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Laser Powder Bed Fusion Process

Yb-fiber laser Focal lenses Laser beam

Recoater roller or blade

Rapid solidification process (>10° K/s)

. D]iscre;ce control of process parameters at every point (10’s
of um

* Too slow for statistical testing of parts and optimizing
process parameters

* Range of models:
* Complex high-fidelity multi-physics codes
* Reduced order physics-based models
* Predictive data-driven models

Growing literature on reduced-order and data driven LPBF
microstructure surrogate models S

* Fast models needed to better facilitate process % & \,
design/optimization
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Laser Powder Bed Fusion Process.

1. Dep ressnon ‘. 270
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Rapid solidification process (>10° K/s)
+ Discrete control of process parameters at every point (10’s 502

of um) D
* Too slow for statistical testing of parts and optimizing A
process parameters
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* Complex high-fidelity multi-physics codes /"\
* Reduced order physics-based models ']
* Predictive data-driven models \.

Growing literature on reduced-order and data driven LPBF
microstructure surrogate models :

* Fast models needed to better facilitate process
design/optimization
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~ast Process-Microstructure Predictions
Needed for Process Optimization

* Process optimization and experimentation is expensive
* Goal is to create a model fast enough for process parameter

optimization
Microstructure
Simulation
- Optimization
Process Thermal Model Microstructure P .
Parameters Surrogate Algorithm
\ast Process-Microstructure Model/




-ramework for Creating a Fast Microstructure
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Microstructure Simulations With SPPARKS

* SPPARKS — Stochastic Parallel PARticle Kinetic Simulator (Plimpton et al 2009)
e Lattice based Monte Carlo microstructure simulation

* Thermal AM module developed by Rodgers et al (2020) Simulation Process Parameters:
 Uses finite difference thermal model 100W, 1m/s, 82um Gaussian Beam
1750pumx1250pumx290um

* Models nucleation in mushy zone
* Uses KMC for solid region
e 304/316 Stainless Steel y
* Full microstructure simulations too slow g8 =
for optimization '

* Use SPPARKS to generate data for
surrogate model training

5um resolution



Approach for a Microstructure Surrogate
Model

* Want to predict microstructure statistics from thermal model outputs

* Inspired by computer vision models
* Thermal data is structured like image data
* Microstructure distributions are probability vectors
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Approach for a Microstructure Surrogate
Model

* Want to predict microstructure statistics from thermal model outputs
* Inspired by computer vision models

* Produce pointwise microstructure
statistics for training by running an
ensemble of SPPARKS simulations

* Use moving window on
input to make local
predictions
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Approach for a Microstructure Surrogate
Model

* Want to predict microstructure statistics from thermal model outputs
* Inspired by computer vision models

* Produce pointwise microstructure
statistics for training by running an

ensemble of SPPARKS simulations <10
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Grain Diameter

* Use moving window on
input to make local
predictions
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* Multiple thermal
characteristic fields analogous to image
color channels
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9 Thermal Characteristics Selected as Inputs
to Microstructure Model Max Reheat Temperature

* Max reheat temperature post 1600

solidification
 Melt Count
* Cooling rate

* 3 Temperature
gradient components

* 3 Cooling times

* Time above
undercooling

* Time above solidus
* Time at elevated temperature
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9 Thermal Characteristics Selected as Inputs

to Microstructure Model Melt Count

* Max reheat temperature post
solidification

* Melt Count
* Cooling rate

* 3 Temperature
gradient components

* 3 Cooling times

* Time above
undercooling

e Time above solidus
* Time at elevated temperature
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9 Thermal Characteristics Selected as Inputs
to Microstructure Model Cooling Rate

* Max reheat temperature post
solidification

* Melt Count
* Cooling rate

* 3 Temperature
gradient components

* 3 Cooling times

* Time above
undercooling

* Time above solidus
* Time at elevated temperature

Cooling Rate [K/s]
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9 Thermal Characteristics Selected as Inputs
to Microstructure Model

* Max reheat temperature post Temperature Gradients
S O | I d Ifl Ca t I O n x-Component y-Component z-Component

* Melt Count .
* Cooling rate

* 3 Temperature
gradient components

* 3 Cooling times

* Time above
undercooling

* Time above solidus
* Time at elevated temperature

100

=]

=50

=100

-150

13

= B W = Lh oh e fu]
o o f=] (=] (=] o [=] o

=3

Gradient [K/um]



9 Thermal Characteristics Selected as Inputs
to Microstructure Model

° MaX reheat temperatu re pOSt Cooling Times - Time Spent Above:

SO | I d Ifl Cat Ion Nucleation Temperature Solidus Temperature Annealing Temperature

* Melt Count N
* Cooling rate

* 3 Temperature
gradient components

* 3 Cooling times

* Time above
undercooling

* Time above solidus
* Time at elevated temperature
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Machine Learning Model Overview

* Inputs are 15x15x15 cube with 9 channels

* ConvNext V1 architecture (Facebook 2022)
* Convolutional Neural network updated with recent techniques
* 20% dropout rate

* Modified last layer
* Softplus activation function to enforce positive values
* Normalized outputs sum to one

* Mean Squared Error (MSE) as loss function

e 1 2
MSE EZ (x; = ¥:)



Resulting Surrogate Model Has Accuracy
Equivalent To Running a Much Larger Ensemble

Comparison of Predicted and "True" Grain Size Probabilities

* Model learns to average (30-32um diameter)
out the stochastic (116 SPPARICS rums) e oot Modlel)
. o« e 0.25
influence of the training

data

e Accuracy of the model is at
the limits of what we can
measure
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Model size was optimized to improve
performance

* Initial model had minimal changes from image classification model
and had not been optimized for this task

* Performed multi-objective hyperparameter optimization of the model
using gaussian process Bayesian optimization
* Maximize model speed
* Minimize model error
* Reduced the number of model weights to 5.6M weights from 38.8M
weights
* Reduced inference time by 75%



Resulting Surrogate Model is Much Faster
Than Running a New Ensemble

* Inference for 50x40um layer 0.5mm square takes 9 minutes on an
A100

e Added 3 hours 31 minutes for thermal simulation

* Equivalent SPPARKS run takes 22 hours on 64 Cores (AMD EPYC 7532)

* Need 100+ run ensemble to get same information as surrogate
e Surrogate results comparable to 1000+ run ensemble

* Single machine speedup: 600x



Analyzing Importance of Thermal
Characteristics

* Thermal characteristics selected were educated guesses, actual
impact was unknown

* A significant portion (81%) of the thermal model runtime is spent
calculating these characteristics — Reducing the number of
characteristics could create significant improvements in process-
microstructure model speed

* Taking the Jacobian of the model predictions with respect to the
inputs can tell us the influence of each value in the input on the
prediction

* Comparing the influence across many predictions tells us if any data is
underutilized



Analyzing Importance of Thermal
Characteristics

* All characteristics have large regions [
of low importance

ling Time

nnea
— 02976

— 02234
0.1493

* All characteristics place more
importance on center

* No characteristic is obviously less
useful

* We will keep them all for now




Analyzing Importance of Thermal
Characteristics

Cooling Rate

* All characteristics have large regions
of low importance o

0.0310
—0.02336
0.01570

* All characteristics place more
Importance on center

* No characteristic is obviously less
useful

* We will keep them all for now




Analyzing Importance of Thermal
Characteristics

Melt Count

* All characteristics have large regions [FEES
of low importance

* All characteristics place more

001292

Importance on center

* No characteristic is obviously less
useful

* We will keep them all for now




Analyzing Importance of Thermal
Characteristics

Max Reheat Temperature

* All characteristics have large regions [
of low importance

—0.1840
—0.1381

0.09226

* All characteristics place more
Importance on center

* No characteristic is obviously less
useful

* We will keep them all for now




Analyzing Importance of Thermal
Characteristics

Nucleation Time

* All characteristics have large regions
of low importance

* All characteristics place more
Importance on center

* No characteristic is obviously less
useful

* We will keep them all for now




Analyzing Importance of Thermal
Characteristics

Solidus Time

* All characteristics have large regions
of low importance

* All characteristics place more
Importance on center

* No characteristic is obviously less
useful

* We will keep them all for now




Analyzing Importance of Thermal
Characteristics

Annealing Time

* All characteristics have large regions e
of low importance

nnea

— 02976
— 02234
0.1493

* All characteristics place more
Importance on center

* No characteristic is obviously less
useful

* We will keep them all for now




Analyzing Importance of Thermal
Characteristics

X Gradient

* All characteristics have large regions [FEess
of low importance

—0.056453
—0.04104

0.02785

* All characteristics place more
Importance on center

* No characteristic is obviously less
useful

* We will keep them all for now




Analyzing Importance of Thermal
Characteristics

Y Gradient

* All characteristics have large regions [FEess
of low importance

—0.04155
—0.03122
0.02090

* All characteristics place more
Importance on center

* No characteristic is obviously less
useful

* We will keep them all for now




Analyzing Importance of Thermal
Characteristics

Z Gradient

* All characteristics have large regions [geesy
of low importance

—0.02352
—0.01773

0.01194

* All characteristics place more
Importance on center

* No characteristic is obviously less
useful

* We will keep them all for now




Now that we have a fast model, what is
necessary for part scale predictions?

* Problem 1:
* This model is still not fast enough for centimeter scale parts
* What is the minimum representative volume element that is statistically
meaningful?

* Problem 2:
* We can’t guarantee accuracy outside of the training data

* Means we need training data from large complex simulations, but this is
expensive

Both require ensembles of expensive simulations to solve

30



Do We Need Large Ensembles?

e What if we can use a smaller ensemble to train and still make
accurate predictions?

* We know that the model can make predictions more accurate than
training data

* Significantly faster to tune a model with new training data than to run
100+ SPPARKS sims with large domains

e Use new model to do statistical analysis of RVE

Test this theory by simulating influence of smaller ensembles
on training via sampling



Simulating Varied Ensemble Sizes During
Model Training

* Model trains to ideal accuracy

with only 10 Samp|es per data Model Accuracy vs Number of Samples Taken
p0|nt 150p @
* Indicates we can get acceptable w40y

. . . Around 10 Samples
model accuracy by training with

Loss [MSE]
g

small ensembles : 7Y
1200 o Max Test Data |deal Accuracy
* Caveat: Base data is a large Accuracy At 100 Range
. 1104 % 0% @O © o © o 1@ o 0
ensemble meaning sampled data
will be less correlated than a 100u o

Sma” ensemble Number of Samples



Applying This Method Make Predictions
About Large Simulation Domains

Comparison of Predicted Grain Size Probabilities

1 11 1 Before And After Training (72-74um diameter
* Significant improvement o (7274 )
i n p re d ict i O n S W h e n Prediction Before Additional Training DaF .'LS_?-PA S.'iT_tJltion . Prediction After Additional Training

trained on a small
ensemble when
process parameters far
outside other training
data

* Still needs validation
* Significant compute
savings

* 400 node-hour sims + 4
hour training

* 4000 node-hour sims
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Applying This Method Make Predictions
About Large Simulation Domains

Comparison of Predicted Grain Size Probabilities

°® Slgn Iflca nt |m provement Before And After Training (72-74um diameter)
in predlctlons When Prediction Before Additional Training Data From A 10 Run Ensemble Prediction After Additional Training 0s0
trained on a small
ensemble when
process parameters far
outside other training
data

* Still needs validation

* Significant compute
savings

* 400 node-hour sims + 4
hour training

* 4000 node-hour sims

34



Applying This Method Make Predictions
About Large Simulation Domains

Comparison of Predicted Grain Size Probabilities

1 1fi 1 Before And After Traini 104+ di t
* Slgnlflca nt iImprovement efore And After Training ( um diameter)
i n p red ictio n S W h e n Prediction Before Additional Training D:aéi:‘rc-)m _f }&RuﬂﬁE?semble Predicti-o-q Af_ifr I_\‘d'(.:iitio‘nal Training
- _-\l‘_z Ve A | .I-";' = .

trained on a small
ensemble when
process parameters far
outside other training
data

* Still needs validation
* Significant compute
savings

* 400 node-hour sims + 4
hour training

* 4000 node-hour sims
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Applying This Method to RVE Analysis

* Work is ongoing

* Next steps are:
* Validating the small ensemble method with small ensembles
* Using the model for a statistical analysis of the minimum RVE



Conclusions

* The LPBF microstructure surrogate model is much faster than running
a statistically equivalent SPPARKS ensemble

* Hyperparameter tuning of models is important for maximizing
surrogate model speed

* The 9 thermal characteristics chosen as inputs to the surrogate model
are reasonable choices

* We can probably use much smaller ensembles for model training

* We can probably use small ensembles for statistical analysis of the
minimum RVE by leveraging the surrogate model



Integrate with slide 17

Model Prediction Accuracy

Comparison of Predicted and Target Grain Size Probabilities

. 30-32um diameter
* Model obtains ( H )
. Target Probabilities Predicted Probabilities
Maximum (144 SPPARKS runs) (ConvNet Model)

0.25 0.25

measurable accuracy

0.20 0.20

* Resulting probability
fields resemble those
of the training data

0.15 0.15

* Results shown are
from top surface of a
1-layer raster scan
path

0.10 0.10

0.05 0.05

0.00 0.00
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Data Regularization for Surrogate Model
Training

* Limits overfitting of model

* Input data is a cube — 48 possible orientations

* Augmentation of target

* 50% chance that the target microstructure will be re-sampled

* Add uniform random noise to target
* Too small to influence non-zero values
* Keep model from overfitting zero-values



Statistical Experiments to Understand the

Grain Size Distribution Ground Truth

. _ - Run 1000+
* MSE not an intuitive number i simulations o
* How good is “Good Enough”? ?bttahm ground
ru
* Perform Monte Carlo experiments to
gain a better understanding R L —
. . . . . . O NSRS Y r%"»?“““ ISP EFITEFLNY
 Start with grain size distributions from a large T e Zeo%%af)oo
microstructure ensemble (ground truth) Take N samples ,OUY, UV
twice to get 2
* Sample the ground truth to get many smaller new distributions
datasets
* Calculate the distances between the
sampled datasets and:
 Each other (relative) — model vs training data f”'
* The ground truth (reference) — model vs “Truth” : | Calculate
i MSE 3x
* Only tells us what a good loss is I I
() oy I llq- ——————
CES N rS S l?ﬁ.“?a::"'»s“.{':«%?f?-?%“ FErEESS T 40
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Statistical Experiments to Understand the
Loss Magnitude

 Reference and relative distances similar

* Want model to be at least as good as 100 samples — Analogous to

running a new ensemble of 100

 Smaller distance from “True” microstructure more important

Mean Squared Error Between Sampled Data as
Number of Samples Changes (Relative)

0.00035
0.00030

0.00025

0.00010
0.00005

0.00000

Mean Squared Error vs 'Truth' as Number of Samples Changes

(Reference)

Goal vs “True” Microstructure

100.0

1560.0

T

2000.0

250.0 500.0 1000.0

Number of samples

0.00040
0.00035
0.00030
0.00025

@

=

S 0.00020

®

8 0.00015
0.00010
0.00005

0.00000

Goal vs Training Microstructure

N

100.0

160.0

=

——

1000.0

250.0 500.0 2000.0

Number of samples
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Averaging

-ffect of the Model is Equivalent to

Running a Much Larger Ensemble

Difference Between Surrogate Predicticted and

e Stochastic effect of Simulated Probabilities (30-32um diameter)
ensemb|e decrease as Absolute Difference vs Training MS__ 018 Absolute Difference vs "True" MS
ensemble size e
Increases

- 0.14

* Model prediction is 012
closer to larger .
ensembles

0.08
0.06
0.04
0.02

0.00

- 0.18

- 0.16

- 0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00



Averaging

-ffect of the Model is Equivalent to

Running a Much Larger Ensemble

e Stochastic effect of
ensemble decrease as
ensemble size

0.00035

Increases 0.00030

. . . 0.00025

* Model prediction is 8 00020
closer to larger 2 0.00015
ensembles 0.00010
0.00005

* Model obtains a MSE
of 0.00002 on “True”
data

0.00000

Mean Squared Error vs "Truth' as Number of Samples Changes

(Reference)

Prediction is about this close

100.0

to “True” Microstructure

-\ _

250.0 500.0
Number of samples

150.0 1000.0 2000.0
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“Annealing Temperature”

* Equation for rate of growth has no clear
cutoff point (Solidus used in SPPARKS)

Q r = average grain diameter
RT : n, Ky, Q = Growth parameters

" = Kgexp (—

* Can approximate “knee” with average

-15432.3/x 2 6308 lD—‘S‘

S | 0O pe 0.315025 ¢

e Growth rate at “knee” is 1/10t" of

maximum

1723

X = —-461877.

X = 1321.26

X = 446442,

plot

y = 2.04133

107" E}(p(—

500

128312 ]
8.3145 x

1500

0

1723
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