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Laser Powder Bed Fusion Process

Siemens

Özel, T., et al., JMSE, 2019 

• Rapid solidification process (>105 K/s) 
• Discrete control of process parameters at every point (10’s 

of μm)
• Too slow for statistical testing of parts and optimizing 

process parameters
• Range of models:

• Complex high-fidelity multi-physics codes
• Reduced order physics-based models
• Predictive data-driven models

• Growing literature on reduced-order and data driven LPBF 
microstructure surrogate models
• Fast models needed to better facilitate process 

design/optimization
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Fast Process-Microstructure Predictions 
Needed for Process Optimization
• Process optimization and experimentation is expensive
• Goal is to create a model fast enough for process parameter 

optimization
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Microstructure Simulations With SPPARKS

• SPPARKS – Stochastic Parallel PARticle Kinetic Simulator (Plimpton et al 2009)

• Lattice based Monte Carlo microstructure simulation
• Thermal AM module developed by Rodgers et al (2020)

• Uses finite difference thermal model
• Models nucleation in mushy zone
• Uses KMC for solid region
• 304/316 Stainless Steel

• Full microstructure simulations too slow 
for optimization
• Use SPPARKS to generate data for 

surrogate model training

Simulation Process Parameters: 
100W, 1m/s, 82μm Gaussian Beam 

1750μmx1250μmx290μm
5μm resolution
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Approach for a Microstructure Surrogate 
Model
• Want to predict microstructure statistics from thermal model outputs
• Inspired by computer vision models
• Thermal data is structured like image data
• Microstructure distributions are probability vectors
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• Want to predict microstructure statistics from thermal model outputs
• Inspired by computer vision models
• Produce pointwise microstructure 

statistics for training by running an 
ensemble of SPPARKS simulations 
• Use moving window on 

input to make local 
predictions

Approach for a Microstructure Surrogate 
Model
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• Want to predict microstructure statistics from thermal model outputs
• Inspired by computer vision models
• Produce pointwise microstructure 

statistics for training by running an 
ensemble of SPPARKS simulations 
• Use moving window on 

input to make local 
predictions
• Multiple thermal 

characteristic fields analogous to image 
color channels

Approach for a Microstructure Surrogate 
Model
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9 Thermal Characteristics Selected as Inputs 
to Microstructure Model
• Max reheat temperature post 

solidification
• Melt Count
• Cooling rate
• 3 Temperature 

gradient components
• 3 Cooling times
• Time above 

undercooling
• Time above solidus
• Time at elevated temperature
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Machine Learning Model Overview

• Inputs are 15x15x15 cube with 9 channels
• ConvNext V1 architecture (Facebook 2022)
• Convolutional Neural network updated with recent techniques
• 20% dropout rate

• Modified last layer
• Softplus activation function to enforce positive values
• Normalized outputs sum to one

• Mean Squared Error (MSE) as loss function
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Resulting Surrogate Model Has Accuracy 
Equivalent To Running a Much Larger Ensemble
• Model learns to average 

out the stochastic 
influence of the training 
data 
• Accuracy of the model is at 

the limits of what we can 
measure
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Model size was optimized to improve 
performance
• Initial model had minimal changes from image classification model 

and had not been optimized for this task
• Performed multi-objective hyperparameter optimization of the model 

using gaussian process Bayesian optimization
• Maximize model speed
• Minimize model error

• Reduced the number of model weights to 5.6M weights from 38.8M 
weights 
• Reduced inference time by 75%
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Resulting Surrogate Model is Much Faster 
Than Running a New Ensemble
• Inference for 50x40μm layer 0.5mm square takes 9 minutes on an 

A100
• Added 3 hours 31 minutes for thermal simulation

• Equivalent SPPARKS run takes 22 hours on 64 Cores (AMD EPYC 7532)
• Need 100+ run ensemble to get same information as surrogate 
• Surrogate results comparable to 1000+ run ensemble

• Single machine speedup: 600x
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Analyzing Importance of Thermal 
Characteristics
• Thermal characteristics selected were educated guesses, actual 

impact was unknown
• A significant portion (81%) of the thermal model runtime is spent 

calculating these characteristics – Reducing the number of 
characteristics could create significant improvements in process-
microstructure model speed
• Taking the Jacobian of the model predictions with respect to the 

inputs can tell us the influence of each value in the input on the 
prediction
• Comparing the influence across many predictions tells us if any data is 

underutilized
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Analyzing Importance of Thermal 
Characteristics
• All characteristics have large regions 

of low importance
• All characteristics place more 

importance on center
• No characteristic is obviously less 

useful
• We will keep them all for now
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Analyzing Importance of Thermal 
Characteristics
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Now that we have a fast model, what is 
necessary for part scale predictions?
• Problem 1:
• This model is still not fast enough for centimeter scale parts
• What is the minimum representative volume element that is statistically 

meaningful?

• Problem 2:
• We can’t guarantee accuracy outside of the training data
• Means we need training data from large complex simulations, but this is 

expensive

Both require ensembles of expensive simulations to solve
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Do We Need Large Ensembles?

• What if we can use a smaller ensemble to train and still make 
accurate predictions?
• We know that the model can make predictions more accurate than 

training data
• Significantly faster to tune a model with new training data than to run 

100+ SPPARKS sims with large domains
• Use new model to do statistical analysis of RVE
Test this theory by simulating influence of smaller ensembles 

on training via sampling
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Simulating Varied Ensemble Sizes During 
Model Training
• Model trains to ideal accuracy 

with only 10 samples per data 
point
• Indicates we can get acceptable 

model accuracy by training with 
small ensembles
• Caveat: Base data is a large 

ensemble meaning sampled data 
will be less correlated than a 
small ensemble

32
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Applying This Method Make Predictions 
About Large Simulation Domains
• Significant improvement 

in predictions when 
trained on a small 
ensemble when 
process parameters far 
outside other training 
data 
• Still needs validation
• Significant compute 

savings
• 400 node-hour sims + 4 

hour training
• 4000 node-hour sims 

33

Data From A SPPARKS Simulation
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Applying This Method to RVE Analysis

• Work is ongoing
• Next steps are:
• Validating the small ensemble method with small ensembles
• Using the model for a statistical analysis of the minimum RVE
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Conclusions

• The LPBF microstructure surrogate model is much faster than running 
a statistically equivalent SPPARKS ensemble
• Hyperparameter tuning of models is important for maximizing 

surrogate model speed
• The 9 thermal characteristics chosen as inputs to the surrogate model 

are reasonable choices
• We can probably use much smaller ensembles for model training
• We can probably use small ensembles for statistical analysis of the 

minimum RVE by leveraging the surrogate model
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Model Prediction Accuracy

• Model obtains 
maximum 
measurable accuracy
• Resulting probability 

fields resemble those 
of the training data
• Results shown are 

from top surface of a 
1-layer raster scan 
path

38
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Data Regularization for Surrogate Model 
Training
• Limits overfitting of model
• Input data is a cube – 48 possible orientations
• Augmentation of target 
• 50% chance that the target microstructure will be re-sampled 
• Add uniform random noise to target

• Too small to influence non-zero values
• Keep model from overfitting zero-values
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Statistical Experiments to Understand the 
Loss Magnitude
• MSE not an intuitive number

• How good is “Good Enough”?
• Perform Monte Carlo experiments to 

gain a better understanding 
• Start with grain size distributions from a large 

microstructure ensemble (ground truth)
• Sample the ground truth to get many smaller 

datasets
• Calculate the distances between the 

sampled datasets and:
• Each other (relative) – model vs training data
• The ground truth (reference) – model vs “Truth”

• Only tells us what a good loss is
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Take N samples 
twice to get 2 
new distributions

Calculate 
MSE 3x

Repeat 
4,000,000x

Run 1000+ 
simulations to 
obtain ground 
truth



Statistical Experiments to Understand the 
Loss Magnitude
• Reference and relative distances similar
• Want model to be at least as good as 100 samples – Analogous to 

running a new ensemble of 100
• Smaller distance from “True” microstructure more important

41
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Averaging Effect of the Model is Equivalent to 
Running a Much Larger Ensemble
• Stochastic effect of 

ensemble decrease as 
ensemble size 
increases
• Model prediction is 

closer to larger 
ensembles
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Averaging Effect of the Model is Equivalent to 
Running a Much Larger Ensemble
• Stochastic effect of 

ensemble decrease as 
ensemble size 
increases
• Model prediction is 

closer to larger 
ensembles
• Model obtains a MSE 

of 0.00002 on “True” 
data

43

Prediction is about this close 
to “True” Microstructure



“Annealing Temperature”

• Equation for rate of growth has no clear 
cutoff point (Solidus used in SPPARKS)

•  Can approximate “knee” with average 
slope

• Growth rate at “knee” is 1/10th of 
maximum

44


