
Sandia National Laboratories is a multimission 
laboratory managed and operated by National 
Technology & Engineering Solutions of Sandia, 
LLC, a wholly owned subsidiary of Honeywell 
International Inc., for the U.S. Department of 

Energy’s National Nuclear Security 
Administration under contract DE-NA0003525.

8/9/2023

M A T E R I A L
S C I E N C E

R E S E A R C H
F O U N D A T I O N

From data-driven modeling to systems level co-
design: progress in materials discovery and 
optimization for hydrogen storage and generation 

Senior Member of the Technical Staff
Energy Nanomaterials Department
Sandia National Laboratories, Livermore, CA

Matthew Witman, Anuj Goyal, Stephan Lany, Pinwen Guan, Anthony 
McDaniel, Kriston Brooks, Claudia Zlotea, Vitalie Stavila, Mark Allendorf, et al.

SAND2023-07704CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do
not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract
DE-NA0003525.



8/9/2023

2 z

Mark Allendorf Stephan Lany Tadashi Ogitsu Claudia Zlotea Martin Sahlberg Sanliang Ling Boyuan Xu

Vitalie Stavila Anuj Goyal Brandon Wood Nayely Pineda-Romero Gustav Ek David Grant Yue Qi

Tony McDaniel Nick Wunder Tae Wook Heo Anis Bouzidi Rebecca Clulow Gavin Walker

Jamie Trindell Max Gallant Matthew Wadge

Josh Sugar Rachel Hurst

Andrea Ambrosini Tom Gennet

Laura Achola Noemi Leick Kriston Brooks

Jeffery Chames Sam Sprik

Robert Horton

Lennie Klebanoff

Sapan Agarwal

Justin Wong Experiments

Reese Jones Machine Learning

Emily Allendorf First principles/DFT

Catalin Spataru Data infrastructure

Norm Bartelt

Pinwen Guan

Acknowledgments, collaborations, and funding

Sandia authors gratefully acknowledge research support from the U.S. Department of 
Energy, Office of Energy Efficiency and Renewable Energy, Hydrogen and Fuel Cell 
Technologies Office through the Hydrogen Storage Materials Advanced Research 

Consortium (HyMARC) and HydroGEN. This work was supported by the Laboratory 
Directed Research and Development (LDRD) program at Sandia National Laboratories.



8/9/2023

3 z

A massive mismatch between energy demand and new renewable capacity 

Better hydrogen energy materials to improve energy security and 
mitigate green house gas emissions will be critical

First Energy Earthshot Aims to 
Slash the Cost of Clean 
Hydrogen by 80% to $1 per 
Kilogram in One Decade

US Energy demand1:
~35% electricity vs. ~65% fuels
1https://www.eia.gov/energyexplained/us-energy-facts/

Current renewable additions2: 
~90% electricity vs. ~10% fuels
2 IEA. Renewables 2022: Analysis and forecast to 2027

Reasonable to expect full 
electrification of …?

Heat-based industrial applications 
(~35% of total demand):

Chemicals?
Steel production?

Cement?
Ammonia synthesis?

Heavy duty vehicles 
(~40% of transportation demand)

(~15% of total demand):
Trucks?

Maritime?
Aviation?

https://www.eia.gov/energyexplained/us-energy-facts/
https://www.eia.gov/energyexplained/us-energy-facts/
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More H2 energy material development needed: but trial-and-error development 
by experiments and/or 1st principles calculation is too costly

Months to synthesize and fully characterize and test a material
Months to predict even just a proxy for performance for a small # of materials  

Application #2: Metal oxides for solar 
thermochemical (STCH) H2 generation
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Application #1: High entropy alloy hydrides for H2 storage
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Outline: A survey of data-driven materials discovery and systems 
modeling tasks in hydrogen energy applications at Sandia

Part I:  
Accelerated screening of oxides for high-temperature clean-energy applications

Ø graph neural networks / defect property predictions / first principles thermodynamics

Part III:
The importance of systems level co-design in evaluating hydrogen storage materials  

Ø Experiments + systems-level modeling

Part II:  
Towards Pareto optimal high entropy alloy hydrides 

Ø statistical learning models / graph neural networks / metal-hydrogen phase diagrams / experiments
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Part I:  
Defect GNN accelerated screening of oxides for high-
temperature clean-energy applications

Witman, Goyal, Ogitsu, McDaniel, Lany. Nature Computational Science, 2023
Witman, et al. In prep

Key concepts:
Ø Graph neural networks to directly predict relaxed vacancy properties from the host structure
Ø High-throughput screening of vacancy formation enthalpies
Ø New oxides for water-splitting, fuel cells, CO2 conversion, and thermochemical energy storage
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Solar thermochemical water splitting (STCH) is one of several 
prominent pathways to green (CO2 emissions free) H2

[1] www.energy.gov/eere/fuelcells/hydrogen-production-thermochemical-water-splitting

Oxidation: To ~ 1000 C

Thermal reduction: Tr ~ 1300 C

Direct 2 step redox cycle (nb. >300 proposed cycles…) [1] Top candidates (BCM-12R) are well-studied & characterized

Time
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~Month to synthesize, characterize, test 1 material

Experiments: Directly measure and evaluate H2 and O2 
production rates

~Month to compute this proxy for handful of materials

http://www.energy.gov/eere/fuelcells/hydrogen-production-thermochemical-water-splitting
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Calculated oxide space:
~200 binary + ternary host structures 

~1500 defect relaxations

Existing oxide space:
~10,000s (up to senary) host structures 

~1Ms defect relaxations
100s years’ work… so more efficient model needed

~1 years’ work
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Defect GNN surrogate models for vacancy formation enthalpy supercell relaxations

Pros:
Ø Generalizable 

(no manual 
feature 
engineering)

Ø Chemistry & 
structure 
agnostic

Ø Improvable 
w/more data

Ø Many orders of 
magnitude 
faster than DFT

Cons:
Ø Highly data 

reliant
Ø Not really 

interpretable
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Benchmark accuracy was met for HT screening

Ø MAE < 500 meV
Ø Still have log-linear 

decrease w/more data
Ø Minutes to train on CPUs

Ø Can predict O and 
non-O vacancies

Additional tests on more complicated materials 
than the training set (quaternaries & solid solutions)

Ba4XMn3O12 
[X = Ce, Nb, Pr]

Sr1−xCexMnO3 
x = {0.25, 0.38}
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High-throughput screening 2,000 oxides (50,000 unique defects) rediscovers 
known water-splitting oxides and identifies new ones (~10 top candidates)

Metric Requirement

Host stability criteria (ranges intersect)

(1) Co-design of host defects and stability for water-splitting (2) Screen the Materials Project for all defects

Needs to be 
excluded!

(3) Identify and filter increasingly promising targets

Ø Filter candidates with increasingly certain performance

Ø Mainly identifies known, synthesizable compounds

Ø ~100 are not AXO3 , An+1XnO3n+1 , Fe3-nMnO4, CeO2 , etc.

Ø Rediscovers complex, known water-splitting materials 
(not in training data) like BCM, SCM, and new ones!
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If more complex defects (interacting vacancies and substitutions) can be predicted in 
high-throughput, full phase diagram predictions can be computed in high-throughput

General, automatic workflow development for modeling 
defect thermodynamics of ionic compounds (P. Guan) Final result for STCH material La0.8Sr0.2MnO3 

Ø Predicts O off-stoichiometry as a f(T, pO2)
Ø Currently, only as fast as DFT
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Outline: A survey of data-driven materials discovery and systems 
modeling tasks in hydrogen energy applications at Sandia
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Part II:  
Towards Pareto optimal high entropy alloys for H2 storage1-7

1Witman, Ling, Grant, Walker, Agarwal, Stavila, Allendorf. J. Phys. Chem. Lett., 11 (1), 2020
2Witman, Ek, Ling, Chames, Agarwal, Wong, Allendorf, Sahlberg, Stavila. Chem. Mater. 30 (11), 2021

3Ek, Nygard, Pavan, Montero, Henry, Sorby, Witman, et al. Inorg. Chem., 60 (2), 2021
4Witman, Stavila. Submitted Patent, 2022

5Pineda-Romero, Witman, Stavila, Zlotea, Intermetallics, 2022
6Witman, et al. J. Mater. Chem A, 11, 2023

7Pineda-Romero, Witman, et al. In prep., 2023

Key concepts:
Ø Compositional ML models can predict critical hydride properties
Ø High-throughput screening and synthesis of destabilized high entropy alloy hydrides
Ø Targeting multi-dimensional Pareto optimal materials for experiments
Ø First principles PCT modeling
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(2) Featurization for compositional ML model

Magpie features1 -> (mean, stddev., etc)  on elemental 
properties and their at.%

1Ward, et al. Comp. Mat. Sci. 2018, 152, 60-69

H2 Metal Hydride

Ø Data manually accumulated from experimental 
literature in HydPARK database (pre “ML days”)

Ø Only 400 / 2500 examples usable for ML training

PCT curves

(3) Gradient boosting regression (GBR) 
model validation and explainability
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AlTiVNbTa & AlTiVCr synthesis

As synth. Post-H2

Validated ML model & 
design rule

No 
elemental 
segregation

Arc melting synthesis + XRD + EDS confirms phase purity 
and PCT curves validate destabilization of HEA hydrides

ML model & design rule confirmed by PCT experiments

290 oC

Successfully targeted 
destabilized hydrides

(increase in Peq)

ML-predicted destabilization validated in a variety of studies

(TiVNb)100-xAlx (TiVNb)100-xCrx Al5(TiVNb)95-xMox TiFe-X
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Synthesis + XRD + EDS confirms phase pure synthesis and 
PCT measurements of Mg-HEA Pareto optimal candidates[1] 

[1] Witman, et al. J. Mater. Chem A, 11, 2023. 

Successful synthesis, characterization, and PCT testing of selected Mg-HEA candidates
Use improved ML models to identify 

Pareto optimal HEAs 
Define objectives / quantities to maximize:
Ø Optimal thermodynamics 
Ø High volumetric capacity 
Ø High gravimetric capacity
Ø - Raw material cost 

Pareto optimal = no 
two properties can be 
simultaneously 
improved.

Pareto optimal front reduces screening 
compositions (~20,000) by 2-3 orders of 

magnitude to reveal top candidates (~100)
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Automated, first-principles modeling of metal-hydrogen equilibria in high-
throughput is needed for a “step change” improvement of metal hydride discovery

Ø Compositional ML models in the previous approach are hampered by limited experimental data
Ø Reasonable accuracy is unlikely on significantly out-of-training distribution materials 
Ø Lacks key properties contained in a phase diagram (estimated reversible capacity, multiple phase transitions, etc.)

Suggest a new 
composition

O(100s) DFT calcs of 
random hydride cfgs

Train GNN 
model to 

predict energy 
from idealized 

lattice structure

O(100s) DFT calcs of 
random alloy cfgs 

(FCC, BCC, HCP, etc)
High-throughput 
sampling and 
first-principles 
thermodynamics 
calcs/sims

H2 phase diagrams (PCT)

Alloy stability predictionsNew/ultimate goal:

Suggest a new 
composition

Compositional 
ML model

~70% accurate phase classifier of 
{“SS”, “SS+IM” or “IM”}

Previous section:

Limited, unbalanced 
experimental dataset
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Calculation of PCT curves (metal-hydrogen phase 
diagram from first principles calculations)

Mean field theory and Boltzmann 
weighted PCT calculation

Comparison of computed vs experimental PCT

Ø Correctly rank plateau 
pressure, plateau widths, 
& H/M saturation 
between alloy systems

Ø Compute phase 
envelope

Ø Additional work needed for thermodynamic approach in more complex hydride and super-hydride material classes

Ø GNN 
surrogate 
models for 
formation 
energies
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Part III:  
Material and system co-design for optimizing nanoscale metal 
hydride-based hydrogen storage1

1 Witman, Brooks, Sprik, Gross, Wood, Heo, Klebanoff, Acosta, Reyes Leick, Gennett, Stavila, Allendorf. et al. In prep., 2023

Key concepts:
Ø Comprehensive experimental characterization of pelletized, nano-scale, complex metal hydrides
Ø Systems design tools for wholistic design performance
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Nanoscaling Li3N in a carbon host enhances a variety of hydrogen storage properties… (V.Stavila et al)

Ø Significant destabilization Ø Great cyclability

Ø Favorable nano-interfaces 
& core-shell structure

But sacrifices other properties… So which one is better for storage?

Bad Bad BadGood Good
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gravimetric and volumetric capacity based on material properties

Most importantly, only nano-Li3N can even complete a simulated drive cycle (K. Brooks)

Determine system requirements to store X kg of H2 

Brooks et al. IJHE, 45 (46), 
2020, 24917-24927

Volumetric systems capacity (VSC) for bulk, nano, and 350 bar

Ø Nano’s VSC is better than that of bulk
Ø Nano’s VSC is approaching that of 350 bar compressed gas
Ø Group is working on a material to compete or better 700 bar
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Concluding remarks
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Ø Data-driven materials discovery efforts take on many different forms depending on data availability, 
problem constraints, computational vs. experimental data, etc.

Ø New/improved materials for hydrogen storage and generation are ripe for discovery across 
various applications and will help accelerate hydrogen deployment

Ø Understanding the efficacy of high entropy materials (massive increase in chemical/structural search 
space) will only exacerbate the need for data-driven insights to drive efficient experimental progress

Ø Ultimate prediction of material performance requires systems-level modeling (often depends on 
properties beyond current modeling capabilities, at least in high-throughput)
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Thank you for your attention! 

Always open to questions/comments/collaborations.

Please email:
mwitman@sandia.gov


