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I Better hydrogen energy materials to improve energy security and
mitigate green house gas emissions will be critical

A massive mismatch between energy demand and new renewable capacity Reasonable to expect full
electrification of ...?

' source? end-use sector:

\

percentage of sources percentage of sectors

Heavy duty vehicles
(~40% of transportation demand)

1=
petroleum e g

35.1

o088

(36%) (~¥15% of total demand):
Trucks?
e Maritime?
3___ o .o
nalq;rfnlggas (38%) \ Aviation?
(32%) _ s resklental Heat-based industrial applications
LAl (~35% of total demand):
. commercial . p)
renewable energy AT 9.1 (12%) Chemicals™
12.2 (12%) total = 73.5 i
_ o Bt Steel production?
~ coal 5 P)
1005 (11%) 2l electric power sector? Ce me nt .
;ﬂ;;:] — . electricity retail sales v Ammonia SyntheSiS?

otal = 67.3 12.9 (35%)
quadrillion Etu

First Energy Earthshot Aims to
Current renewable additions?: Slash the Cost of Clean

~90% electricity vs. ~10% fuels Hydrogen by 80% to 51 per

total = 36.7 quadrillion Btu 2 |EA. Renewables 2022: Analysis and forecast to 2027 Kilogram '-n One Decade

US Energy demand?:
~35% electricity vs. ~65% fuels

Ihttps://www.eia.gov/energyexplained/us-energy-facts/
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More H, energy material development needed: but trial-and-error development

by experiments and/or 1t principles calculation is too costly

M+ _H, © MH,

Pressure-Composition-Temperature

Pressure

Hydrogen/Metal

Experiments: Measure PCT curves (AH, AS, and capacity)
1%t principles: Low-sample estimation of AH

Application #2: Metal oxides for solar
thermochemical (STCH) H, generation

.

A
MO, -MO,_; + 502 (reduction T)
MO, _s + 6H,0 - MO, + 6H, (oxidation T)
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Experiments: Measure H, / O, production rates

1%t principles: Compute AH of oxygen vacancy formationj

Months to synthesize and fully characterize and test a material
Months to predict even just a proxy for performance for a small # of materials




I Outline: A survey of data-driven materials discovery and systems
modeling tasks in hydrogen energy applications at Sandia

Part I:

Accelerated screening of oxides for high-temperature clean-energy applications
»  graph neural networks / defect property predictions / first principles thermodynamics

Part II:
Towards Pareto optimal high entropy alloy hydrides

» statistical learning models / graph neural networks / metal-hydrogen phase diagrams / experiments

Part IlI:

The importance of systems level co-design in evaluating hydrogen storage materials
»  Experiments + systems-level modeling
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Defect GNN accelerated screening of oxides for high-
temperature clean-energy applications

Key concepts:

» Graph neural networks to directly predict relaxed vacancy properties from the host structure
» High-throughput screening of vacancy formation enthalpies

> New oxides for water-splitting, fuel cells, CO, conversion, and thermochemical energy storage

Witman, Goyal, Ogitsu, McDaniel, Lany. Nature Computational Science, 2023
Witman, et al. In prep




I Solar thermochemical water splitting (STCH) is one of several
prominent pathways to green (CO, emissions free) H,

Direct 2 step redox cycle (nb. >300 proposed cycles...)["!  Top candidates (BCM-12R) are well-studied & characterized

4 ) rExperiments: Directly measure and evaluate H, and O, A
production rates T wsn e T o e
- 8 H v 0 _:.:.:
T
% 128 ymcl'g ) el &7 pmolia
S |
vAy - S
4’ ‘> Thermal reduction: Tr ~1300 C 0, '8 || rll'??’l"'""al '|| ,5141 urcls
v T A A L AN
\a — 7
MO.,—MO,_; + EDE Time
~Month to synthesize, characterize, test 1 material
1st principles (DFT): Compute oxygen vacancy formation
MO, _ 5 + 6H,0-MO, + 6H, enthalpy (e.g., AHY) of all sites
/ \ Thermodynamic “sweet-spot”:
Hy H,0 At least one AHY € [2.3, 4.0] eV
0
No MO, yet that meets all requirements i AllAHg >23eV
for T,, stability, kinetics, etc.
\_ ) ~Month to compute this proxy for handful of materials

[1] www.energy.gov/eere/fuelcells/hydrogen-production-thermochemical-water-splitting \. J/


http://www.energy.gov/eere/fuelcells/hydrogen-production-thermochemical-water-splitting

Fun aside: Bladerunner 2049 solar farms — failed to solve the STCH problem?




Search for materials with AHS €[2.3, 4.0] eV rapidly

12 ¥ encounters computational barriers (A. Goyal)

( . ) A. Material Space
Monoclinic Tetragonal Hexagonal

Diversity in Training:
——» 40 unique crystal structures and
38 unique compositions

B. Host Calculations

g Relaxed structure,
3_‘: Atomic spin and oxidation state,
S Enthalpy of formation,
Full search E Bandgap, Electron effective mass
Li Be space B C N 0
Training Al |si [P |s

Na | Mg

C. Defect Calculations
K |Ca |Sc |Ti |V [Cr |Mn|Fe |Co [Ni |[Cu |[Zn |[Ga |Ge |As |Se s N

Calculated oxide space:
~200 binary + ternary host structures
Cs |Ba |La |[Hf |Ta |W |Re [Os |Ir Pt |Au |Hg [Tl |[Pb |Bi |Po

~1500 defect relaxations
Fr |Ra | Ac
Ce |[Pr [Nd |Pm |Sm |Eu |Gd |Tb |Dy |Ho [Er |Tm |Yb
\ / Existing oxide space:
~1 years’ work /

Rb |Sr |Y |Zr |[Nb [Mo|Tc |Ru |Rh [Pd |Ag |Cd |[In [Sn [Sb |[Te

~10,000s (up to senary) host structures

. . / ~1Ms defect relaxations
100s years’ work... so more efficient model needed 7'\ J




Defect GNN surrogate models for vacancy formation enthalpy supercell relaxations

13
AHy = Eyq — Ey + Z n et Supercell vacancy defect DF_T relaxations
i (1 per symmetry site)
¥ v oo \ _ _ Pros:

Defect Relaxed Atomic » Generalizable
Formation Defect and Host Reference

Energy  Supercell Energy  Energy (no manual

feature

Supercells
engineering)

» Chemistry &
structure
agnostic

» Improvable
w/more data

» Many orders of
magnitude

'{Host Structure

(a
-
=
+
0 c_E:n faster than DFT
2 8
Encoding [0,0,1,..] § Ny Cons:
V02 [07 01 17 ] g -§ > nghly data
Vin1 = [0, 1,0, ...] M | reliant
Vsr1 = [1, 8 8 ] — N > Not really
2 =11.0,0,...] /| interpretable

Defect graph neural network surrogate model




14 I Defect GNN approach validated for use in high-throughput screening exercise

Benchmark accuracy was met for HT screening

~ ™
Compound-wise CV:
2.5
— 2.0 1 i
S z 15
L2,
© 1.5 - g
< G 107
ﬁj‘ 1.0 = :‘9’ a
< ©
= I 5 -
~ 0.5 - 4 = Oxygen
m QOther
0.0 —TTTTTTT 0 - T
102 103 0 10
Num. Defects AHg (DFT) [eV]
> MAE < 500 meV
» Still have log-linear » Can predict O and
decrease w/more data non-O vacancies
> Minutes to train on CPUs
\

Additional tests on more complicated materials
than the training set (quaternaries & solid solutions)

(ve,vs, vg) : MAE = 0.34 [eV]
£47 9% 0gs% | 3
o iolel *
> |90 Qoo ufa
q 27
BCM-12R BCM-6H BNM-12R BPM-12R
f 35 77
Ba,XMn,0,, * (SCM025) /
[X = Ce, Nb, Pr] S 307 Y (ScCMo3s)
Z 2.5 -
=
&)
T 20 -
T
3
Sr,_Ce MnO, 1.5 -
>

x = {0.25, 0.38}

AHy (DFT) [eV]

~




High-throughput screening 2,000 oxides (50,000 unique defects) rediscovers
known water-splitting oxides and identifies new ones (~10 top candidates)

(1) Co-design of host defects and stability for water-splitting (2) Screen the Materials Project for all defects

é Metri R ] : \ [ Exclude # Defects )
etric equiremen non-metal Needs to be | & —
|
Frac. of defects w/AH(? >2.3eV | E. <04 excluded! \
H . -1 102
Frac. of defects w/AHS € [2.3, 4.0 eV Xrng > 0 eViatom Cations in ’\H' [W
train set 4 -
Host stability criteri i ! PH<X P
y criteria (ranges intersect) | Aug, N Auoz =0 ) 10!
, e _
Operating range for STCH
L Range where host’s grand energy above hull (¢y) is < X, 0- i
1 I 1 10
—4 -2 0
(3) Identify and filter increasingly promising targets . AH, [¢V/atom] J
197 formulas 114 formulas 34 formulas 16 formulas 9 formulas > . . . . . . )
(48 training) (33 training) (17 training) (11 training) (9 training) Filter candidates with increasingly certain performance
> xmin,l =1 > JCm‘m,z =1 > xmin,B =1 } xmin,3 =1 > xmin,S =1
> Xmg1 > 0 > Xmg2 > 0 > Xmg3 > 0 > Xmg >0 > ¥roga =1 > Mainly identifies known, synthesizable compounds
¢py<0.1 ¢py<0.1 ¢y<0.05 =0 ¢py=0
> Mo, > Aug, » Aug, > Dug, » Ay,
SrsTiaFeOM LasM nCoOs BaSr{ Fe 02}4 5358 rL82F940 15 Bas |n205
(mp-1645141) (mp-19208) (mp-1228024) (mp-698793) (mp-20352) » ~100 are not AXO,, A,,X.05,.,1, Fes .M. 0,, CeO,, etc.
e o e *
2. AL BENE SR AL A . s 2
PR @ » Rediscovers complex, known water-splitting materials
e D e
oY (not in training data) like BCM, SCM, and new ones!




16 I If more complex defects (interacting vacancies and substitutions) can be predicted in
high-throughput, full phase diagram predictions can be computed in high-throughput

General, automatic workflow development for modeling

. .. Final It for STCH jal L M
defect thermodynamics of ionic compounds (P. Guan) Inal resuft for STCH material L3, 45t ,MnO,

(
f ) 0.615{ — 873
Crystal Sublattice Sublattice model —— 1073
trucure I generator (AL,A,,...)(B1,B,,...)... 0610 E;;
' T — 1673
l 2 0.605 1 — 1873
Symbolic | Gibbs energy formula | e
math G(x1,X,,...,T,P; params) CALPHAD E 0.600 -
=
Parameter % 0.595 -
selection s
Data 0.590 4
High-throughput _l Fitting h G:bb:'energy
DFT calculations andscape 0.585 -

Experimental l . . . . :
-30 -20 -10 0 10

Ai¢asurements Defect Thermodynamic logP_02 (bar)
concentrations properties: H,S,...
\_ y » Predicts O off-stoichiometry as a f(T, pO2)
» Currently, only as fast as DFT
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Part II: UNIVERSITET
Towards Pareto optimal high entropy alloys for H, storage’-’

Key concepts:

» Compositional ML models can predict critical hydride properties

» High-throughput screening and synthesis of destabilized high entropy alloy hydrides
» Targeting multi-dimensional Pareto optimal materials for experiments

» First principles PCT modeling

lWitman, Ling, Grant, Walker, Agarwal, Stavila, Allendorf. J. Phys. Chem. Lett., 11 (1), 2020
2Witman, Ek, Ling, Chames, Agarwal, Wong, Allendorf, Sahlberg, Stavila. Chem. Mater. 30 (11), 2021
3Ek, Nygard, Pavan, Montero, Henry, Sorby, Witman, et al. Inorg. Chem., 60 (2), 2021

“Witman, Stavila. Submitted Patent, 2022

>Pineda-Romero, Witman, Stavila, Zlotea, Intermetallics, 2022

bWitman, et al. J. Mater. Chem A, 11, 2023

’Pineda-Romero, Witman, et al. In prep., 2023




9 I Explainable machine learning models predict metal hydride thermodynamics

(3) Gradient boosting regression (GBR)

(1) In(Pg,/P,) target property
model validation and explainability

~

2

Metal Hydride

PCT curves

¢
©

EIC'

&t .
O00G000 ¢
. “c“n G000 ¢ :r*...p“!:;}

t‘.'ll‘::r
00
00

In (Pg,/Pg) =—

9(35@} *

» Data manually accumulated from experimental
literature in HydPARK database (pre “ML days”)
» Only 400 / 2500 examples usable for ML training

\_

(2) Featurization for compositional ML model

G/Iagpie features! -> (mean, stddev., etc) on eIementaﬁ

. properties and their at.%
TiFeg 52Nbg g =

x= {vpa \Teow s J » e | € R4

=X fivi

ground state vol. per atom

Vi =

o
1

Model In(PS,/Ps) )
L
o

—20
True In(P,

eq/ Po)

~ linear correlation with v, ,:

PO
ln(Po)z—mﬁpa+b

composition frac. of element i

fi

GBR model predicts In(Pg,/P,)
with K-fold expected MAE = 1.5

High

Feature value

T T T Low

-5 0 5
SHAP value

W,

Ward, et al. Comp. Mat. Sci. 2018, 152, 60-69



Arc melting synthesis + XRD + EDS confirms phase purity
and PCT curves validate destabilization of HEA hydrides

AITiVNbTa & AITiVCr synthesis ML model & design rule confirmed by PCT experiments
( As synth. \ ( 102 1)
- Successfully targeted
i ona q
4 destabilized hydrides 101 4
(increase in P,,) E 100 -
E 10~ A
A ~ = AITiVCr
1072 A == AITiVNbTa
290 °C ==f&- TiVZrNbHf
i o1y - EY
i MAF(2.2) - R (0.90) T T T T T
M —4 1 x 1
- ~ A m| e 0.0 0.5 1.0 1.5 2.0
Sl 2 m | @ H Concentration [wt%]
elemental AIREE B _ .
segregation E * - , , , .
o s 4 0 65 180 Validated ML model &
\ In(£8,/1%) ML Ppa design rule y
ML-predicted destabilization validated in a variety of studies
i ’ A T AL(TiVIN®),, M " 1
Composition AH,ps (kjjmol Hp) o - AL{TiVNG),, Mo, R E}\ .;.H:g“ __u*ﬂ
. I o ! e o Foo A eotorsmionial 80
Tip33Vo33Nbo 33 :57[5)[9@-] 5:: /i/r/i/. i ” f’"' %-,,.. W ED .wc.-:.‘:-l .5/
58 (ML) BT . kI ful ﬁg o
Alg16Tio 30Vo 30NDa 30 -486(10) (exp) -_f i — s +- o E,,_a*_ . =
- ) - EML) T grc;:le:cltaf%lw v - : : [ ‘In:|al‘:“-w:‘lw . ) N “‘I‘;- --,:.... “ )
g (TIVND) 00, Al (TIVNDb) 0. CT, Al (TiVNb),., Mo, TiFeX |




Synthesis + XRD + EDS confirms phase pure synthesis and
PCT measurements of Mg-HEA Pareto optimal candidates!"!

Use improved ML models to identify
Pareto optimal HEAs Successful synthesis, characterization, and PCT testing of selected Mg-HEA candidates

N

N

| (111) MgTiVZrNbHF | (111) MgTiVCrNb | (111) MgAITiVCr

rDefine objectives / quantities to maximize:

u)

. . ;; s | (200)  (220) :
» Optimal thermodynamics -> —|AH — 27| gl oo wom ||3 L -
» High volumetric capacity -> H/M : Uea | [ £ £ VG
» High gravimetric capacity -> Hwt% .- .

» - Raw material cost
Pareto optimal = no » Promising high-capacity candidates
two properties can be
simultaneously

improved.

» Relatively large uncertainty in some
experimental thermodynamics due
to sloped plateau

» Correct AH and H/M trend
between Mg-HEAs

Pre-H; exposure
ainsodxa ZH-150d
Pre-H, exposure
ainsodxa ZH-1504
Pre-H, exposure
ainsodxa ¢H-1sod

» Correct AH and H/M trend

40 - 9 ! :
MgTiVZrNbHf MgAITIVCr between Mg-HEA and their non-Mg
TiVZrNbHf MgTiMnFe counterparts
—50 MgTiVCrNb MgTiCrMn
: r : ' 10° | 103 =
05 1.0 1.5 2.0 < 281 <]
iy 10° 155 1.60 5 L [ 544 = 0T 145 150
H';M f 10%/T [K1] f‘ 10%/T [K™] _.a'g!'" f 103/T [K1]
Pareto optimal front reduces screening o " 1 3
T N =O= T =644 K &g —0— T =644 K =O= T=653K
compositions (~20,000) by 2-3 orders of e e : T ; 3 - -
magnitude to reveal top candidates (~100) \\. il i il / )

\. J [1] Witman, et al. J. Mater. Chem A, 11, 2023.




I Automated, first-principles modeling of metal-hydrogen equilibria in high-
throughput is needed for a “step change” improvement of metal hydride discovery

» Compositional ML models in the previous approach are hampered by limited experimental data
» Reasonable accuracy is unlikely on significantly out-of-training distribution materials
» Lacks key properties contained in a phase diagram (estimated reversible capacity, multiple phase transitions, etc.)

Previous section:

~70% accurate phase classifier of
Suggest a new Limited, unbalanced Compositional {“SS”, “SS+IM” or “IM”}
composition experimental dataset ML model

AH,AS, H/M, or AG
(dependent on exp training data)

New/ultimate goal:

Alloy stability predictions

O(100s) DFT calcs of 1 - S
random alloy cfgs Train GNN High-throughput ML Fﬂﬂm

(FCC, BCC, HCP, etc) model to sampling and

predict energy first-principles H, phase diagrams (PCT)
from idealized thermodynamics

lattice structure calcs/sims

Suggest a new
composition

O(100s) DFT calcs of
random hydride cfgs

saaal o sk asal.
4




I Calculation of PCT curves (metal-hydrogen phase
diagram from first principles calculations)

Mean field theory and Boltzmann
weighted PCT calculation

-

G(x) = E(x) — TS(x)

Energy calculation:
MFT: E(x) = E(x)

3 Eqe~Ei/kT

hermodynamic formalism/assumptions:
S(x)=kl(1=2x)In(1 —x) + xIn(x)]

~N

Boltzmann: E(x) = s e~ Ei/kT

PCT:
» fit G(x) to polynomial
» Differentiate w.rtx - u

\> P =rpoet/t

> GNN
surrogate
models for
formation
energies

_/

Comparison of computed vs experimental PCT

( —r Pd(exp) = Pdo_tho,l(exp) -O- Pdo_gAgo_l(exp)
—— Pd(ML-MFT) = Pdg.01Rho.0o(ML-MFT) == Pdg.01Ag0.00(ML-MFT)
(d) Pd-X-H vs exp @300K (e) 260, 300, and 340 K
10! 5 10!
100 4 10°
3
= 107! - 101
&
51072 o (Y 102
20 1 4E
_O .
103 i 103
104 104
: 00 02 04 06 08
x [H/M]
» Correctly rank plateau » Compute phase
pressure, plateau widths, envelope
& H/M saturation
L between alloy systems )

» Additional work needed for thermodynamic approach in more complex hydride and super-hydride material classes




I Outline: A survey of data-driven materials discovery and systems
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' %= Lawrence
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P art I I I anoratories Laboratory
Material and system co-design for optimizing nanoscale metal

hydride-based hydrogen storage'

Key concepts:
» Comprehensive experimental characterization of pelletized, nano-scale, complex metal hydrides
» Systems design tools for wholistic design performance

LWitman, Brooks, Sprik, Gross, Wood, Heo, Klebanoff, Acosta, Reyes Leick, Gennett, Stavila, Allendorf. et al. In prep., 2023




6 I Nano-scaling via host confinement is a powerful technique for destabilizing metal hydrides

Nanoscaling Li;N in a carbon host enhances a variety of hydrogen storage properties... (V.Stavila et al)

( Li;N nanoconfinement \
Metalllc Li 'E ; [
qumd NH, I~ 0
Bulk g -2
Li;N + H, = Li,NH + LiH Q4
Li,NH + LiH + H, = LiNH, + 2LiH * 6 1+
Nano (Li;N in 3-10 nm nanoporous C): 0 6 12 18 24 30 36 42 48 54 60 » Favorable nano-interfaces
Li;N +2H, === LiNH, + 2LiH Time, hours & core-shell structure
» Significant destabilization » Great cyclabilit
\ g y y )

But sacrifices other properties... So which one is better for storage?

( )
Material fiuz [WE%] kWm' K] plkgm”]  AH[kJmol']  AS[Jmol K]
Bulk LisN 71 0.6 821 673 126
6nm-LisN@C 5.4 3.1 742 46.7 109
% change 420%

L Bad Good Bad Good Bad )




- I PNNL-developed metal hydride design tool can calculate the systems-level
gravimetric and volumetric capacity based on material properties

Determine system requirements to store X kg of H,

-

5 e, ¥ .E-:}SHE

Anode

Elm-ﬂe
—1 Coolant |

Fueal Cell

Radialor

-

=&l
Pump

Brooks et al. IJHE, 45 (46),

~N

Radiator
i H&gulat:t
| Catalytic heater
Alanate bed
LE_Q Haaling o

W)
Volumetric systems capacity (VSC) for bulk, , and 350 bar
f LisN 6nm-LisN@C 350 bar
(A286) (A286) (A286)
" Total mass (kg) 407 325 307
Total volume (m?3) 0.371 0.333 0.274
H2 burned (kg) 2.94 1.77 N/A
Max Temp. (°C) 494 387
HEX tubes 811 236
VSC (gr2/L) 16.8

> Nano’s VSC is better than that of bulk

» Nano’s VSC is approaching that of 350 bar compressed gas

\__ 2020, 24917-24927 . \_ » Group is working on a material to compete or better 700 bar y
Most importantly, only nano-Li3N can even complete a simulated drive cycle (K. Brooks)
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Concluding remarks




29 I Key takeaways

» Data-driven materials discovery efforts take on many different forms depending on data availability,
problem constraints, computational vs. experimental data, etc.

» New/improved materials for hydrogen storage and generation are ripe for discovery across
various applications and will help accelerate hydrogen deployment

» Understanding the efficacy of high entropy materials (massive increase in chemical/structural search
space) will only exacerbate the need for data-driven insights to drive efficient experimental progress

» Ultimate prediction of material performance requires systems-level modeling (often depends on
properties beyond current modeling capabilities, at least in high-throughput)
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Thank you for your attention!

Always open to questions/comments/collaborations.

Please email:
mwitman@sandia.gov




