expected MAE = 1.5

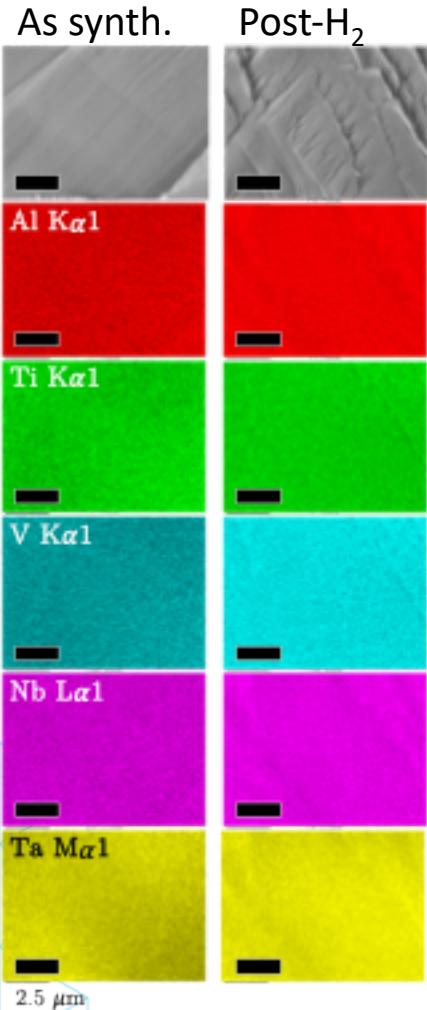


~ linear correlation with \bar{v}_{pa} :

$$\ln\left(\frac{P_{eq}^o}{P_o}\right) \approx -m \bar{v}_{pa} + b$$

Arc melting synthesis + XRD + EDS confirms phase purity and PCT curves validate destabilization of HEA hydrides

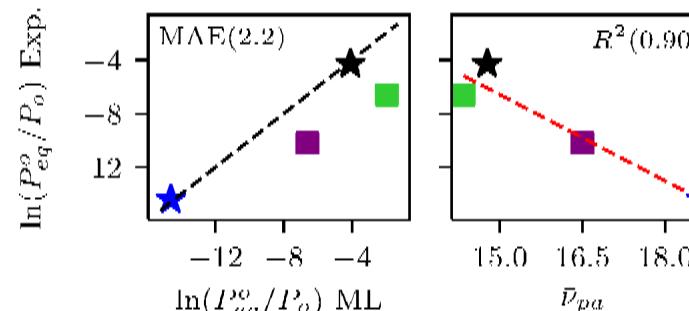
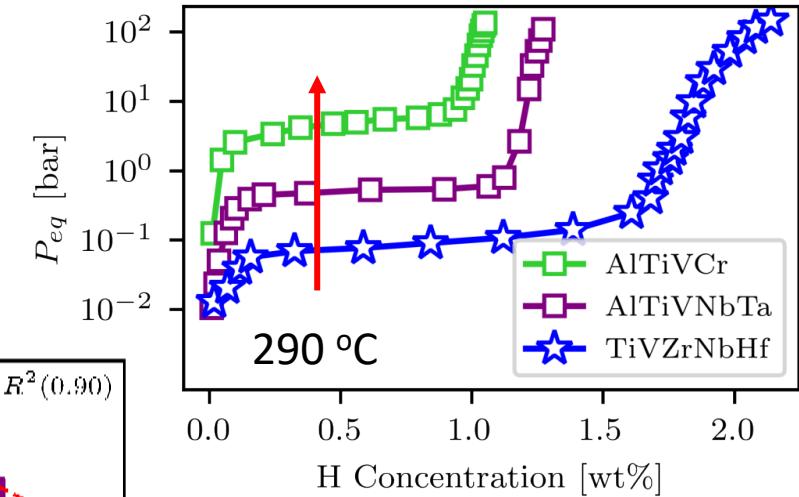
AlTiVNbTa & AlTiVCr synthesis



No elemental segregation

ML model & design rule confirmed by PCT experiments

Successfully targeted destabilized hydrides (increase in P_{eq})

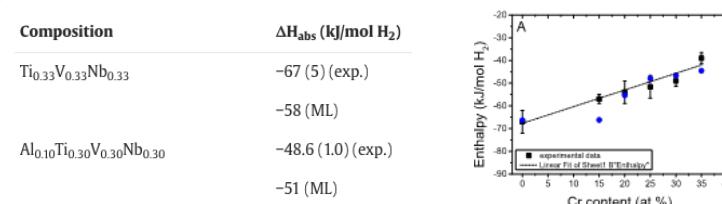


Validated ML model & design rule

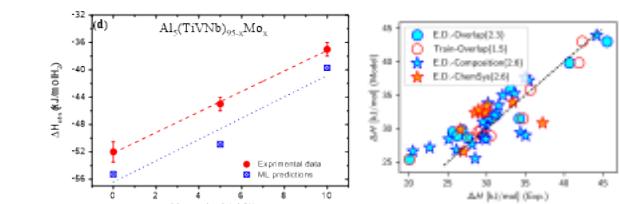
ML-predicted destabilization validated in a variety of studies

Composition	ΔH_{abs} (kJ/mol H_2)
$Ti_{0.33}V_{0.33}Nb_{0.33}$	-67 (5) (exp.) -58 (ML)
$Al_{0.10}Ti_{0.30}V_{0.30}Nb_{0.30}$	-48.6 (1.0) (exp.) -51 (ML)

$(TiVNb)_{100-x}Al_x$



$(TiVNb)_{100-x}Cr_x$



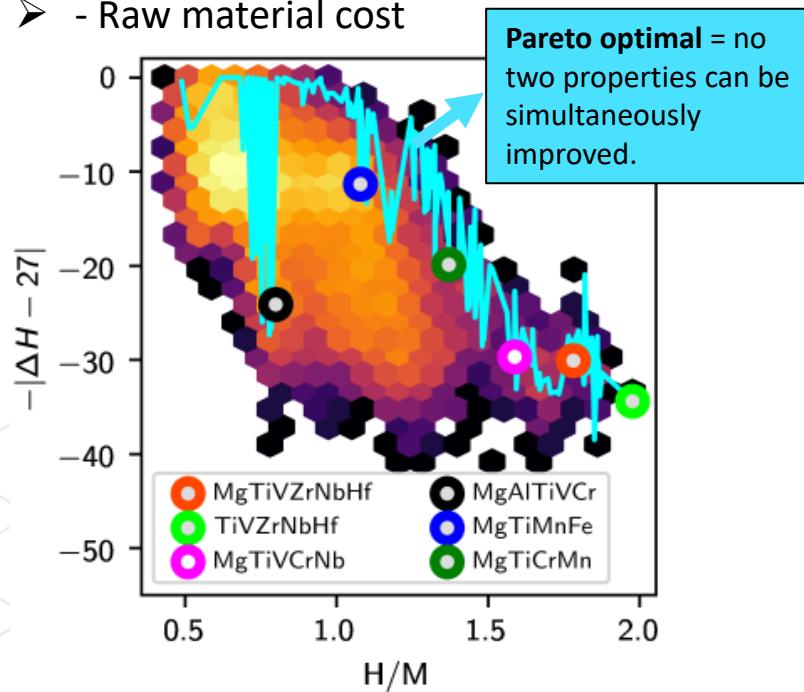
TiFe-X

Synthesis + XRD + EDS confirms phase pure synthesis and PCT measurements of Mg-HEA Pareto optimal candidates^[1]

Use improved ML models to identify Pareto optimal HEAs

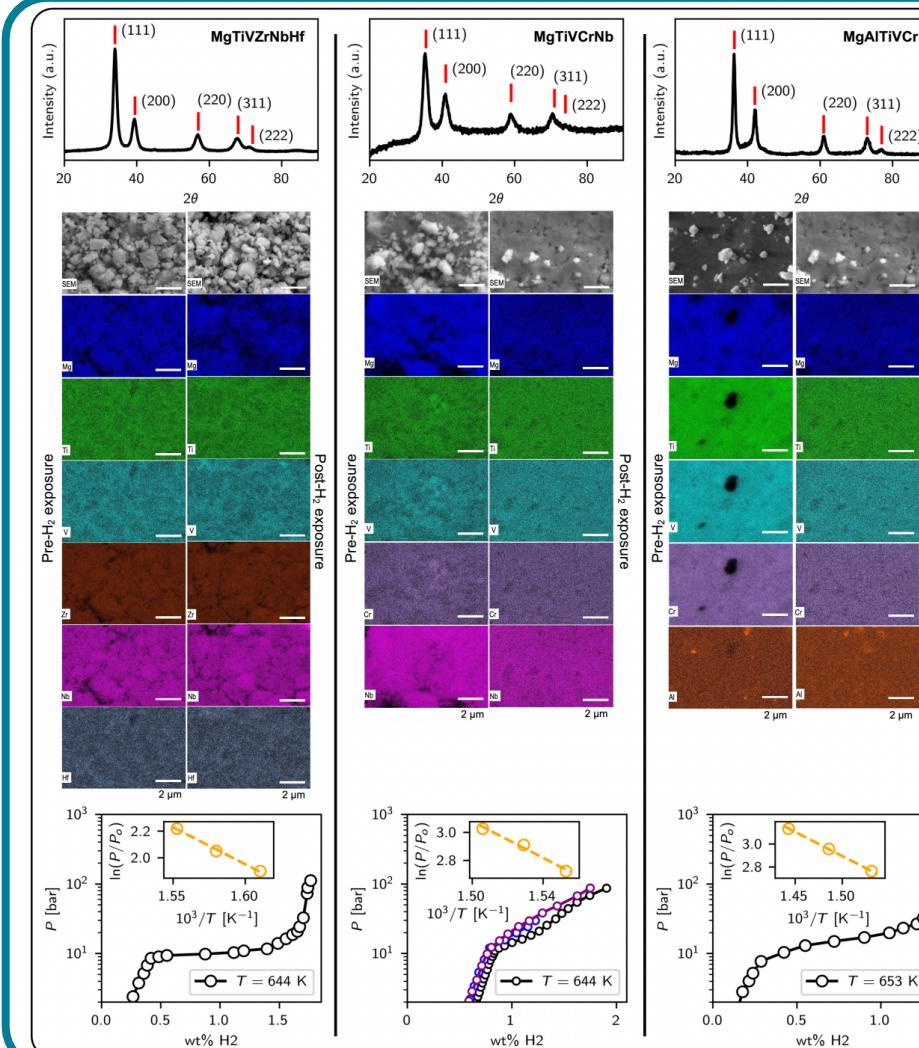
Define objectives / quantities to maximize:

- Optimal thermodynamics $\rightarrow -|\Delta H - 27|$
- High volumetric capacity $\rightarrow H/M$
- High gravimetric capacity $\rightarrow H_{wt\%}$
- - Raw material cost



Pareto optimal front reduces screening compositions (~20,000) by 2-3 orders of magnitude to reveal top candidates (~100)

Successful synthesis, characterization, and PCT testing of selected Mg-HEA candidates

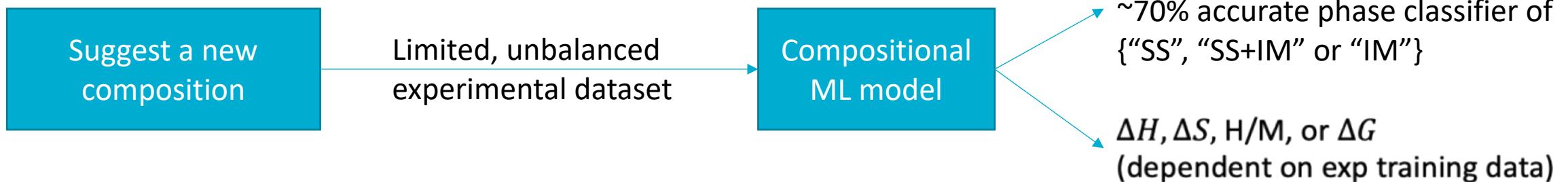


- Promising high-capacity candidates
- Relatively large uncertainty in some experimental thermodynamics due to sloped plateau
- Correct ΔH and H/M trend between Mg-HEAs
- Correct ΔH and H/M trend between Mg-HEA and their non-Mg counterparts

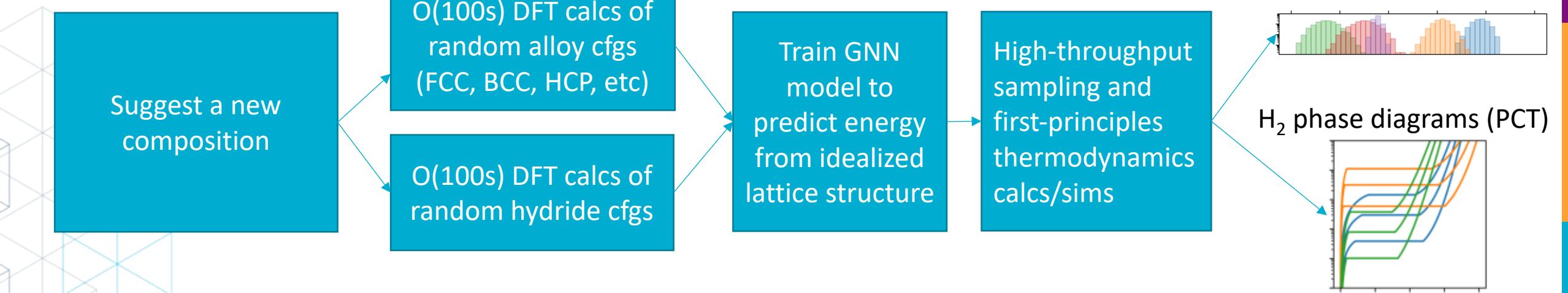
Automated, first-principles modeling of metal-hydrogen equilibria in high-throughput is needed for a “step change” improvement of metal hydride discovery

- Compositional ML models in the previous approach are hampered by limited experimental data
- Reasonable accuracy is unlikely on *significantly* out-of-training distribution materials
- Lacks key properties contained in a phase diagram (estimated reversible capacity, multiple phase transitions, etc.)

Previous section:



New/ultimate goal:



Calculation of PCT curves (metal-hydrogen phase diagram from first principles calculations)

Mean field theory and Boltzmann weighted PCT calculation

Thermodynamic formalism/assumptions:

$$S(x) = k[(1-x) \ln(1-x) + x \ln(x)]$$

$$G(x) = E(x) - TS(x)$$

Energy calculation:

$$\text{MFT: } E(x) = \bar{E}(x)$$

$$\text{Boltzmann: } E(x) = \frac{\sum_i E_i e^{-E_i/kT}}{\sum_i e^{-E_i/kT}}$$

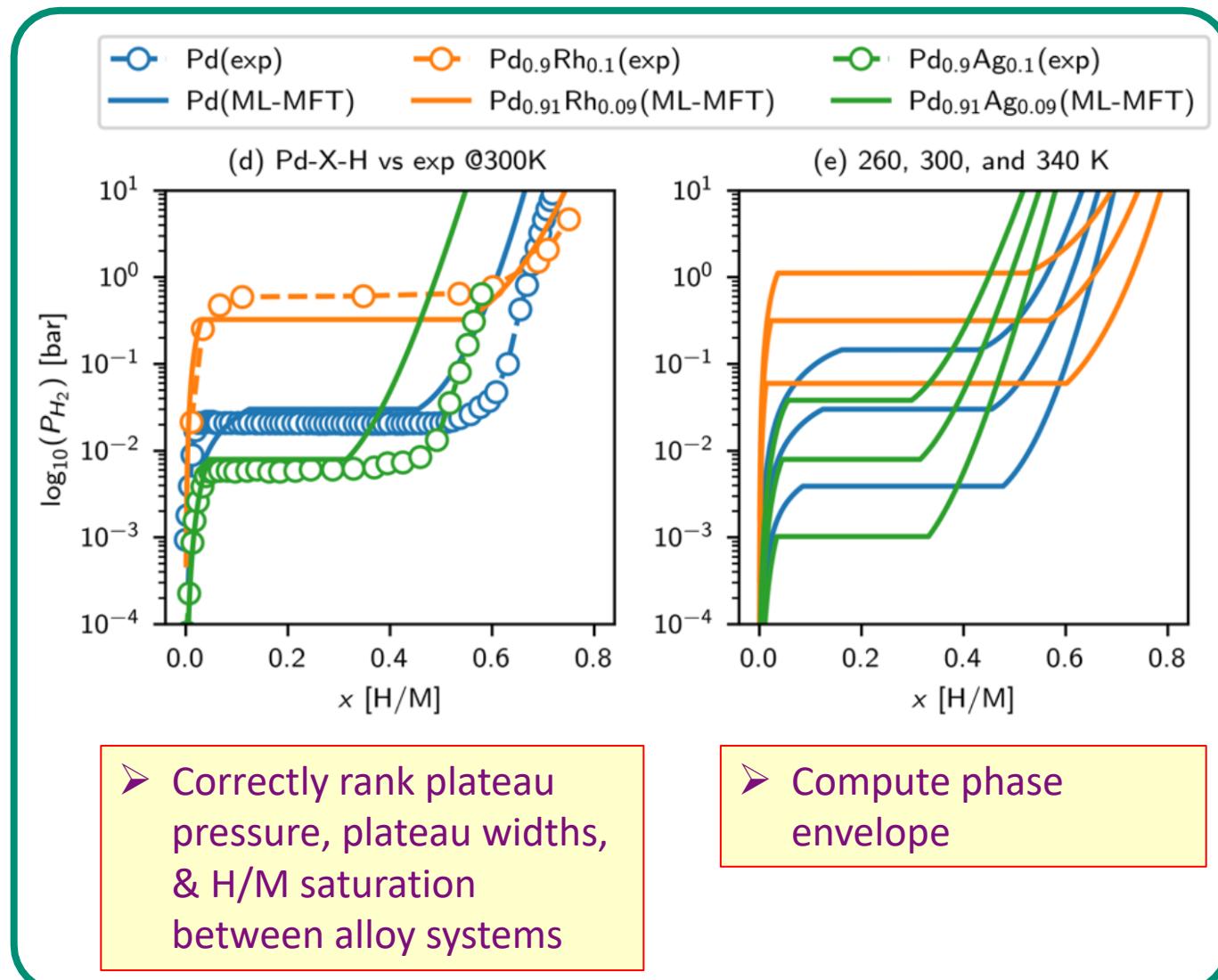
PCT:

- fit $G(x)$ to polynomial
- Differentiate w.r.t $x \rightarrow \mu$
- $p = p_0 e^{\mu/kT}$

➤ GNN surrogate models for formation energies

- Additional work needed for thermodynamic approach in more complex hydride and super-hydride material classes

Comparison of computed vs experimental PCT



Part I:

Accelerated screening of oxides for high-temperature clean-energy applications

- graph neural networks / defect property predictions / first principles thermodynamics

Part II:

Towards Pareto optimal high entropy alloy hydrides

- statistical learning models / graph neural networks / metal-hydrogen phase diagrams / experiments

Part III:

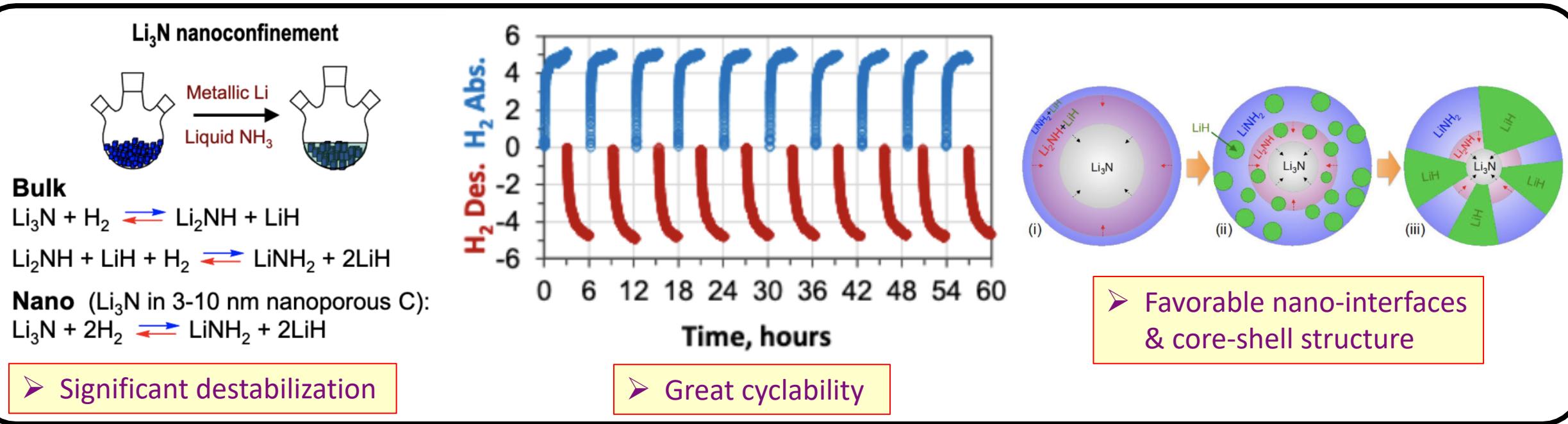
The importance of systems level co-design in evaluating hydrogen storage materials

- Experiments + systems-level modeling

Part III: ***Material and system co-design for optimizing nanoscale metal hydride-based hydrogen storage¹***

Key concepts:

- Comprehensive experimental characterization of pelletized, nano-scale, complex metal hydrides
- Systems design tools for wholistic design performance

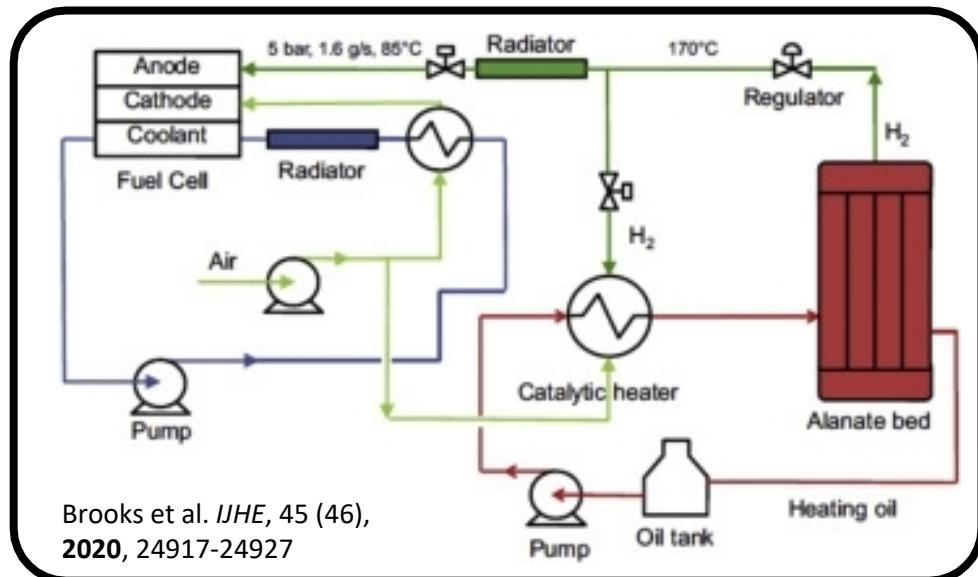
Nanoscaling Li_3N in a carbon host enhances a variety of hydrogen storage properties... (V.Stavila et al)

But sacrifices other properties... So which one is better for storage?

Material	f_{H_2} [wt%]	k [$\text{W m}^{-1} \text{K}^{-1}$]	ρ [kg m^{-3}]	ΔH [kJ mol^{-1}]	ΔS [$\text{J mol}^{-1} \text{K}^{-1}$]
Bulk Li ₃ N	7.1	0.6	821	67.3	126
6nm-Li ₃ N@C	5.4	3.1	742	46.7	109
% change	-24%	420%	-9.6%	-31%	-15%
	Bad	Good	Bad	Good	Bad

PNNL-developed metal hydride design tool can calculate the systems-level gravimetric and volumetric capacity based on material properties

Determine system requirements to store X kg of H_2

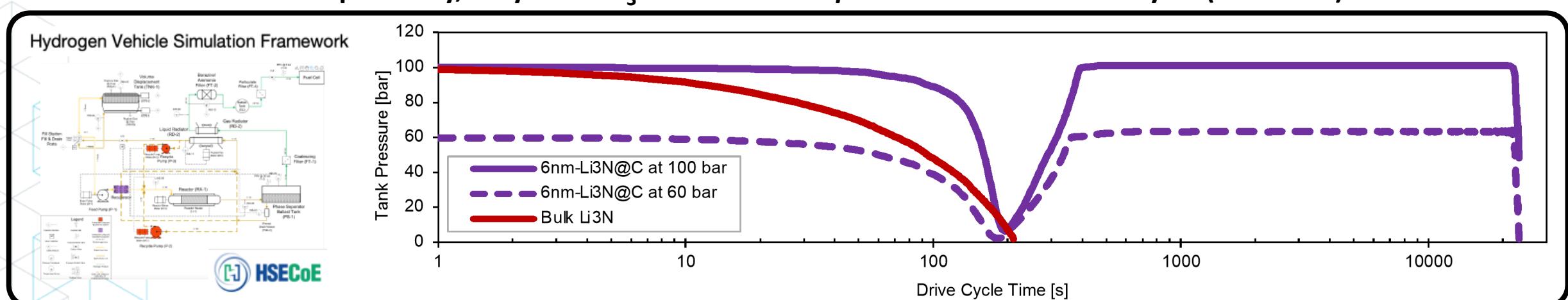


Volumetric systems capacity (VSC) for bulk, nano, and 350 bar

	Li_3N (A286)	6nm- $\text{Li}_3\text{N}@\text{C}$ (A286)	350 bar (A286)
Total mass (kg)	407	325	307
Total volume (m ³)	0.371	0.333	0.274
H_2 burned (kg)	2.94	1.77	N/A
Max Temp. (°C)	494	387	N/A
HEx tubes	811	236	N/A
VSC (g H_2 /L)	15.1	16.8	20.5

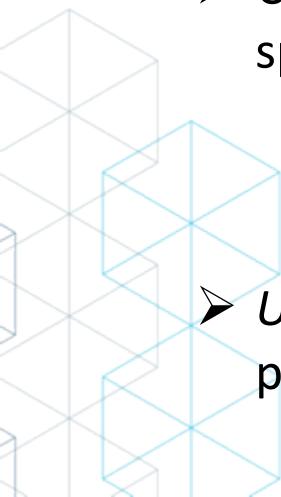
- Nano's VSC is better than that of bulk
- Nano's VSC is approaching that of 350 bar compressed gas
- Group is working on a material to compete or better 700 bar

Most importantly, only nano- Li_3N can even complete a simulated drive cycle (K. Brooks)



Concluding remarks

- Data-driven materials discovery efforts take on many different forms depending on data availability, problem constraints, computational vs. experimental data, etc.
- New/improved materials for hydrogen storage and generation are ripe for discovery across various applications and will help accelerate hydrogen deployment
- Understanding the efficacy of high entropy materials (massive increase in chemical/structural search space) will only exacerbate the need for data-driven insights to drive efficient experimental progress
- *Ultimate* prediction of material performance requires systems-level modeling (often depends on properties beyond current modeling capabilities, at least in high-throughput)



Thank you for your attention!

Always open to questions/comments/collaborations.

Please email:

mwitman@sandia.gov

