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CIVIF Ine

Empire is a massively parallel, performance portable, plasma simulation code. I

Electromagnetics: Unstructured, compatible FETD I
Plasmas: PIC+DSMC (production), multi fluid-kinetic hybrid (research)

M. Bettencourt, et al. "EMPIRE-PIC: A Performance Portable Unstructured Particle-In-Cell Code,” I
Communications in Computational Physics, 2021. I



Discretization
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Temporal discretization for fields is a DIRK scheme
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Lagrangian Kinematics for each particle

Accelerate uses the Boris Push (semi-implicit vxB) i , ,
We use a Verlet method to tie it all together: ¢t Provides Gauss
f (v, ) dt :f W.4s Law Involution
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Neglecting special relativistic details which are
complicated but not conceptually different

Villasenor and Buneman



+ 1 Why PIC for plasmas

Phase space is 6 -dimensional - its easier
to put degrees of freedom only where
you need them with particles than it is
with continuum representation.

It can agree well with experiments, even
at moderate resolution.

Plasma boundary conditions and
chemistry are conceptually simple with a
particle representation.
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PIC currents could be very “rough”

*  We should anticipate that solutions may not be smooth particularly if we are under
resolving the particles.

First order accuracy in space

*  Problems which are swept under the rug on a super-convergent cube mesh may be
more obvious on unstructured tets at low resolutions.

Complex Geometry

* Primary motivation for simplex meshes. We typically mesh negative space and our
geometries can have every sort pathology, e.g. reentrant corners.

I
s | Conceptual Concerns m
I

| wouldn’t count on numerical solutions being “nice” in the way
typically assumed in physical derivations particularly at low resolution.



6 |An Example Problem:

You have a box containing a plasma and shielded cabling.
Customer is concerned with how much energy could couple
from the plasma to the cabling.

Simulate the plasma and characterize the energy coupled to
the cable.

Assume we can model the plasma with adequate fidelity.

We are going to begin this problem trying the characterize
current and charge on the surface of the cable.

Numerical Method Question:
Can | derive a surface current on a boundary
from a numerical solution of Maxwell’s equations?



Derived variables should be

« Berobust and simple to use
* It should work even when solutions “are not nice”

« Have a theory of convergence
« Hard for EM-PIC so we typically relax to say “for EM only”

My qualitative design philosophy:
Methods that “fit together nicely” have a tendency to work.

|
7 1 Design Principals m
|



s | How do we compute the current on the surface of the cable?

The E&M Method

or

PEC and D = €E and 0I' — O(cable) = D — 0

/(‘gf{—l—.])-da— H - dl
r T

If the loop is close enough to the boundary the HdL will recover
the total current flowing along the surface of the cable.

Pro Con
* Analysts think this way « Convergence is not obvious.
- Validation evidence « Can only give total current (not current density)

« Can't generalize to an interface



o | How do we compute the current on the surface of the cable?

A Projection Method N

H x n on the surface is the surface current
B - n is the degree of freedom we current we have on the surface

P4 P A (A3)
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4% PyAl(Ag) = 4
e

Mass lumping the projection operator recovers a nodal :
reconstruction operator on a structured grid which is ("P", tetrahedron, 1)
popular in structured PIC because it cancels self force. s
Pros cons I
» Recovers the right magnetic field . H(div) N H(cur]) 7( H! I
components on the surface of interest Not clear that this will converge in

« Easy to generalize to internal interfaces general I
* Noise concerns I



Dirichlet-to-Neumann Map

Consider a general Dirichlet condition
It's a linear constraint on the electric field - consider Saddle-Point system

I
0 | How do we compute the current on the surface of the cable? @!

(E,B,Hj) € H(curl) x H(div) x H™/%(curl, 89Q) :

(f e%E W4+J -0 —p 'B-curl & dv— (7, (¥),Hy)s =0, Using notions of Buffa (2002)
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(7 (E),¥)s = (K, ¥)s Boundary Duality Pairing
V(¥, ®,4) € H(curl) x H(div) x H™/2(curl, 69). (-, Yo : H71/2(div, 0Q) x H™Y2(curl, 89Q) — R I
Surface currents relax the Dirichlet constraint |
How do we solve this system? I



1 1 Dirichlet-to-Neumann Map: Null-Space Method

v- has a well characterized null-space Hy(curl)
Apply the null-space method!
E = Ey + Ey,Eq € Hy(curl), E5 € H(curl) N (Hy(curl))* ‘

Es € H(curl) N (Hy(curl))L : (v, (Eg), ¥)s = (K, 9)s,Vip € H™1/2(curl, 69)

Solve for the volumetric response:
(Eo,B) € Ho(curl) x H(div) :

Solve for the lift; |

'/ €5 (Es+Ep) ¥ +J-¥—p'B-curl ¥ dv=0,
{
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9)
V(¥,®,1) € Hy(curl) x H(div).
Perform Lagrange multiplier recovery: I
H,; € H Y2(curl, 09) : I

(v-(¥),Hy)g = / e%E W 4+J-¥— B curl® dV,
Q

VW € H(curl) N (Hy(curl))* I



- We don't have to change anything about our time-stepping or discretization of space
for solving for E and B.

» Each timestep we recover the surface current:

|
12 1 Dirichlet-to-Neumann Map: Discretization m

Given (E,B,J) :
Haxnega:fHaxn-‘I'da=—/eg"tE-\I'—I—J-\I'—u_lB-curl\I'dV, YV € &y
Q

€y is the set of edge functions which have non-zero degrees of freedom only on the boundary. |
Pros cons
» Derived from the variational theory « We haven't formally proven convergence I
« Recovers the surface current density just devised something that looks plausible. I
« Easy to generalize to non-homogeneous or + Isit really appropriate to discretize

more general BCs and internal interfaces the surface current density on

boundary edges? I



13 I Application: Time Domain Near-to-Far-Field Transformation
DtN used method for computing Hxn

1504 —— & (exact far field)
N. Roberds (SNL) formulated NtF in time domain. -4 7" (benchmark solution)
. . . 1001 ---- 7 (computed)
His request: Surface fields on an interface
— 501
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Nodal and D2N comparable but the test problem has a smooth solution I



4 | Closure

Creating derived variables which “stay inside the guardrails” of convergence theory is
an interesting problem with real applications and a multi-disciplinary team.

* You have to translate questions and arguments between different disciplinary languages.

Carrying theory over the finish line is a challenge in application setting.
« Opportunity for academic collaborations.

NtF test problem DtN and nodal projection performing comparably - exact solution
was infinitely smooth and domain was a cube!

* Creating verification problems which highlight real pathologies is hard.

Future work
«  What to do about surface charge (D - n )
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