
SANDIA REPORT
SAND2023-08255
Printed August 2023

CI/CD Pipeline and DevSecOps
Integration for Security and Load
Testing
Dominic, S, Donofrio. Melissa, L, Fusco. Hongrong, Zhong.

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico
87185 and Livermore,
California 94550

SAND2023-08255

2

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of
their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal
liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: http://www.osti.gov/scitech

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: https://classic.ntis.gov/help/order-methods/

mailto:reports@osti.gov
http://www.osti.gov/scitech
mailto:orders@ntis.gov
https://classic.ntis.gov/help/order-methods/

3

Table of Contents
Acronyms and Terms ..5
1. Project management information ..7

1.1. Introduction ...7
1.2. Problem Statement..7
1.3. Governance Board ..8
1.4. Project Milestones...8
1.5. Research Methods and Procedures ..8
1.6. Team Members and Responsibilities ..8
1.7. Project Team Meeting Schedule ..9
1.8. Project Management Methodology..9
1.9. Project Assumptions ..9
1.10.Team Objectives..10
1.11.Team Deliverables...10

2. Research ..11
2.1. Neoload Web..11
2.2. Deployment Options ...11

2.2.1. Azure Kubernetes Service...12
2.2.2. Amazon Web Services (AWS) EKS..13
2.2.3. Google Cloud Platform (GCP) GKE...15
2.2.4. Red Hat OpenShift ..17

2.3. Burp Suite Professional vs Burp Suite Enterprise.......................................18
2.4. Invicti ..20
2.5. OWASP ZAP...21
2.6. Industry Standards for Pipelines ...22

2.6.1. List of Tools for CI/CD Pipelines..23
2.6.2. Microsoft Azure Standards...23
2.6.3. Jenkins..26
2.6.4. GitLab..27

2.7. Industry Standards for Load and Stress Testing ...29
2.7.1. Tools for Load and Stress Testing ..31

2.8. Industry Standards for Security Testing...31
2.8.1. Introduction ..31
2.8.2. General Security Testing ...32
2.8.3. Typical Findings ...33
2.8.4. Microsoft Security Testing Standards ...34
2.8.5. Microsoft Security Testing Tools ..36
2.8.6. PortSwigger Setup Recommendations..37
2.8.7. OWASP ASVS Review ...39

2.9. Industry Standards for DevSecOps...40
2.9.1. Introduction ..40
2.9.2. Microsoft Secure DevOps Standards..40
2.9.3. DoD DevSecOps standard...44
2.9.4. NIST for Secure DevSecOps...45

3. Final Recommendations ..47

4

3.1. Picking the Right Infrastructure...47
3.2. Implementing Neoload Web with Azure and GitLab47
3.3. Integrating Azure and Gitlab with Burp Suite...48
3.4. Deploying Zap for Automated Security Testing ...49
3.5. Standardizations for Security Testing...50

3.5.1. Follow OWASP Standards using Threat Modeling and Risk Assessments..............50
3.5.2. Integrate Early and Often Security Testing ...50
3.5.3. Increase Collaboration Between Software Developers and Security

Professionals ...50
3.5.4. Use the Microsoft Security Code Analysis Toolset ..51

3.6. Standardizations for Pipelines...51
3.6.1. Implementation of Immutable Infrastructure ...51
3.6.2. Compliance with Standard Practices and Procedures ..51
3.6.3. Rigorous Testing and Monitoring ...51
3.6.4. Incorporation of Security Practices...52
3.6.5. Development of a Disaster Recovery Plan ..52

3.7. Standardizations for DevSecOps...52
3.7.1. Adoption of Infrastructure as Code..52
3.7.2. Frequent Iterative Updates Over Massive Overhauls ..52
3.7.3. Adopt Monitoring and Logging Practices..53
3.7.4. Security-First Approach ..53
3.7.5. Promotion of a Collaborative Culture ..53

4. References...54
Distribution ...63

5

ACRONYMS AND TERMS
Acronym/Term Definition

AKS Azure Kubernetes Service

API Application Programming Interface

ASA The Attack Surface Analyzer

ASVS Application Security Verification Standard

AWS Amazon Web Service

CI/CD pipeline Continuous Integration and Continuous Deployment Pipeline

CIS Center for Internet Security

CLI Command Line Interface

CPU Central Processing Unit

CSF Cybersecurity Framework

DAST Dynamic Application Security Testing

DevOps Development and Operations

DevSecOps Development, Security, and Operations

EC2 Elastic Compute Cloud

EKS Elastic Kubernetes Service

EMTS Enterprise & Mission Testing Services

GKE Google Kubernetes Engine

GUI Graphical User Interface

HTTP Hyper Text Transfer Protocol

IaC Infrastructure as Code

IAM Identity and Access Management

MiTM Man-in-The-Middle

MSA Microsoft Security Assessment

MSAT Microsoft Security Assessment Tool

MSCA Microsoft Security Code Analysis

NIST National Institute of Standards and Technology

NMCCoE New Mexico Cybersecurity Center of Excellence

OCI OpenShift Container Platform

OS Operating System

OWASP Open Web Application Security Project

RBAC Role-Based Access Control

SAST Static Application Security Testing

SDL Secure Development Lifecycle

SDLC Software Development Lifecycle

6

Acronym/Term Definition
SNL Sandia National Laboratories

SOAP Simple Object Access Protocol

SSDF Secure Software Development Framework

Tracer FIRE Forensic and Incident Response Exercise

UI User Interface

VM Virtual Machine

VPC Virtual Private Cloud

YAML Yet Another Markup Language

ZAP Zed Attack Proxy

7

1. PROJECT MANAGEMENT INFORMATION

1.1. Introduction
Dominic D’Onofrio is currently a Junior studying Information and Technology at New Mexico
Institute of Mining and Technology. He recently secured an Internship with NMCCoE, where he is
involved with the TracerFIRE 12 project. Additionally, he is contributing to the load and security
testing team by researching ways to implement pipelining and DevSecOps; this is his main project
while he is at part time capacity for TracerFIRE 12. He is doing these projects to enhance his
knowledge as a system administrator and gain a deeper understating of cybersecurity practices within
national labs.

Hongrong Zhong is currently in his third year of studying Computer Science working towards a
master’s degree in Cybersecurity, with a minor in Psychology at New Mexico Institute of Mining and
Technology. He’s in the Network/Forensic team of TracerFIRE 12 and a part time contributor to
Dominic’s DevSecOps integration project.

Melissa Fusco is currently in her third year at New Mexico Institute of Mining and Technology
studying Computer Science. She is working towards her master’s in cybersecurity with a minor in
Computer Engineering. Melissa has been working with the NMCCoE since her second semester at
Tech as a tutor and a cyber outreach assistant. This summer, through a grant from Sandia National
Laboratories, her work through the NMCCoE has consisted of a primary focus on contributing to
TracerFIRE 12 and secondary focus on CI/CD pipeline integration research. Melissa’s main goal of
this summer is to learn more about red teaming and cloud networks while also networking within
Sandia.

1.2. Problem Statement
How can we integrate security and load testing into a CI/CD pipeline?

By incorporating a CI/CD pipeline into load and security testing, teams can automate multiple
processes that would otherwise require manual scripting or tasks. This is crucial as it will significantly
reduce the time spent on each project and enable team members to concentrate on creating
innovative methods for process automation and pipeline development. Ultimately, this approach will
enhance efficiency and will provide opportunities for exploring new avenues of automation and
pipeline implementation.

8

1.3. Governance Board
Lorie Liebrock IT and TracerFIRE Internship Director

Andrew Brungard Lead, Integrated Solutions Architect

Tanya DeLara Manager, Information Systems Engineering

Zane Parker Technical POC

Dominic D’Onofrio Head Researcher

Melissa Fusco Part Time Researcher

Hongrong Zhong Part Time Researcher

1.4. Project Milestones

Milestone Date Completed

Research how to deploy NeoLoad web (and other
recommendations)

6/19/23 – 6/23/23 Completed

Talk to other sandias about their pipelining systems
and DevOps

7/3/23 – 7/28/23 Completed

Complete all notes and start writing research paper and
recommendations

7/17/23 – 7/21/23 Completed

Finish research and recommendations 7/24/23 – 7/28/23 Completed

Create poster and finish revisions of Final draft 8/1/23 – 8/4/23 Completed

Present findings to group 8/7/23 – 8/11/23 Completed

1.5. Research Methods and Procedures
The research methods employed involve examining resources from Gartner, as well as utilizing
online platforms and knowledge bases, to explore topics aimed at enhancing load and security
testing, as well as obtaining valuable insights on pipeline information. This also included talking to
other sections of Sandia who already implement pipeline and DevOps at Sandia National Labs.

1.6. Team Members and Responsibilities
Dominic D’Onofrio – Team lead and researcher for CI/CD pipeline deployment options and
DevSecOps recommendations.

9

Melissa Fusco – Research security testing standards and provide recommendations. Help proofread
and maintain the final document.

Hongrong Zhong (Ronny) – Research DevOps standards and provide recommendations. Help
proofread and maintain the final document.

1.7. Project Team Meeting Schedule

Meeting Time People

Manager meeting Biweekly, (Thursdays at 11am) Tanya, Zane, and Dominic

Team meeting Weekly, (Monday at 10 am) Dominic, Ronny, Melissa

All hands meeting Weekly, (Friday at 2pm) All interns and Lorie Liebrock

Weekly report meeting Weekly (Thursday at 1pm) Zane and Dominic

1.8. Project Management Methodology
In this project, we utilized a presentation template that was presented every week and served as a
viable tool for summarizing our weekly progress, outlining our upcoming task for the following
week, addressing any questions or concerns, requesting assistance when needed, and identifying
areas for personal improvement. This template allowed us to effectively communicate and track our
progress while promoting collaboration and continuing growth. During the weekly team meetings
we provided updates on how we plan to implement the recommendations and how they can be
integrated within a pipeline.

1.9. Project Assumptions
In this project we assume that

• SNL will provide research tools and access to subject matters experts required to complete
this project.

• EMTS cannot test a system without permission from the customer and notifying relevant
stakeholders.

• We can use the given contacts to collect information about other SNL sections.

• Gartner will be provided for this research project.

10

1.10. Team Objectives
• Research how to implement DevSecOps and pipelines into the EMTS team.

• Create recommendations based on research and note how to implement them.

• Create a final report with final recommendations.

1.11. Team Deliverables
• A final research paper that includes recommendations about integrating DevSecOps and

pipelining into security and load testing.

11

2. RESEARCH

2.1. Neoload Web
Neoload Web is a centralized performance testing platform. With this software, users are able to
launch performance tests, load generation infrastructure, analyze results, export Neoload data, and
launch Neoload Web from independent users. Neoload Web can be deployed in different ways
through the use of Kubernetes and cloud infrastructure. Below are the deployment options that can
be used and the ones that are allowed by SNL.

2.2. Deployment Options

Deployment option On premise option Allowed by SNL
Azure (AKS) Yes Yes
AWS (EKS) Yes Pending
GCP (GKE) No No
Helm Chart (OpenShift) Yes Yes

IMAGE BY NEOTYS: WHICH SHOWS THE INFRASTRUCTURE THAT NEOLOAD WEB CAN RUN ON WITH
THE SELECTED KUBERNETES MASTER. [32]

12

2.2.1. Azure Kubernetes Service
Azure AKS is a managed orchestration service provided by Microsoft Azure. Azure allows users to
focus on deployment, management, and scaled containerization without worrying about
infrastructure. With AKS users can focus on developing and running applications while azure
manages Kubernetes clusters. Azure does this is by automating various tasks such as provisioning,
upgrading, and monitoring Kubernetes clusters. Currently there is no installation guide for Neoload
Web by Neotys but one is being developed.

Features include:

• Provides an easy way to create and configure a Kubernetes cluster with just a few clicks or
through command-line tools.

• Enables users to scale applications seamlessly to meet demand. It can automatically adjust
the cluster size based on resource utilization and workload requirements. This ensures
applications can handle increased traffic or workload without downtime.

• Helps ensure that applications are highly available and resilient. By distributing clusters
across multiple nodes in the cluster it can automatically handle node failures, reschedules
containers, and maintains the desired state of applications.

• AKS integrates well with other Azure services, such as Azure Container Registry for
container image storage, Azure Monitor for monitoring and diagnostics, Azure Active
Directory for authentication and access control, and more.

• AKS integrates with popular DevOps tools like Azure DevOps and Azure Pipelines, which
automates the deployment, testing, and continuous delivery of containerized applications.

Pros of AKS:
1. Ease of Use: AKS simplifies the deployment and management of Kubernetes clusters. It

abstracts away much of the underlying infrastructure complexity, making it easier for
developers to focus on application development rather than cluster administration.

2. Scalability: AKS enables seamless scaling of applications. It provides built-in support for

scaling containers horizontally or vertically, allowing applications to handle increased
workloads efficiently.

3. High Availability: AKS ensures high availability of applications by distributing them across

multiple nodes in a cluster. It automatically monitors and replaces failed nodes, ensuring that
applications remain accessible and responsive.

4. Integration with Azure Services: AKS integrates seamlessly with other Azure services, such

as Azure Container Registry, Azure Monitor, Azure Active Directory, and Azure DevOps.

13

This integration provides a comprehensive ecosystem for building, deploying, and
monitoring containerized applications.

5. Security: AKS offers robust security features. It supports role-based access control (RBAC)

to manage user permissions, and it provides network isolation through Azure Virtual
Networks. It also supports Azure Security Center for threat detection, monitoring and
forensics.

6. Continuous Integration and Deployment: AKS can be integrated with CI/CD (Continuous

Integration/Continuous Deployment) pipelines, allowing developers to automate application
builds, testing, and deployment processes. This enables faster development cycles and
reduces the time to market.

Cons of AKS:

1. Learning Curve: While AKS abstracts much of the underlying Kubernetes infrastructure,
there is still a learning curve associated with understanding Kubernetes concepts and
managing cluster configurations. Developers and operators need to invest time in learning
Kubernetes to leverage AKS effectively.

2. Cost: While AKS itself is a free service, you need to consider the cost of Azure resources

such as virtual machines, storage, and networking that are required to run the AKS cluster.
The cost can vary based on cluster size, number of nodes, and resource utilization.

3. Dependency on Azure: AKS is tightly integrated with Azure services. While this provides a

seamless experience for Azure users, it also means that AKS might not be the best choice if
you have a multi-cloud or hybrid cloud strategy that involves other cloud providers.

4. Limited Control: As a managed service, AKS abstracts away much of the infrastructure

management. While this can be a benefit, it also means you have limited control over the
underlying infrastructure compared to running your own self-managed Kubernetes cluster.

5. Version Lag: There might be a slight lag between the release of new Kubernetes versions

and their availability on AKS. If you require the latest Kubernetes features immediately, self-
managed clusters or other Kubernetes platforms may be more suitable.

2.2.2. Amazon Web Services (AWS) EKS
Amazon Web Services EKS is a managed service provided by Amazon. AWS simplifies how
Kubernetes manages, deploys, and scales applications. This allows users to focus on development of
applications without worrying about infrastructure.

Features include:

• Scalability and Elasticity: AWS provides on-demand and scalable resources. This allows
businesses to scale up or down based on their requirements, using services such as Elastic
Compute Cloud (EC2) and Auto Scaling.

• Variety of Services: AWS offers a broad set of products and services such as computing
power, storage, databases, analytics, networking, mobile, developer tools, management tools,

14

IoT, security, and enterprise applications. This makes it a one-stop solution for many
businesses' digital infrastructure needs.

• Security: AWS prioritizes security and compliance, offering end-to-end security for all
services. Features include encryption methods, security groups and networks ACLs,
dedicated connections, and AWS Identity and Access Management (IAM).

• Global Presence: AWS has a worldwide network of regions and availability zones (AZs),
which allows you to host your applications in multiple locations worldwide for redundancy
and lower latency.

• Cost-Efficiency: AWS follows a pay-as-you-go model, meaning customers only pay for the
services they use. It also provides several tools to help users manage their costs, such as Cost
Explorer and Budgets.

Pros of EKS:

1. Easy Deployment: EKS simplifies the deployment of Kubernetes clusters by handling the
underlying infrastructure management. It provides an easy-to-use interface and CLI tools
that abstract away the complexities of cluster setup and configuration.

2. Scalability and Elasticity: EKS allows seamless scaling of applications. It provides built-in

integration with AWS Auto Scaling, enabling automatic scaling of the underlying
infrastructure based on application demand. This ensures that applications can handle
increased workloads efficiently.

3. High Availability: EKS ensures high availability of applications by distributing them across

multiple availability zones within a region. It automatically detects and replaces failed nodes,
ensuring that applications remain accessible and resilient.

4. Integration with AWS Services: EKS integrates tightly with the AWS ecosystem. It provides

seamless integration with various AWS services like Elastic Load Balancer (ELB), Amazon
RDS, Amazon S3, AWS IAM, and more. This enables users to leverage a wide range of
complementary services for networking, storage, security, monitoring, and database
management.

5. Security: EKS offers robust security features. It integrates with AWS Identity and Access

Management (IAM) for fine-grained access control, and it supports Amazon Virtual Private
Cloud (VPC) networking, enabling network isolation and security group rules. EKS also
supports AWS CloudTrail for auditing and AWS Identity and Access Management Roles for
secure authentication and authorization.

6. Managed Upgrades: EKS manages the control plane and automates Kubernetes upgrades,

ensuring that users have access to the latest stable versions without the burden of manual
upgrades. This helps keep the cluster secure and up to date.

Cons of EKS:

1. Learning Curve: While EKS simplifies Kubernetes cluster management, it still requires users
to understand Kubernetes concepts and best practices. Users need to have knowledge of
Kubernetes and associated tools to effectively deploy and manage applications on EKS.

15

2. Cost: EKS has associated costs, including charges for EC2 instances, load balancers, storage,

and data transfer. The cost can vary based on cluster size, number of nodes, and resource
utilization. Users need to consider the cost implications of running EKS clusters and
associated AWS resources.

3. AWS Lock-In: EKS is tightly integrated with the AWS ecosystem. While this provides a

seamless experience for AWS users, it may result in vendor lock-in. Moving an EKS
workload to another cloud provider or managing it outside of AWS may require significant
effort and adjustments.

4. Support Limitations: While EKS offers support options, users may find limitations in terms

of response time and available support channels. Depending on the support plan chosen,
users may experience delays in issue resolution or have limited access to technical assistance.

5. Limited Regional Availability: EKS may not be available in all AWS regions. This can restrict

deployment options for users in certain geographical areas, potentially requiring them to
choose an alternative Kubernetes solution.

6. Version Lag: There might be a slight lag between the release of new Kubernetes versions

and their availability on EKS. If immediate access to the latest Kubernetes features is critical,
self-managed Kubernetes clusters or other Kubernetes platforms may provide more
flexibility.

2.2.3. Google Cloud Platform (GCP) GKE
Google Kubernetes service provides operational power of Kubernetes while managing the
underlying components such as control panel and nodes. GKE environment consists of nodes,
which are Compute Engine virtual machines (VMs), that are grouped together to form a cluster.
You package your apps (also called workloads) into containers. You deploy sets of containers as
Pods to your nodes.

Features in GKE:

• Can fully manage nodes on auto pilot modes which also has built in hardening.
• Has flexible maintenance windows and exclusions allowing for configuring and upgrading.
• Node upgrades are available to optimize availability and manage disruptions.
• Can automatically scale nodes based on the number of Pods with auto mode or standard

mode.
• Has an option for node auto repair to maintain health and availability.
• Can integrate CI/CD pipelines with cloud deploy and cloud build.
• Hardened node operating systems for security.

Pros of GKE:
1. Seamless Integration with Google Cloud: GKE is tightly integrated with the Google Cloud

ecosystem. It provides seamless integration with other Google Cloud services, such as

16

Google Cloud Storage, Google Cloud Load Balancing, Stackdriver Monitoring, and Cloud
IAM. This integration simplifies the development and management of applications on
Google Cloud.

2. Ease of Use: GKE offers a user-friendly interface and command-line tools that simplify

cluster creation, deployment, and management. It provides an intuitive user experience,
allowing users to focus on application development rather than infrastructure management.

3. Scalability and Elasticity: GKE enables easy scaling of applications. It leverages Google

Cloud's infrastructure capabilities, such as Auto Scaling, to automatically adjust the cluster
size based on application demand. This ensures that applications can handle increased
workloads efficiently.

4. High Availability and Reliability: GKE ensures high availability and reliability by distributing

applications across multiple Google Cloud zones within a region. It automatically monitors
and replaces failed nodes, ensuring that applications remain accessible and resilient.

5. Security: GKE offers robust security features. It integrates with Google Cloud Identity and

Access Management (IAM), providing fine-grained access control. GKE also supports
features like node auto-upgrades, automatic SSL/TLS certificate management, and VPC-
native networking, enhancing the security posture of applications running on the platform.

6. Managed Upgrades: GKE manages the control plane and automates Kubernetes version

upgrades. It ensures that users have access to the latest stable versions without the need for
manual upgrades. This helps keep the cluster secure and up to date.

Cons of GKE:
1. Learning Curve: While GKE simplifies Kubernetes cluster management, it still requires users

to understand Kubernetes concepts and best practices. Users need to have knowledge of
Kubernetes and associated tools to effectively deploy and manage applications on GKE.

2. Cost: GKE has associated costs, including charges for compute resources, networking,

storage, and data transfer. The cost can vary based on cluster size, node types, and resource
utilization. Users need to consider the cost implications of running GKE clusters and
associated Google Cloud resources.

3. Vendor Lock-In: GKE is a Google Cloud-specific service, which can result in vendor lock-

in. Moving a GKE workload to another cloud provider or managing it outside of Google
Cloud may require significant effort and adjustments.

4. Regional Availability: GKE may not be available in all Google Cloud regions. This can

restrict deployment options for users in certain geographical areas, potentially requiring them
to choose an alternative Kubernetes solution.

5. Support Limitations: While GKE offers support options, users may find limitations in terms

of response time and available support channels. Depending on the support plan chosen,
users may experience delays in issue resolution or have limited access to technical assistance.

17

6. Version Lag: There might be a slight lag between the release of new Kubernetes versions

and their availability on GKE. If immediate access to the latest Kubernetes features is
critical, self-managed Kubernetes clusters or other Kubernetes platforms may provide more
flexibility.

2.2.4. Red Hat OpenShift
OpenShift is a cloud-based Kubernetes platform. OpenShift Container Platform (OCI) is a private
platform as a service for organizations that deploy and manage OpenShift on their own on-premises
hardware or on the infrastructure of a certified cloud provider.

Features in OpenShift:
• OpenShift can scale to thousands of instances across hundreds of nodes.
• Its high flexibility and hybrid infrastructure allows for a self-managed service for on premise

environments.

• Uses the OCI industry standard for portability between developers/workstations.

• Has an automated installation process (over-the-air platform) and is supported in a cloud
with multiple cloud platforms.

• Offers advance security with features like access controls, networking, enterprise registry,
and a built-in security scanner.

• Has persistent storage with a broad spectrum of enterprises storage solutions.

Pros of OpenShift:
1. Easy Deployment: OpenShift simplifies the deployment process by providing an intuitive

web interface and a command-line interface (CLI) for managing applications and resources.
It abstracts away much of the Kubernetes complexity, making it easier for developers to
focus on application development.

2. Scalability: OpenShift allows seamless horizontal and vertical scaling of applications. It

provides automated load balancing and intelligent scaling mechanisms that enable
applications to handle increased workloads efficiently.

3. Built-in DevOps Features: OpenShift integrates CI/CD workflows seamlessly. It offers

built-in support for source code management, continuous integration, and deployment
pipelines. This allows for automated application builds, testing, and deployments, reducing
manual effort and enabling faster development cycles.

4. Multi-tenancy and Isolation: OpenShift supports multi-tenancy, allowing different teams or

projects to share the same cluster while maintaining resource isolation and security. Each
project can have its own set of resources, policies, and access controls, ensuring separation
and control over application environments.

18

5. Application Lifecycle Management: OpenShift provides features for managing the entire
application lifecycle. It supports deployment strategies like rolling updates, blue-green
deployments, and canary releases. It also offers application monitoring, logging, and auto-
recovery mechanisms to ensure application availability and performance.

6. Integration with Red Hat Ecosystem: OpenShift is tightly integrated with the Red Hat

ecosystem, which includes a wide range of tools, services, and technologies. This integration
provides access to Red Hat's enterprise-grade support, security patches, and a vast library of
certified container images and middleware components.

Cons of OpenShift:

1. Learning Curve: OpenShift adds an additional layer of complexity on top of Kubernetes. It
requires users to learn OpenShift-specific concepts and configuration options. The learning
curve can be steep, especially for developers and administrators who are new to
containerization and Kubernetes.

2. Resource Requirements: OpenShift requires a significant amount of compute resources to

run efficiently. The infrastructure needs to be adequately provisioned to handle the demands
of running OpenShift clusters and containerized applications.

3. Cost: OpenShift is not a free open-source platform. Red Hat provides both community and

enterprise editions, and the enterprise edition comes with licensing costs. Additionally, there
may be costs associated with the infrastructure and resources required to run OpenShift
clusters.

4. Limited Flexibility: OpenShift has its own options and configurations, which may limit

flexibility compared to running a bare Kubernetes cluster. Customizing certain aspects or
integrating with non-OpenShift tools or services may require additional effort or
workarounds.

5. Version Compatibility: OpenShift releases are typically slightly behind the upstream

Kubernetes releases. This lag may delay the availability of new Kubernetes features and
updates on the OpenShift platform.

6. Vendor Lock-In: While OpenShift is built on Kubernetes and adheres to the Kubernetes

API and standards, it has additional proprietary components and integrations. Choosing
OpenShift and using these proprietary components and integrations may result in some level
of vendor lock-in to Red Hat's ecosystem and tools.

2.3. Burp Suite Professional vs Burp Suite Enterprise
Burp Suite is an integrated platform for security testing that is developed by PortSwigger. This tool
uses several different attacks to test a web application for variabilities and exploits. Burp Suite does
this by mapping and analysis of an application’s attack surface. Burp Suite has certain tools like Burp
Intruder that automates attacks on web applications. Other tools include Burp Repeater and Burp
Proxy. Burp can also be expanded by using BApps which enhance how people can run and apply

19

test. Some of the most popular BApps include Autorize, Turbo Intruder, Hackvertor, Burp Bounty,
and Param Miner.

Attacks in Burp Suite:

• Brute force attacks

• Dictionary attacks

• Vector attacks

o Sniper attack

o Battering ram attack

o Pitchfork attack

o Cluster bomb

Most Popular BApps:

• Autorize

o Used to help detect authorization vulnerabilities. This extension works
without any configuration but, if need be, can be highly configurable. The
way this works is by using low privileged users' session cookies in requests to
test for proper access and authorization protection.

• Turbo Intruder

o This tool is used for sending many HTTP request in a short amount of time.
This allows the BApp to complement Burp Intruder by being able to
customize the python snippet.

• Hackventor

o Is a tag-based conversation BApp that supports multiple escapes and
encodings.

• Burp Bounty

o used to find advance flaws and variabilities.

Burp Suite Professional:
Burp Suite Professional is a manual web application testing tool that cannot be fully automated, but
there are ways to automate processes. Using a CI/CD pipeline, users can integrate scripts written by
the testing team and then they can be ran in an environment using a mockup of the testing webapp
to run multiple scripts or one depending on the circumstance. Burp Suite professional is mostly used
for manual testing and used to find advance flaws and variabilities.

Burp Suite Enterprise:

20

Burp Suite Enterprise can be fully automated and run through a CI/CD pipeline. It provides scaled
security testing that can find vulnerabilities using dynamic security scanning. By integrating
development and security Burp Suite Enterprise can reduce false positives, removes bottle necks,
and avoids alerting fatigue.

List of all Vulnerabilities Tested:
For full list of vulnerabilities look at [62].

2.4. Invicti
Invicti is an automated and fully configurable web application security scanner that scans web
applications, web services, websites to find security flaws. It can automatically exploit identified
vulnerabilities in a read-only and safe way to confirm identified issues. It is designed to help securing
web applications easily so team can focus on fixing the reported vulnerabilities.

Features in Invicti:

• Produces highly accurate web application security scans, whose vulnerabilities are verified
[25].

• Proof-Based scanning technology actively and automatically verifies detected vulnerabilities.

• Identify vulnerability and safely exploits during the web vulnerability scan as Proof of
Concept that it exists.

• Proof of Exploit reports the data that can be extracted from the vulnerable target once the
vulnerability is exploited, demonstrating the impact of the exploited vulnerability.

• Able to integrate with wide range of software of tools that enable to connect with existing
SDLC.

Pros of Invicti:
1. Discover + Crawl: Invicti crawls through advanced websites with heavy scripting and

dynamically generated content. Allows complete visibility into all of the applications.

2. Detect: Invicti utilizes its unique combined DAST + IAST scanning to detect more
vulnerabilities. Furthermore, combined signature-based and behavior-based scanning gives
faster and accurate results.

3. Resolve: Invicti utilizes automation and workflow features manage security tasks. It also
reduced false positive with Proof-Based Scanning and assigned confirmed vulnerabilities to
developers. The detailed documentation helps developer fix issues faster.

4. Integrate: Invicti builds security into development by automatically giving the developer
rapid feedback on secure code and catching vulnerability early in SDLC. This supports shift
left principle in DevSecOps by helping developers tackle the security problem on their own.

21

5. Continuous Secure: Invicti’s continuous security feature helps prevent delay and ensure
fewer risks are introduced throughout the SDLC. It also gives automatic notification when
deployed technology becomes outdated.

Cons of Invicti:
1. Cost: Invicti offers a free trail, pro plan and enterprise plan. The cost is available through

contact of vendor, but it is said to cost more in compared to other options.

2. Complexity: While powerful and comprehensive, these tools have a steep learning curve and
may require a significant amount of time and resources to fully understand and utilize
effectively.

3. Overwhelming Information: The extensive detail provided by these tools might be
overwhelming for less experienced users. Some teams might require additional training to
interpret and act on the results effectively.

4. Limited to Web Applications: Invicti's tools are specifically designed for web application
security, making them less suitable for organizations seeking a broader range of cybersecurity
solutions.

2.5. OWASP ZAP
OWASP ZAP (Zed Attack Proxy) is an open-source web application security scanner developed by
the OWASP. It's a powerful tool used for finding vulnerabilities in web applications during the
development and testing phases. ZAP provides functionalities for a variety of security tests,
including automated scanning, fuzzing, scripting, and proxying.

One of the primary reasons OWASP ZAP should be considered being used is because it supports a
wide range of customizations and is suitable for different users, from developers to security experts.
As an open-source tool, it's free to use, making it accessible for small to medium-sized businesses
with tighter budgets. Its active community also ensures regular updates, new features, and quick
fixes. Furthermore, ZAP can be effectively integrated into a CI/CD pipeline to automatically find
vulnerabilities before deploying to production. The goal is to catch security issues as early as possible
in the development process, minimizing the potential impact.

ZAP's API, command-line interface, or Docker image can all be used to integrate it into a CI/CD
pipeline. Once integrated, it may be used to automatically run security checks and generate reports
on any vulnerabilities that might be discovered in your apps. For instance, in a Jenkins pipeline,
users can employ ZAP's official Docker image to run a container in a pipeline job. Then, as part of
your build process, developers can start and control ZAP scans using command-line scripts or the
ZAP API. Following a scan, ZAP offers a report outlining any vulnerabilities found, which may be
examined and addressed. By including ZAP into your CI/CD pipeline, you're encouraging the use of
DevSecOps by integrating application security into your development process.

22

2.6. Industry Standards for Pipelines
In developing a CI/CD pipeline, standards are essential, especially when several team members are
working on creating and managing the CI/CD pipelines. These guidelines serve several reasons,
such as keeping team members on the same branch of work and preventing confusion when
developing code. They also set standards for executing automated tests that confirm the code's
security and usability. Establishing standards is crucial when building a CI/CD pipeline and working
together as a team. By following these principles, teams can keep their code development processes
clear and consistent while eliminating potential misunderstandings and disputes. Additionally, using
standardized methods, developers may optimize their operations and make sure they are working on
the right code branches, reducing errors, and promoting productive cooperation.

It is essential to make sure building a CI/CD pipeline is not a “fire-and-forget exercise [20].” To do
this properly, many companies and teams analyze how productive their pipeline is by listening to
feedback and keeping the pipeline in a state of evolution, which allows you to constantly “refine
your CI/CD process [20].” Some simple standards include:

• When using a software like GitLab, it is important to commit any changes early and do it as
often as practical. By doing this, it allows the team to effectively work on the same code and
scripts in the pipeline. It is very important to update the Main Brach as often as practical
even if it feels uncomfortable.

• It is important to make a collaborative team environment in order to “keep the builds green
[20]” by always keeping the code and structure releasable. This makes the teams main
priority fixing the pipeline if any issues arise when pushing to the main branch group. Team
members should not accuse the last person who pushed to the main branch. The main focus
should be fixing the pipeline.

• When testing your pipeline for bugs and other issues it’s important to run automated tests in
order. The tests should go fastest to slowest because feedback is essential when changing or
adding a process into a pipeline.

• “When environments are kept running for a long time it becomes harder to keep track of all
the configuration changes and updates that have been applied to each one.” [20] In order to
prevent a situation like this groups can run environments in containers that can easily be
deployed for testing.

23

2.6.1. List of Tools for CI/CD Pipelines

Tools Description

Jenkins One of the first and most well-known CI/CD tools is Jenkins. It is quite
flexible and can be included with practically any product on the market,
thanks to the large number of plugins it supports.

GitLab CI/CD GitLab is a web-based DevOps lifecycle platform that includes GitLab
CI. It is a strong CI/CD tool that is widely employed in the sector.
Through the use of the GitLab CI/CD configuration file, it enables you
to define pipelines for code.

GitHub Actions GitHub Actions simplify automating all software workflows with CI/CD.
You can build, test, and deploy your code right from GitHub.

Travis CI A hosted continuous integration service called Travis CI is used to
develop and test software projects that are stored on GitHub and
Bitbucket.

Circle CI Circle CI allows for faster development cycles and quickly pinpointing
where a problem occurred.

Azure DevOps Microsoft's approach to DevOps offers a cloud service for code sharing,
project management, and software shipping.

Docker Docker containers are quickly evolving into industry standards for
packaging, deploying, operating applications and containerizing.

Kubernetes Kubernetes is a portable, adaptable, open-source platform that supports
declarative configuration and automation for managing containerized
workloads and services. Frequently used with Docker.

Terraform An Infrastructure as Code tool called Terraform is used to construct,
modify, and version infrastructure in a secure and effective manner.

2.6.2. Microsoft Azure Standards
When looking at these considerations Microsoft uses the Pillars of Azure framework.

24

Pillar Description

Reliability “The ability of a system to recover from failures
and continue to function [22]”

Security “Protecting applications and data from threats
[22]”

Cost optimization “Managing costs to maximize the value delivered
[22]”

Operational excellence “Operations processes that keep a system running
in production [22]”

Performance efficiency “The ability of a system to adapt to changes in
load. [22]”

Operational Excellence:
Infrastructure as Code:
“Infrastructure as code (IaC) uses DevOps methodology and versioning with a descriptive
model to define and deploy infrastructure, such as networks, virtual machines, load
balancers, and connection topologies. Just as the same source code always generates the
same binary, an IaC model generates the same environment every time it deploys.” [24]
IaC has many advantages, making it a crucial tool for modern DevOps procedures. First, by
enabling teams to automate the process of setting up and modifying IT infrastructures,
which traditionally might be time-consuming and prone to human mistakes, IaC helps with
the quick and simple deployment of servers. IaC has the advantage of version control, easier
rollbacks, and reduced inconsistencies caused by human setups because the infrastructure
setup is defined as code, which can be versioned and reviewed like any other software code.
Additionally, it helps preserve consistency by facilitating disaster recovery and replicating the
infrastructure across several environments.

The advantages of IaC also include raising team productivity and effectiveness overall. It
encourages the practice of treating "infrastructure as software" and permits adopting
software development approaches like continuous integration/continuous deployment
(CI/CD), which aid in reducing delivery times and improving product quality. IaC also
encourages team communication, bridging the gap between development and operations and
advancing the DevOps culture. Lastly, capacity planning and monitoring infrastructure usage
over time help firms manage risk and cost more effectively. The operational efficiency,
dependability, and robustness of IT environments can be considerably improved using
Infrastructure as Code.

Self-Hosted Agents:
“With Microsoft-hosted agents, maintenance and upgrades are taken care of for you. Each
time you run a pipeline, you get a fresh virtual machine for each job in the pipeline. The
virtual machine is discarded after one job (which means any change that a job makes to the

25

virtual machine file system, such as checking out code, will be unavailable to the next job).”
[25] There is also an option call “Self-hosted agents give you more control to install
dependent software needed for your builds and deployments. Also, machine-level caches and
configuration persist from run to run, which can boost speed.” [25]

When Sandia is looking to streamline their development, operations benefit by utilizing
Microsoft-hosted agents in Azure DevOps. These hosted agents' main benefits are their
simplicity of use and seamless connection with the Microsoft ecosystem. These agents save
time and work because they are pre-configured, ready-to-use environments that do not
require human installation or upkeep. Each sprint deployment automatically updates,
ensuring that your projects always use the most recent and secure versions. Furthermore,
various application kinds, languages, and frameworks are supported by hosted agents, giving
project development flexibility.

Another important advantage of using Microsoft-hosted agents is scalability. Azure gives you
the freedom to scale up or down to the requirements of your pipeline, enabling optimal
resource use. Costs associated with infrastructure are decreased because there is less demand
for specialized hardware resources. Additionally, since Microsoft promises 99.9% agent
availability, there is no need to worry about it. Multiple jobs can run simultaneously with
parallel processing provided by Microsoft-hosted agents, accelerating the build and
deployment process. Last, Azure's Pay-As-You-Go approach guarantees that you only pay
for what you use, making it an economical choice for companies of all sizes.

Cost Optimization:
Managing and reducing operational expenses in the Microsoft Azure cloud ecosystem
requires a fundamental approach called Azure cost optimization. Azure resources, such as
VM instances, storage, databases, and bandwidth, may all be used more effectively to reduce
costs over time. The ineffective use of resources, bloated budgets, and skyrocketing costs
can result from a lack of cost optimization. This is where Azure cost optimization excels; it
makes use of automation, right-sizing, and other best practices for cloud management to
assist organizations in making sure they are only paying for what they require. The
advantages include higher ROI, more simplified and effective cloud infrastructure, and costs
that are more predictable and controlled. Organizations can better match their cloud
resources with their business demands by utilizing Azure cost optimization, which can help
free up funds for strategic initiatives, and fostering business growth.

Security:
Azure Security integration into a pipeline provides a wide range of advantages that are essential for
protecting data and guaranteeing compliance with security laws. Data encryption, advanced threat
protection, threat intelligence, and identity and access management are just a few of the powerful,
enterprise-grade security capabilities offered by Azure Security. Organizations can discover and
address security issues early by including these features in the development and deployment pipeline,
which will stop vulnerabilities from entering the production environment. With such a proactive
approach, data breaches and other security issues are much less likely to occur, safeguarding a
company's reputation as well as its financial health. As it has built-in compliance tools, using Azure

26

Security also makes it easier to comply with different security standards. The pipeline is thus
shielded from any threats by Azure Security, assuring security.

• “Ensure all changes to environments are done through pipelines. Implement role-based
access controls (RBAC) on the principle of least privilege, preventing users from accessing
environments” [21]

• Consider integrating steps in Azure Pipelines to track dependencies, manage licensing, scan
for vulnerabilities, and keep dependencies to date. [21]

2.6.3. Jenkins
Jenkins is a widely used tool for implementing continuous integration and continuous development
for pipelines. It is a server base system that runes serval containers like Apache Tom. Jenkins also
supports version control tools like AccuRev, CVS, Subversion, Git, Mercurial, Perforce, ClearCase
and RTC. Jenkins can also execute Apache Ant, Apache Maven and SBT based projects as well as
shell scripts and Windows batch commands.

Practice Description

Scripted Pipelines Use scripted pipelines for straightforward projects, where the
pipeline script resides within the Jenkinsfile in the root
directory of your repository. This approach allows the same
Jenkinsfile to be used across all branches of your project.

Declarative Pipelines Declarative pipelines provide more structure and flexibility
than scripted pipelines, especially for complex projects.
Declarative pipelines also make the pipeline code easier to read
and write.

Pipeline as Code Store Jenkins pipeline scripts (Jenkinsfile) within your version
control system (like Git) and follow the 'Pipeline as Code'
principle. This allows version control, code review, full audit
trails, and a single source of truth.

Use Shared Libraries Shared Libraries allow common steps to be shared across
multiple pipelines. This promotes code reuse and reduces
redundancy in Jenkinsfiles.

Parameterized
Pipelines

Use parameters in pipelines when you want to execute the
same pipeline with different configurations. Parameters allow
pipelines to be more dynamic and flexible.

Parallel Execution Jenkins pipelines allow you to run steps in parallel, which can
significantly reduce the total time taken for a pipeline run. Use
this feature wisely to speed up your CI/CD process.

27

Practice Description

Automated Testing Incorporate automated testing into the Jenkins pipeline. This
includes unit tests, integration tests, and any other tests
relevant to your project. The earlier you catch issues in your
code, the easier they are to fix.

Build Artifact
Management

Use Jenkins’ Archive Artifacts step to store important files that
are produced as part of your build process. This can include
compiled binaries, test results, and more.

Security Implement proper security measures in Jenkins. This includes
limiting job configuration permissions, using credentials-
binding-plugin to handle sensitive data, and regularly updating
Jenkins and its plugins to their latest stable version.

Notifications Use notifications to alert the relevant people when a pipeline
fails. Jenkins can send notifications to various channels
including email, Slack, and more.

Docker Usage Use Docker containers for build environments. This ensures
that the build environment is consistent and reproducible.

Regularly Cleanup Regularly clean up old build records and unused plugins to
ensure that your Jenkins instance is not using unnecessary
resources.

2.6.4. GitLab

GitLab is a well know tool for implementing pipelines and it has a set of standards to help
develop a CI/CD pipeline. GitLab provides seven different standards that can be implemented
in order to achieve the desired outcome that is needed. These pipelines designs and practices
include:

• Basic pipelines run everything in each stage concurrently, followed by the next stage.
[31]

• Directed Acyclic Graph Pipeline (DAG) pipelines are based on relationships
between jobs and can run more quickly than basic pipelines. [31]

• Merge request pipelines run for merge requests only (rather than for every commit).
[31]

• Merged results pipelines are merge request pipelines that act as though the changes
from the source branch have already been merged into the target branch. [31]

• Merge trains use merged results pipelines to queue merges one after the other. [31]

28

• Parent-child pipelines break down complex pipelines into one parent pipeline that
can trigger multiple child sub-pipelines, which all run in the same project. This
pipeline architecture is commonly used for mono-repos. [31]

• Multi-project pipelines combine pipelines for different projects together. [31]

Practice Description

Pipeline
Configuration

GitLab uses a YAML file (.gitlab-ci.yml) located at the root of the
repository to manage the CI/CD pipeline. This file contains all the
configurations and defines stages, jobs, and actions that should be
executed during pipeline runs.

Pipeline Stages A common standard is to divide the pipeline into distinct stages, such
as build, test, and deploy. Each stage comprises different jobs that run
in parallel.

Automated Testing Automating your testing in the test stage is an essential practice in
CI/CD. This could involve unit tests, integration tests, and even
UI/functional tests depending on your application.

Docker Usage Docker and containerization have become a standard for building,
testing, and deploying applications. GitLab CI/CD integrates
seamlessly with Docker.

Artifact
Management

GitLab allows you to define and manage artifacts, which are the output
files from each job. These can be passed between stages or stored for
later use.

Environment
Management

GitLab provides support for handling different environments like
staging, production, and others. You can configure specific jobs to run
only on specific branches and in specific environments.

Review Apps GitLab feature automatically creates a live preview of changes made in
a branch. Review apps are extremely useful for reviewing changes
without affecting the main application.

Security Scanning GitLab feature automatically creates a live preview of changes made in
a branch. Review apps are extremely useful for reviewing changes
without affecting the main application.

Monitoring and
Analytic

GitLab offers detailed monitoring and analytics tools, such as CI/CD
Pipeline charts, to help track the performance and status of your
pipelines.

Infrastructure as
Code

GitLab is compatible with various IaC tools like Terraform, Ansible,
etc. IaC is a key practice in the DevOps industry.

29

2.7. Industry Standards for Load and Stress Testing
Load and stress testing are critical components of a comprehensive testing strategy, especially for
web applications or other network-based applications. These tests are conducted to determine how
an application operates under heavy load and how it responds when the load is greater than the
application's claimed capacity. The following are some key recommendations for load and stress
testing:

Practice Descriptions

Plan for the Test Before beginning testing, develop a detailed plan outlining
objectives, target system, test scenarios, and performance
acceptance criteria.

Define Test Environment Identify the physical test environment, including other
software, hardware, and network configurations. Ensure
you have a similar setup to the production environment.

Design Test Scenarios Identify key scenarios that will be stress and load tested.
These are often the most common or resource-intensive
operations.

Identify Performance Metrics Metrics might include response time, throughput,
hits/sec, concurrent users, error rates, resource utilization
like CPU, memory, network I/O, etc.

Create Load Profile Identify the different types of users and their patterns,
simulate real-world user load diversity in your test
scenarios.

Automate Use automated load testing tools such as Apache JMeter,
LoadRunner, Gatling, or Locust. These tools can simulate
a large number of users and record key metrics.

Incremental Testing Start with small load tests and progressively increase the
load. This will help identify performance bottlenecks.

Run Stress Test Push the system beyond its designed capacity to identify
its breakpoint or recoverability after failure.

Analyze, Report, and Retest After testing, analyze the data to find bottlenecks and
problems. Create a detailed report and share it with all
concerned stakeholders. Make necessary code or system
changes and retest to ensure problems are fixed.

30

Practice Descriptions

Continuous Testing Perform these tests regularly, especially after major code
updates or infrastructure changes. This will help ensure
that system performance remains high as the system
evolves. Integrate these tests into your CI/CD pipeline if
possible.

Monitor stress and load test Monitor application during testing to identify any
performance issue. Use application performance
management tools to get detailed insights into the
system's behavior under load.

Test under Realistic Conditions Emulate real-world conditions as much as possible. This
includes simulating various network speeds, user
geographic locations, and different types of user
interactions.

2.7.1. Tools for Load and Stress Testing
The main tool that is used for load and stress testing is Neoload. There are numerous other tools
that can be used with Neoload Web or standalone which include:

Tool Description Industry/Industries

Apache JMeter “Apache JMeter may be used to
test performance both on static
and dynamic resources, Web
dynamic applications.

It can be used to simulate a
heavy load on a server, group of
servers, networks or objects to
test its strength or to analyze
overall performance under
different load types.” [46]

• Information
Technology and
Services

• Computer Software

SOAPUI/ReadyAPI
TestEngine

“TestEngine allows testing,
development, and operations
groups to seamlessly run
ReadyAPI and SoapUI OS
functional & security tests as
part of their Azure DevOps
process. Deploying TestEngine
as part of a larger collection of
cloud services allows quality
checks to be executed alongside
deployed applications,

• Information
Technology and
Services

• Computer Software

31

Tool Description Industry/Industries

eliminating the need to expose
individual components to
external testing solutions.” [69]

Gatling “Gatling is a load test tool. It
officially supports HTTP,
WebSocket, Server-Sent-Events
and JMS.” [70]

• Information
Technology and
Services

• Computer Software

2.8. Industry Standards for Security Testing

2.8.1. Introduction
Security testing is the process of determining whether software is vulnerable to cyber-attacks.
Testing software can come in many forms, including penetration testing, crawling through a web
application, and automatic testing. Ultimately, secure software starts with secure coding practices,
but security testing provides evidence that systems and information are safe, reliable, and that they
do not accept unauthorized inputs [60]. However, security testing is not functional testing, meaning
that it will not test whether a specific application works as expected or produces the correct output.

The main goals of security testing include identifying assets, threats and vulnerabilities, and risks, and
then displaying results and performing remediation [60].

Goals Descriptions

Identify Assets Assets are things that need to be protected,
such as software applications and computing
infrastructure.

Identify Threats and Vulnerabilities Threats and vulnerabilities are activities that
can cause damage to an asset, or weaknesses in
one or more assets that can be exploited by
attackers.

Identify Risk Security testing aims to evaluate the risk that
specific threats or vulnerabilities will cause a
system. Risk is evaluated by identifying the
severity of a threat or vulnerability, and the
likelihood and impact of exploitation.

Perform Remediation Security testing is not just a passive evaluation
of assets. It provides actionable guidance for
remediating vulnerabilities discovered and can

32

2.8.2. General Security Testing
Below is a list of general types of security testing that should be implemented into the security
testing process:

• Review source code and end-to-end architecture

• Generate a product architecture and dataflow model

• Retest findings as they are fixed

• Application Security Testing [49, Figure 1]

• Automated configuration scanning

• Conduct security audits and risk assessments

• Vulnerability management

• Black box (dynamic) and white box (static) testing

Figure 1 - Application Security Testing [49]
Reference Documents:
The following are documents that contain security testing standards. Documents with an asterisk
will be discussed in more depth later in the paper:

• NIST 800-53: Security and Privacy Controls for Information Systems and Organizations

• NIST 800-63b: Authentication and Lifecycle Management

• NIST 800-115: Technical Guide to Information Security Testing and Assessment

Goals Descriptions

verify that vulnerabilities were successfully
fixed.

33

• NIST Cybersecurity Framework

• * Microsoft Security Assessment (Section 2.6.4)

• * Microsoft CIS (Section 2.6.4)

• * OWASP ASV (Section 2.6.6)

2.8.3. Typical Findings
Some discovered vulnerabilities are more common than others. Depending on the type of
application and the data being protected, an application may be more prone to certain vulnerabilities.
Understanding how your assets or information are viewed by adversaries will give you a better idea
of the types of vulnerabilities your system is prone to. Below is a list of common vulnerabilities
found when conducting security tests:

• Insufficient authorization controls

• Improper input validation

• Insecure coding practices

• Compromised root cloud account credentials

• Insecure methods of storing cryptographic secrets

Some common results of vulnerable web applications include application logs leaking sensitive
information, adversaries reverse engineering the application, and applications that are vulnerable to
MiTM attacks.

The OWASP also provides organizations with the top 10 vulnerabilities in web applications, mobile
security, and API's [61]. Below are the top 10 vulnerabilities in web applications (a link to the
OWASP Top 10 can be found at [61]):

• Broken Access Controls

• Cryptography Failures

• Injection Vulnerabilities

• Design Flaws

• Security Misconfigurations

• Outdated and Vulnerable Components

• Authentication Issues

• Integrity Vulnerabilities

• Security Monitoring and Logging Failures

• SSRF Vulnerabilities (server-side request forgery)

34

2.8.4. Microsoft Security Testing Standards
Microsoft defines security testing as testing to make sure "that at no point can somebody gain
unauthorized access to data" [59]. Microsoft security testing standards are used to make sure that an
authorized or unauthorized user can’t impersonate another user, gain access to somebody else’s data,
or cause a system in the architecture to do something that the developers or engineers never
expected to happen.

Common Mistakes and Fixes:
Microsoft highlights the importance of conducting proper and reliable security tests by explaining
the three most common mistakes that organizations make when creating software applications.

1. The industry is still relying on final application testing at the end of the software
development life cycle.

a. Instead, organizations should constantly be looking, during the entire lifecycle of the
application, for bugs, misconfigurations, and the incorrect usage of encryption.

2. Today's applications are complex, which results in multiple teams that are responsible for
individual parts of the process. Unfortunately, these teams don't all work together to
understand the data flow of the applications, which can lead to essential parts of secure
coding development being overlooked.

a. There should be a central person who has full visibility of the entire application.
There needs to be someone who understands what all components are doing and
how they interact with each other.

b. Teams should overlap people and parts of the project to promote cohesion.

c. There should be weekly meetings, at least once a week if not more, to update of
teams, update the person who has full visibility, and to make sure that teams are not
in standstills with one another.

3. Unfortunately, there is still a large gap between software developers and security
professionals. Developers will create software without having security in mind, then security
professionals will have to send back entire applications because they don’t follow industry
standards.

a. Going back to point 1.1, applications should be designed and created with security in
mind. Developers and security should be working together throughout the entire
lifecycle of application development.

Microsoft Security Standards Resources:
Microsoft provides three Microsoft specific security testing resources to conduct security
assessments and develop more secure software. Additionally, Microsoft uses the OWASP ASVS
standards and NIST CSF, which consists of standards, guidelines, and best practices to manage
cybersecurity-related risks.

Microsoft Security Assessment:

35

"The Cloud Collective Microsoft Security Assessment (MSA) is a security review performed in
accordance with industry best practices that includes recommendations to improve your security
posture and to address security issues that are discovered as part of this review" [57]. As the cloud
provider, Microsoft provides a service for conducting a security assessment, prepared and
performed by a certified senior consultant with a deep understanding of cloud and on-premises
security technologies, aimed at identifying potential security gaps.

Figure 2 - MSA Process [57]

Center for Internet Security Benchmarks:
Microsoft's CIS provides benchmarks that act as "configuration baselines and best practices for
securely configuring a system" [53]. CIS benchmarks are internationally recognized as security
standards for defending IT systems and data against cyberattacks. Each of the guidance
recommendations references one or more CIS controls that were developed to help organizations
improve their cyber defense capabilities. The CIS controls are also mapped to a variety of
"established standards and regulatory frameworks" including the NIST CSF, NIST SP 800-53, and
the ISO 27000 series of standards.

CIS benchmarks provide two levels of security settings [53]:

• Level 1 recommends essential basic security requirements that can be configured on any
system and should cause little or no interruption of service or reduced functionality.

• Level 2 recommends security settings for environments requiring greater security that could
result in some reduced functionality.

In addition to the benchmarks for Microsoft products and services, CIS has published CIS
Hardened Images on Azure configured to meet CIS Benchmarks. "They've been pre-tested for
readiness and compatibility with the Microsoft Azure public cloud, Microsoft Cloud Platform
hosted by service providers through the Cloud OS Network, and on-premises private cloud
Windows Server Hyper-V deployments managed by customers" [53]. CIS Hardened Images are
securely configured virtual machine images based on CIS Benchmarks hardened to either a Level 1
or Level 2 CIS Benchmark profile.

Azure Security Test Practices:

Microsoft's Azure recommends conducting penetration tests and simulated attacks. Penetration
testing is good for simulating one-time attacks in order to detect vulnerabilities while simulated

36

attacks are good for indicating security gaps within an application by conducting long-term
persistent attacks.

These kinds of testing can result in data that allows for the planning of more efficient risk
mitigation. This data can help organizations identify and manage the lowest cost methods for
preventing and detecting attacks. Penetration testing and simulated attacks helps organizations make
sure that their "security assurances are effective and maintained as per the security standards set by
the organization" [51].

2.8.5. Microsoft Security Testing Tools
The Microsoft Security Assessment Tool:
The MSAT is for tracking down network security problems [58]. The MSAT is a free tool which is
composed of an electronic questionnaire in which you describe your security environment. The
questions are broken up into different categories, and once completed, it provides an analysis of
your situation and recommendations on how to improve it. The MSAT offers three tools: the
Summary Report, the Complete Report, and the Comparison report. The Summary Report displays
two bar graphs as a result of the questions answered. There is a Business Risk Profile and Defense-
in-Depth Index graph which represent risk and security level respectively. The Complete Report
indicates whether the system meets best practices and if it needs improvement. Finally, the
Comparison Report gives you the option to upload the results to the MSAT Web site where they
can be compared with those of other organizations.

Microsoft Security Code Analysis:
This tool is aimed at implementing the SDL into software development. MSCA is a toolset used to
"integrate security controls into [the] development process" [55]. MSCA will enable organizations to
integrate Shifting Left, Secure and Complaint Pipeline, Automation, and Secure Credentials
principles into a CI/CD pipeline when using Azure DevOps. Both static and dynamic application
testing are included within the MSCA toolset. Integration with Azure DevOps makes it easy to
automate tests and therefore catch and remediate security issues early and often within the SDL.
MSCA also provides scanning tools to help ensure that the pipeline and DevOps team are following
best practices. Risks can be reduced because MSCA can be used to address issues with the code by
notifying developers and blocking Pull Requests when issues are found.

Microsoft Attack Surface Analyzer:
The ASA is a security tool that analyzes the attack surface of Windows and Linux systems and
reports potential security implications. It can be used to help identify potential security risks exposed
through system changes and ensure that the software development process is following standard
best practices. ASA provides evidence that the code is doing only what it claims to do and that it
follows practices for least privilege and reduction of attack surface.

Typical users of ASA [56]:

• DevOps Engineers - View changes to the system attack surface introduced when your
software is installed.

37

• IT Security Auditors - Evaluate risk presented when third-party software is installed.

ASA comes with both CLI and GUI options.

2.8.6. PortSwigger Setup Recommendations
Burp Suite is an integrated platform and visualization tool for performing security testing of web
applications in CI/CD pipelines. Burp Suite is a dynamic testing tool that allows for automatic and
manual testing of a variety of security vulnerabilities, these vulnerabilities can be found at [64].

Below are some recommendations for effectively setting up and using Burp Suite [53], [63].

• For larger, more dynamic scan targets with complex website interactions, these are the
recommend specifications:

• Make use of browser profiles so that setting, cookies, etc. are cleared for your web testing
profile.

• Use dedicated server-class machines and separate enterprise server and scanning machines.

• Use an external database that follows Burb Suite system requirements.

38

Figure 3 - Recommended Burp Suite Setup [63]

2.8.7. OWASP ASVS Review
The Open Web Application Security Project (OWASP) Application Security Verification Standard
(ASVS) Project provides a basis for testing web application technical security controls and provides
developers with a list of requirements for secure development [62]. The OWASP ASVS is a
comprehensive list of requirements and test for software developers and security professionals to
build, test and verify secure applications. The OWASP ASVS can be found at [50].

The OWASP ASVS is organized into 14 chapters, each dealing with a different aspect of web
application security. Each chapter contains several sections. All requirements within a section and
chapter can be referenced using the identifier format <chapter>.<section>.<requirement>. Each
requirement has a check mark indicating which OWASP ASVS level it is suitable for. Organizations
are strongly encouraged to look deeply at their unique risk characteristics based on the nature of
their business, and based upon that risk and business requirements, determine the appropriate ASVS
level.

These levels allow for the tradeoff between security and resources.

"Tailoring the ASVS to your use cases will increase the focus on the security requirements that are
most important to your projects and environments" [50].

• Level 1 - the bare minimum for an application

39

o Can be automatic or manual.

o Adequately defends against application security vulnerabilities that are easy to
discover and included in the OWASP Top 10.

o Protects against attackers who are using simple and low effort techniques to identify
easy-to-find and easy-to-exploit vulnerabilities.

o Can be used as a first step to protect applications that don't handle sensitive
information.

• Level 2 - the standard for most applications

o Adequately defends against most of the risks associated with software today.

o Ensures that security controls are in place, effective, and used within the application.

o Protects against attackers that are typically skilled and motivated, focusing on specific
targets, using tools and techniques that are highly practiced, and effective at
discovering and exploiting weaknesses within applications.

• Level 3 - high value applications that perform critical functions and CUI information

o Requires more in-depth analysis of architecture, coding, and testing.

o A secure application is modularized in a meaningful way (layers of security), and each
module takes care of its own security responsibilities (defense in depth), that need to
be properly documented.

o Responsibilities include controls for ensuring confidentiality, integrity, availability,
authentication, authorization, and auditing.

Figure 4 - OWASP ASVS Levels [50]

2.9. Industry Standards for DevSecOps

2.9.1. Introduction
DevSecOps helps ensure security is addressed to all part of DevOps practices by integrating security
practices, automatically generating security and compliance artifacts throughout the processes and
environments, including software development, builds, packaging, distribution, and deployment [45].
It is important for reasons of:

40

• “Reduces vulnerabilities, malicious code, and other security issues.” [45]

• “Mitigates the potential impact of vulnerability exploitation throughout the application
lifecycle.” [45]

• “Addresses the root causes of vulnerabilities to prevent recurrences such as strengthening
test tools and methodologies in the toolchain and improving practices for developing code
and operating hosting platforms.” [45]

• “Reduces friction between the development, operation, and security teams.” [45]

The most important principle of DevSecOps is shifting left, which minimizes any technical problem
that would require remediating later in development or after software is in production [45]. This
helps not only reduce the cost but also result in software with stronger security.

2.9.2. Microsoft Secure DevOps Standards
When looking at these considerations Microsoft uses following practices:

Practice Description Useful Link

Provide Training “Ensuring that everyone
understands the attacker’s
perspective... help capture the
attention of everyone.” [23]

N/A

Define Security Requirements “Establish a minimum-
security baseline that takes
account of both security and
compliance controls.” [23]

Azure DevOps / Azure
Boards [72]

Define Metrics and
Compliance Reporting

“Defining specific metrics
which drive action and
support compliance
objectives.” [23]

SDL Security Bug Bar
Sample [73]

Use Software Composition
Analysis (SCA) and
Governance

“The impact that a
vulnerability in the
component could have on the
overall security of the system.”
[23]

Secure Supply Chain
Consumption
Framework [74]

Define and use Cryptography
Standard

“Only use industry-vetted
encryption libraries and ensure
easily replacement if needed.”
[69]

Microsoft SDL
Cryptographic
Recommendations [75]

41

Practice Description Useful Link

Perform Threat Modeling “A critical component of any
secure development process.”
[23]

Threat Modeling [76]

Use Tools and Automation “Integrating Static Application
Security Testing (SAST) into
your IDE … can provide
deep analytical insight.” [23]

Microsoft Security
Code Analysis [77]

Keep Credentials Safe “Scanning for credentials and
other sensitive content in
source files is necessary.” [23]

Credential Scanner [78]

Use Continuous Learning and
Monitoring

“Gain better visibility into
your application health and
proactively identify and
mitigate risks to reduce
exposure to attacks.” [23]

Advanced Threat
Detection [79]

Manage Security Risk of using
Third-Party Components

“Having an accurate inventory
of third-party components
and a plan to respond for new
vulnerabilities are discovered.”
[69]

Managing Security
Risks Inherent in the
Use of Third-Party
Components [80]

Use Approved Tools “Define and publish a list of
approved tools and their
associated security checks.”
[69]

Managing Security
Risks Inherent in the
Use of Third-Party
Components [80]

Perform Penetration Testing “Penetration tests performed
in conjunction with automated
and manual code reviews
provide greater level of
analysis.” [69]

SDL Tools [81]

Establish a Standard Incident
Response Process

“It should be created in
coordination with your
organization’s dedicated
Product Security Incident
Response Team
(PSIRT).” [69]

Attack Surface Analyzer
[82]

SDL Security Bug Bar
Sample [73]

42

Conduct Threat Modeling:
Performing threat modeling allows for the identification of potential threats and vulnerabilities, and
the enumeration of possible mitigating controls. This helps to secure applications and services
during the production run-time stage [27]. Additionally, it is important to secure the artifacts,
CI/CD pipeline, and other tooling environments used for building, testing, and deployment [27].

The threat modeling should have aspects of:

• Defined security requirement of the applications [27].

• Analyze application components, data connectors and their relationship [27].

• Potential threats and attack vectors that application components might be exposed to [27].

• Identify applicable security controls to mitigate the threats [27].

• Identify potential controls gaps that require additional treatment [27].

• Enumerate and design the controls that can mitigate the vulnerabilities identified [27].

The use of the STRIDE model can help to enumerate threats from both internal and external
sources and identify applicable controls [27]. It is important to ensure that the threat modeling
process includes threat scenarios in the DevOps process. This can help to improve the security of
applications and services.

Software Supply Chain Security:
“Ensure enterprise’s SDLC include a set of security controls to govern in-house and third-party
software component is important [27].” Having a defined gating criteria to prevent vulnerable or
malicious components being integrated and deployed into the environment is important. It should
have at least the following aspect:

• “Inventory and track the in-house and third-party software components for known
vulnerability when there is a fix available in the upstream [27].”

• “Assess the vulnerabilities and malware in the software components using static and
dynamic application testing for unknown vulnerabilities [27].”

• “Ensure the vulnerabilities and malware are mitigated using the appropriate approach such
as include source code local or upstream fix, feature exclusion and/or applying
compensating controls if the direct mitigation is not available [27].”

If using closed source third-party component, it’s important to consider additional controls such as
“include source code local or upstream fix, feature exclusion and/or applying compensating controls
if the direct mitigation is not available [27].”

For Azure DevOps, “third-party extensions can be implemented to analyze and remediate third-
party software components and vulnerabilities [27].”

Secure DevOps infrastructure:
Ensure the DevOps infrastructure and pipeline follow the best practices mentioned above along
with security control for following scopes:

43

• CI/CD pipeline configuration [27].

• Servers, services, and tooling that hosting CI/CD pipelines [27].

• Artifact repositories that store source code, built packages and images, project artifacts and
business data [27].

The following controls should be prioritized:

• “Protect artifacts and underlying environment to ensure the CI/CD pipelines don’t become
avenues to insert malicious code [27].”

• “Avoid providing permanent “standing” privileged access to the human accounts such as
developers or testers [27].”

• “Remove keys, credentials, and secrets from code and scripts used in CI/CD workflow jobs
and keep them in key store or Azure Key Vault [27].”

Integrate static/dynamic application security testing into DevOps pipeline:
Ensure SAST and DAST are a part of gating controls in the CI/CD flow. “The gating can be set
based on the testing results to prevent vulnerable packages from committing into the repository,
building into the packages, or deploying into the production [27].”

Integrate SAST into the pipeline for source code to be scanned automatically and DAST for runtime
application. “The automated penetration testing (with manual assisted validation) should also be part
of the DAST [27].”

Enforce security of workload throughout DevOps lifecycle:
Ensure the workload is secured throughout the entire lifecycle in development, testing, and
deployment stage. Use Azure Security Benchmark to evaluate the control and ensure the following
controls are in place:

• “Ensure VMs, container images and other artifacts are secure from malicious manipulation
[27].”

• “Automate the deployment by using Azure in CI/CD workflow, infrastructure management,
and testing to reduce human error and attack surface [27].”

• “Scan the workload artifacts prior to deployment [27].”

• “Deploy vulnerability assessment and threat detection capability into the production
environment and continuously use these capabilities in the run-time [27].”

2.9.3. DoD DevSecOps standard
DevSecOps is recognized as the central theme of software modernization across the DoD that
enables the delivery of resilient software capability [31]. In the paper they suggested following
guiding principles which create guardrails for Sandia’s DevSecOps teams.

Relentless pursuit of Agile:

Core competencies which define functional relationships that Sandia’s EMTS team should value:

• “Individuals and Interactions over Processes and Tools [31].”

44

• “Working Software over Comprehensive Documentation [31].”

• “Customer Collaboration over Contract Negotiations [31].”

• “Responding to Change over Following a Plan [31].”

These competencies emphasize a certain value over the other, but it shouldn’t be interpreted as of
the latter are irrelevant. This should be seen as the latter are also important but not at the cost of
former.

Software factories mandate baked-in security:
In DoD, a key differentiator in DevSecOps is “functional and security capabilities are tested and
built simultaneously, with a series of recognized control gates that aim to prevent defect escapes and
enhance the cyber survivability of the software artifact before release into the next environment
[31].” Along with the use of Azure’s cyber defender tools such as Microsoft Defender for Cloud,
Sandia will be able to better monitor and have better feedback for future updates and patches.

Integrated, automated & continuous end-to-end testing and monitoring:
The shift towards “Continuous Authorization to Operate (CATO) stipulates continuous testing and
monitoring that shifts the risk assessment further left to evaluate the people, platform, and processes
using real-time data-driven metrics [31].” Each phase of the DevSecOps in Sandia should contribute
in their own unique way to the real-time performance metrics along with continuous monitoring.

Immutability of infrastructure achieved via “x as Code” design patterns:
Sandia should use “Infrastructure as Code, Policy as Code, and Everything as Code techniques
provides security and value in a number of ways [31]” for the shift to immutability of infrastructure.
It helps avert error-prone step-by-step manual deployments and configuration. It also confirms
commands are executed as expected. This principle “establishes a clear mandate for automated
infrastructure configuration driven by code. Code can be version controlled, tested, peer reviewed,
and its execution (logs) tracked [31].”

2.9.4. NIST for Secure DevSecOps
NIST is a “collaborative hub where industry organizations, government agencies, and academic
institutions work together to address businesses’ most pressing cybersecurity challenges [45].” They
utilize existing guidance, practice, and recommendations that’s applicable to develop their standards
for DevSecOps.

NIST’s Value Proposition:
NIST’s risk-based approach for secure software development have several positive impacts.

More security with little delay:

45

This approach is “designed to implement better security while minimizing the delay to software
production [68].” As the security responsibilities shift left to development, it helps shorten the time
for security precautions like source code review and threat modeling.

Mitigate vulnerabilities through the software development lifecycle (SDLC):
This approach aimed to improve security through all phase of the SDLC, not just the development.
It is important to test the application throughout the cycle as some vulnerability may show up in one
set of testing but not in the other [68].

Reduce friction between Development, Operations and Security Teams:
It is essential to make sure the company has the speed and agility to meet the organization’s goal
utilizing the automation and latest security technology. Along with security testing built in the
automation, it’s also important that the security team have visibilities into development teams’
operations and workflow so they can provide advice on mitigating insecure practices [68].

Software Supply Chain and DevOps Security Practices:
Most software today relies on third-party components, which is a security vulnerability as
organizations have “little to no visibility into or understand how it is developed, integrated,
deployed, and maintained [45].” The security concerns tied into third-party components need to be
addressed to improve the security of DevOps. To manage cybersecurity risk from third-party
software components, “identifying, assessing, selecting, and implementing processes and mitigating
controls [45]” should be involved. This risk management can be integrated into DevSecOps through
automation.

The secure software development practice should be implemented throughout SDLC for the
following reasons:

• “To reduce the number of vulnerabilities in released software [45].”

• “To reduce the potential impact of the exploitation of undetected or unaddressed
vulnerabilities by both external attacks and insider threat [45].”

• “To address the root causes of vulnerabilities to prevent recurrences [45].”

Security Control Map:
In cited document 45, Table 1 on page 9-16 maps the characteristics of the closed source and open-
source products to applicable standards and recommended practices in the forms of SSDF practices
and tasks associated to improve the Critical Infrastructure Cybersecurity [45].

This table contains important practices described in detail along with SSDF tasks to provide
guidelines and ideas to support the practices.

46

3. FINAL RECOMMENDATIONS

3.1. Picking the Right Infrastructure
Infrastructure is a critical tool that should be thought about when trying to implement DevOps and
CI/CD pipelines. Azure or Gitlab would be a great choice when trying to implement a DevOps
cycle and pipeline. It is important to note that every pipeline and cycle will be very dependent on the
goal and expected outcome. The three main pipelines that are implemented at Sandia National Labs
are Jenkins, GitLab, and Azure. Most teams at Sandia use Gitlab because of the premium Gitlab
license and the instances that are used at Sandia. Azure has public cloud DevOps which can be
rather limiting because the Sandia tenet and the third-party extensions that will have to get
approved. Azure stack is also available on-premise which will allow for source code management,
issue tracking, agile tracking and code reviewing.

Integrating both Azure Stack and Gitlab would be the best way to develop a CI/CD pipeline and
DevOps cycle. To implement this idea, Gitlab and Azure accounts are needed. With the help of
GitLab's extensive DevOps platform and integrated CI/CD system, your team can manage code
more effectively, automate testing, and release new features and updates more quickly. From a single
platform, it enables developers to write, test, deploy code, store scripts, and store client data.
Additionally, GitLab offers a common platform for all participants, fostering teamwork and
transparency—two fundamental tenets of the DevOps mindset. On the other hand, Microsoft offers
Azure, a highly scalable, dependable, and accessible cloud platform. Azure integration with your
DevOps and CI/CD pipeline enables you to manage and deploy your applications quickly in a stable
cloud environment. Azure is adaptable for various project requirements since it supports a range of
programming languages, tools, and frameworks, including both Microsoft-specific and third-party
applications.

GitLab and Azure stacks work together to streamline every step of the software delivery process.
The Azure stack offers a versatile and scalable platform for deploying and administering the
application, and GitLab enables effective code integration and testing. This combination speeds up
the process of delivering applications to end customers while also increasing the productivity of your
team. Your team may concentrate more on development work because you don't have to operate
your own servers when you use Azure's cloud platform, which further lowers overhead.

3.2. Implementing Neoload Web with Azure and GitLab
Implementing NeoLoad Web with Azure and GitLab in a CI/CD pipeline can be a crucial part of
setting up an efficient DevOps cycle for load and stress testing. The process begins with defining the
application's codebase in GitLab. The codebase in GitLab is then linked to Azure, or another cloud
service platform.

The CI phase is initiated every time a new code is committed and pushed to the GitLab repository.
Azure Pipelines – an Azure DevOps service – can be utilized for this. A build process is initiated
which could include compilation, unit testing, and code quality checks. The results of these
processes are tracked and can serve as a gateway to whether the changes can be merged into the

47

main branch or not. For the CD phase, the pipeline can be configured to automatically deploy the
application to the appropriate environment in Azure. This could be a testing environment or a
production environment, depending on the branching strategy and pipeline configuration.

The starting point for doing load and stress testing at various levels of the pipeline is the integration
of NeoLoad Web. During load-testing, NeoLoad Web APIs enable the extraction of important
performance indicators. To simulate how the application would be used in the real world, these
performance tests could be carried out during the build process, before deployment to an
environment, or even after deployment. The teams can track performance trends over time by
sending test results back to GitLab and Azure. NeoLoad Web dashboards can also be utilized for in-
the-moment monitoring and for finer-grained data analysis. The pipeline can be set up to stop
further distribution and alert the team if the performance test fails.

GitLab, Azure, and NeoLoad Web can be integrated to provide a solid and efficient DevOps cycle.
Organizations may assure quicker, more reliable releases while maintaining a high level of
performance and code quality by putting up this CI/CD pipeline. It is important to note that the
EMTS team will still have to write scripts for clients but other processes like emails, removing
information, scheduling, and running scripts can be automated.

3.3. Integrating Azure and Gitlab with Burp Suite
Burp Suite integration into an Azure and GitLab CI/CD pipeline adds a useful tool for automating
security testing as part of the DevOps cycle. Establishing the codebase within GitLab is the initial
step. This platform makes it simple to collaborate, version code, and initiate CI every time new code
is committed and published to the GitLab repository. This stage can be handled by Azure Pipelines,
a component of Azure DevOps services. The build phase, which could involve operations like
compilation, unit testing, and code quality checks, starts after the CI phase is launched. Once these
procedures are complete, the results are watched to see if the changes can be merged into the main
branch. For CD, the pipeline is set up to deploy the application automatically to the appropriate
environment in Azure, based on the pipeline configuration and branching strategy. It could be a
testing or production environment.

For automated security testing, Burp Suite can now be added to the pipeline. Burp Scanner, a
scanning component of Burp Suite, can automatically explore and examine web applications for a
variety of security flaws. Automated security scans can be performed before deployment to an
environment or during the build process by integrating Burp Suite into the CI/CD pipeline. These
scans' outcomes can be communicated to GitLab and Azure, informing those teams of any security
vulnerabilities. The pipeline can be set up to stop deployment in the case that the security scan fails
and alert the team. This makes it possible to quickly mitigate security issues before they become a
production issue. Additionally, by integrating Burp Suite in this way, it is possible to track changing
security trends and continuously enhance application security posture.

When integrating Burp Suite with a CI/CD pipeline it is important to note that the recording of the
testing script cannot be automated unless clients submit their own recordings. It is not advisable to

48

have clients do their own recordings. However, scheduling, emails, error notification, and
variabilities reports can be automated but should get human approval before being sent out. Burp
Suite should be used for major web application changes that involve adding new features or
changing old features.

3.4. Deploying Zap for Automated Security Testing
Deploying ZAP with a CI/CD pipeline would be beneficial for automated security testing. Teams
could fully integrate Zap into a security testing pipeline. This will allow the team to create a One
Service page or other webpage that can handle CUI information that will be sent to a pipeline to
begin testing. The major application of this pipeline would be when a customer makes a minor
change that needs to be tested. After the test has finished the security testing team can look at the
generated report and then determine if there are any false positives.

By automating the process of identifying vulnerabilities in web applications, the integration of
OWASP ZAP into a CI/CD pipeline with Azure and Gitlab can greatly improve the security of
software development projects. For businesses aiming to identify and reduce security threats before
they enter the production environment and so strengthen overall security posture, this procedure is
crucial. OWASP ZAP is available as a Docker image. Setting up an OWASP ZAP Docker image is
the first step in incorporating ZAP into a CI/CD process. Docker is a containerization platform that
can package an application and its dependencies into a standardized unit for software development.
The Docker image can be adjusted and customized in accordance with the needs of a particular web
application that it needs to scan after being downloaded from the Docker Hub.

Next, Gitlab CI/CD is configured to automate the launching of the ZAP Docker image as part of
the pipeline. The GitLab CI configuration file (.gitlab-ci.yml) can be modified to add a new stage to
accomplish this. The steps in this stage should comprise the necessary commands to launch the
ZAP Docker container, carry out the necessary scan, and gather the results. A push artifact can then
be created with the results for further study. On the other side, Azure can host the application that
has to be scanned and offer the resources required to carry out ZAP scans. Azure DevOps can
make it easier to incorporate ZAP into the CI/CD workflow. Docker has built-in tasks available
through Azure DevOps that may be used to execute ZAP scans as part of the pipelines for building
and releasing software. Additionally, GitLab's CI/CD pipeline can be set up to be activated by
Azure DevOps anytime a change is pushed to the repository, ensuring that security checks are
performed continuously throughout the development process. The scan reports can be read, and
relevant action can be taken in response to the results when the pipeline has finished, and they have
been generated.

Zap can be used in a pipeline when a client needs to have minor changes looked at for variabilities.
Because Zap can be fully automated into a pipeline it has the opportunity to take some of the load
off of the EMTS team. This would allow the team to look at a report generated by Zap and verify
with the client if there are any vulnerabilities allowing the team to focus on major testing.

49

3.5. Standardizations for Security Testing

3.5.1. Follow OWASP Standards using Threat Modeling and Risk Assessments
The OWASP ASVS [50] is a comprehensive list of requirements and tests for software developers
and security professionals to build, test and verify secure web applications.

Organizations are strongly encouraged to look deeply at their unique risk characteristics based on
the nature of their business, and based upon that risk and business requirements, determine the
appropriate ASVS level. This level will determine the tradeoff between security and resources that is
appropriate for your application. Conducting risk assessments and creating threat models can help
you determine an appropriate ASVS level. Threat modeling will allow your organization to identify
vulnerabilities for specific applications through penetration testing or application security testing
scenarios. Some security testing tools have already been discussed in previous sections and will be
discussed later in this section. Risk assessments can then be used to determine the likelihood that
certain vulnerabilities will be exploited by attackers and their most likely points of attack. Both threat
modeling and risk assessment will allow you to determine how to best allocate resources when it
comes to security testing. Additionally, you will want to take into consideration what the application
does, what information it houses, and how that information could be used by adversaries. Looking
into these questions can help you understand the possible motivations of attackers and their
corresponding threats. The applications corresponding ASVS level should be apparent after
conducting a risk assessment and determining adversarial threats. Each security requirement within
the OWASP ASVS document has one or more associated ASVS levels. This allows you to customize
the standards report to better find the needs of your organization or application.

3.5.2. Integrate Early and Often Security Testing
An integral part of creating a DevSecOps pipeline is the concept of shift-left security. This means
following secure coding practices throughout the entire software development life cycle and
conducting security testing early and often. Automation should be used to conduct security tests as
code within applications is being pushed to the central repository.

3.5.3. Increase Collaboration Between Software Developers and Security
Professionals

Having software developers and security professionals work together when developing software not
only saves time and resources in the future, by preventing the need for entire applications to be
reworked because they are insecure, but it also helps promote the central idea of DevSecOps which
is integrating security early in the software development lifecycle. Additionally, increasing
collaboration between these groups will encourage the use of more secure coding practices and
security testing. Collaboration between groups also applies to groups within the software
development team. Increased collaboration between all the groups creates an environment where
there is at least one person who has full visibility of the project and can keep tasks moving forward.
The idea of close collaboration should also prevent groups from experiencing deadlock with other
groups and decrease frustration when it comes to teamwork.

50

3.5.4. Use the Microsoft Security Code Analysis Toolset
The MSCA toolset is an extension for the Azure DevOps pipeline service. It is a collection of tools
and tasks that contribute to the secure development of software. Static and dynamic testing tools are
included within MSCA. Additionally, analysis and result logging tasks are already built in. This tool is
aimed at implementing the SDL into software development. Integration with Azure DevOps makes
it easy to automate tests and therefore catch and remediate security issues early and often within the
development lifecycle. MSCA also provides scanning tools to help ensure that the pipeline and
DevOps team are following best practices. Risks can be reduced because MSCA can be used to
address issues with the code by notifying developers and blocking Pull Requests when issues are
found.

3.6. Standardizations for Pipelines

3.6.1. Implementation of Immutable Infrastructure

When using CI/CD pipelines, immutable infrastructure must be implemented. This concept asserts
that once a service is deployed, no alterations should occur to the live infrastructure. Rather than
applying updates or patches to the existing infrastructure, a new infrastructure should be built from
a standard image, containing all the required updates. This approach helps reduce inconsistencies in
the environments, enhances the repeatability of the deployments, and adds to the system's resilience.
In case of a failure, a new infrastructure can be spun up quickly from the standard image.

3.6.2. Compliance with Standard Practices and Procedures

Pipelines should strictly adhere to established standards. This includes following a standardized
directory structure for projects, adhering to coding standards, implementing code reviews, and using
version control. These practices help ensure high code quality, ease of maintenance, and effective
collaboration. In addition, version control systems provide a reliable mechanism for backing up and
restoring the codebase.

3.6.3. Rigorous Testing and Monitoring

Any changes to code or configuration should be accompanied by comprehensive testing and
continuous monitoring. This would include unit testing, integration testing, performance testing,
security testing, and any other testing relevant to the specific application. Monitoring should be
performed not just at the infrastructure level but also at the application level to ensure that any
issues are detected and addressed promptly. Testing and tracking critical for ensuring that the
delivered software meets the required quality standards and performs as expected in the production
environment.

51

3.6.4. Incorporation of Security Practices

The practice of shift-left security, where security considerations are moved earlier in the
development cycle, should be adopted by developers. This entails integrating security practices into
every CI/CD pipeline phase. Static code analysis should be performed to detect any potential
security vulnerabilities in the code. Dynamic analysis should be conducted to detect runtime
vulnerabilities. Security checks should also be incorporated into the pipeline to ensure compliance
with security standards. In addition, appropriate measures should be taken to protect sensitive
information in the development, testing, and production environments.

3.6.5. Development of a Disaster Recovery Plan

Pipeline designers should ensure that a comprehensive disaster recovery plan is in place. The CI/CD
pipeline should be designed to enable quick and reliable recovery in case of any disasters. This
includes ensuring that all critical data is backed up regularly so it can be restored quickly if there is a
major issue. The recovery procedures should be documented and regularly updated. Regular drills
should be conducted to ensure that the recovery procedures work as expected and that all team
members are familiar with them. The plan should also include provisions for communication and
coordination during a disaster.

3.7. Standardizations for DevSecOps

3.7.1. Adoption of Infrastructure as Code
When creating a DevOps cycle, developers should embrace the practice of Infrastructure as Code to
manage and provision their technological frameworks. By utilizing tools such as Terraform, Ansible,
or Chef, they can easily create, change, and improve their infrastructure with version control,
automation, and consistency. Infrastructure becomes reproducible and scalable, mitigating the risk
of human error associated with manual processes. Moreover, IaC can review and test changes in a
staging environment before implementing them into production, promoting a more robust and
resilient infrastructure.

3.7.2. Frequent Iterative Updates Over Massive Overhauls
Developers must adopt a CI/CD approach to application development and updates. This allows for
small, regular application updates instead of massive, infrequent overhauls. This approach reduces
the risk associated with changes, as smaller updates are easier to test and validate. It also allows for
quicker responses to security vulnerabilities, as patches can be developed, tested, and deployed
rapidly. Tools like Jenkins, GitLab, or Azure can aid in implementing a CI/CD pipeline.

52

3.7.3. Adopt Monitoring and Logging Practices
Effective monitoring and logging are essential for maintaining system health and troubleshooting
issues. Implementing a comprehensive monitoring solution provides visibility into the performance
of applications, servers, and networks. It should cover key performance indicators, error rates, and
user experience metrics. In conjunction with logging, which records events and transactions within
the system, the operations team can quickly identify and resolve problems, reducing downtime and
enhancing the reliability of services.

3.7.4. Security-First Approach
Sensitive and crucial data will be available to developers when creating a DevOps cycle, so
developers must adopt a security-first approach. This involves security practices being baked into
the development lifecycle, not just addressed at the final stage or as an afterthought. Techniques
such as automated security scans, regular code reviews, secure coding practices, and employing a
least privilege model for access controls should be commonplace. Technologies like Security as
Code and tools such as SonarQube can help automate security checks within the development
process.

3.7.5. Promotion of a Collaborative Culture
A collaborative culture should be fostered within developers. Communication, knowledge-sharing,
and cross-skilling are all vital components of an effective DevOps strategy. An environment where
developers and operations teams understand each other's challenges and work together to resolve
them encourages faster problem-solving, innovation, and a more efficient working process.

53

4. REFERENCES
[1]

“Burp Suite Enterprise Edition vs. Burp Suite Professional,” portswigger.net.
https://portswigger.net/burp/enterprise/resources/enterprise-edition-vs-professional

[2]

monya, “Burp Pro vs Burp Enterprise - Burp Suite User Forum,” forum.portswigger.net.
https://forum.portswigger.net/thread/burp-pro-vs-burp-enterprise-ada7e6db (accessed Jul. 06,
2023).

[3]

E-SPIN, “Burp Suite Pro vs Enterprise what the differences,” E-SPIN Group, Nov. 19, 2021.
https://www.e-spincorp.com/burp-suite-pro-vs-enterprise-what-the-differences/

[4]

iCorps Technologies, “The Pros and Cons of Microsoft Azure: Cloud Services for Businesses,”
blog.icorps.com, Jan. 16, 2022. https://blog.icorps.com/pros-and-cons-microsoft-
azure#:~:text=Here%20are%20the%20Pros%20and%20Cons%20of%20Microsoft

[5]

M. Shivanandhan, “How to Use Burp Suite to Audit Web Applications – Pentesting and Bug
Bounty Tool Overview,” freeCodeCamp.org, Jan. 17, 2023.
https://www.freecodecamp.org/news/how-to-audit-web-apps-with-burpsuite/ (accessed Jul. 06,
2023).

[6]

GeeksforGeeks, “What is Burp Suite?,” GeeksforGeeks, Aug. 22, 2019.
https://www.geeksforgeeks.org/what-is-burp-suite/

[7]

S. Shukla, “Understanding Burp Suite Intruder Attack Types,” www.linkedin.com, Oct. 04, 2017.
https://www.linkedin.com/pulse/basic-tutorial-security-testing-using-burp-force-qa-engineer-
(accessed Jul. 06, 2023).

[8]

“Configuring Burp Intruder attacks,” portswigger.net, Jul. 06, 2023.
https://portswigger.net/burp/documentation/desktop/tools/intruder/configure-attack

https://gcc02.safelinks.protection.outlook.com/?url=http%3A%2F%2Fportswigger.net%2F&data=05%7C01%7Cdsdonof%40sandia.gov%7Cf7e0b601db17466a871908db7e3a1e95%7C7ccb5a20a303498cb0c129007381b574%7C1%7C0%7C638242560320335548%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=lV%2Buyk5gE8zgN3mqHVNIncQo%2BwMMgLdIvM0eJe04jEA%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fportswigger.net%2Fburp%2Fenterprise%2Fresources%2Fenterprise-edition-vs-professional&data=05%7C01%7Cdsdonof%40sandia.gov%7Cf7e0b601db17466a871908db7e3a1e95%7C7ccb5a20a303498cb0c129007381b574%7C1%7C0%7C638242560320335548%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=nl6K%2FauY7ZHuQDtBZgVup5auwVK%2FxSlDU%2FZ2V4sQWcE%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=http%3A%2F%2Fforum.portswigger.net%2F&data=05%7C01%7Cdsdonof%40sandia.gov%7Cf7e0b601db17466a871908db7e3a1e95%7C7ccb5a20a303498cb0c129007381b574%7C1%7C0%7C638242560320335548%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=0rgIY9qldoNIh0d7g2jQ0tl2dSROKYvbNpVEjzOUhPI%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=http%3A%2F%2Fblog.icorps.com%2F&data=05%7C01%7Cdsdonof%40sandia.gov%7Cf7e0b601db17466a871908db7e3a1e95%7C7ccb5a20a303498cb0c129007381b574%7C1%7C0%7C638242560320335548%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=jMn8r8bwicysrFqQQccQVdW%2FpT9Ijetoa%2Flw1bSHTjA%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.linkedin.com%2F&data=05%7C01%7Cdsdonof%40sandia.gov%7Cf7e0b601db17466a871908db7e3a1e95%7C7ccb5a20a303498cb0c129007381b574%7C1%7C0%7C638242560320335548%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=Fr70KVXhUfOsXAFffYGO6RvtIfgNmwOzfhTPN6V35u8%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=http%3A%2F%2Fportswigger.net%2F&data=05%7C01%7Cdsdonof%40sandia.gov%7Cf7e0b601db17466a871908db7e3a1e95%7C7ccb5a20a303498cb0c129007381b574%7C1%7C0%7C638242560320335548%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=lV%2Buyk5gE8zgN3mqHVNIncQo%2BwMMgLdIvM0eJe04jEA%3D&reserved=0

54

[9]

“Burp Intruder attack types,” portswigger.net, Jul. 06, 2023.
https://portswigger.net/burp/documentation/desktop/tools/intruder/configure-attack/attack-
types

[10]

“burpsuite | Kali Linux Tools,” Kali Linux. https://www.kali.org/tools/burpsuite/

[11]

M. Atkinson, “Some of the best Burp extensions - as chosen by you,” PortSwigger Blog, May 27, 2021.
https://portswigger.net/blog/some-of-the-best-burp-extensions-as-chosen-by-you (accessed Jul. 06,
2023).

[12]

F. Cheng, “Burp Suite,” LO4D.com. https://burp-suite.en.lo4d.com/windows (accessed Jul. 06,
2023).

[13]

“BApp Store,” portswigger.net. https://portswigger.net/bappstore

[14]

A. Entry, “How to use Autorize,” Medium, Jan. 12, 2021.
https://authorizedentry.medium.com/how-to-use-autorize-fcd099366239 (accessed Jul. 06, 2023).

[15]

james kettle, “Turbo Intruder: Embracing the billion-request attack,” PortSwigger Research, Jan. 25,
2019. https://portswigger.net/research/turbo-intruder-embracing-the-billion-request-attack
(accessed Jul. 06, 2023).

[16]

“Turbo Intruder,” GitHub, Jul. 06, 2023. https://github.com/PortSwigger/turbo-intruder (accessed
Jul. 06, 2023).

[17]

G. Heyes, “Hackvertor,” portswigger.net.
https://portswigger.net/bappstore/65033cbd2c344fbabe57ac060b5dd100 (accessed Jul. 06, 2023).

https://gcc02.safelinks.protection.outlook.com/?url=http%3A%2F%2Fportswigger.net%2F&data=05%7C01%7Cdsdonof%40sandia.gov%7Cf7e0b601db17466a871908db7e3a1e95%7C7ccb5a20a303498cb0c129007381b574%7C1%7C0%7C638242560320335548%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=lV%2Buyk5gE8zgN3mqHVNIncQo%2BwMMgLdIvM0eJe04jEA%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=http%3A%2F%2Fportswigger.net%2F&data=05%7C01%7Cdsdonof%40sandia.gov%7Cf7e0b601db17466a871908db7e3a1e95%7C7ccb5a20a303498cb0c129007381b574%7C1%7C0%7C638242560320491326%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=CB3ustEEjQMNAfeFxy8jPeigPLfOl0aqLZBD1ppfQW0%3D&reserved=0

55

[18]

“Burp Bounty – Website vulnerability scanner,” Burp Bounty. https://burpbounty.net/ (accessed Jul.
06, 2023).

[19]

“param-miner,” GitHub, Mar. 31, 2023. https://github.com/intruder-io/param-miner (accessed Jul.
06, 2023).

[20]

“Best Practices for Successful CI/CD | TeamCity CI/CD Guide,” JetBrains.
https://www.jetbrains.com/teamcity/ci-cd-guide/ci-cd-best-practices/ (accessed Jul. 06, 2023)

[21]

mijacobs, “Azure Pipelines baseline architecture - Azure Pipelines,” learn.microsoft.com, May 08, 2023.
https://learn.microsoft.com/en-us/azure/devops/pipelines/architectures/devops-pipelines-
baseline-architecture?view=azure-devops (accessed Jul. 06, 2023).

[22]
mijacobs, “Azure Pipelines baseline architecture - Azure Pipelines,” learn.microsoft.com, May 08, 2023.
https://learn.microsoft.com/en-us/azure/devops/pipelines/architectures/devops-pipelines-
baseline-architecture?view=azure-devops#considerations (accessed Jul. 06, 2023).

 [23]
“Microsoft Security DevOps,” Microsoft.com, 2019. https://www.microsoft.com/en-
us/securityengineering/devsecops (accessed Jul. 06, 2023).

[24]
mijacobs, “What is infrastructure as code (IaC)? - Azure DevOps,” learn.microsoft.com.
https://learn.microsoft.com/en-us/devops/deliver/what-is-infrastructure-as-code

[25]
https://plus.google.com/100518058839384323139, “What is Invicti?,” www.invicti.com, Mar. 09, 2022.
https://www.invicti.com/support/what-is-invicti/

[26]
steved0x, “Azure Pipelines Agents - Azure Pipelines,” learn.microsoft.com, Jun. 20, 2023.
https://learn.microsoft.com/en-us/azure/devops/pipelines/agents/agents?view=azure-
devops&tabs=browser#install (accessed Jul. 11, 2023).
[27]

56

baldwin, “Azure Security Benchmark v3 - DevOps Security,” learn.microsoft.com, Nov. 14, 2022.
https://learn.microsoft.com/en-us/security/benchmark/azure/security-controls-v3-devops-security
(accessed Jul. 14, 2023).

[28]
B. Reselman, “A developer’s guide to CI/CD and GitOps with Jenkins Pipelines,” Red Hat Developer,
Jan. 13, 2022. https://developers.redhat.com/articles/2022/01/13/developers-guide-cicd-and-
gitops-jenkins-pipelines#how_jenkins_supports_ci_cd (accessed Jul. 17, 2023).

[29]
“What Is Jenkins in CI/CD - Everything You Need To Know,” Knowledge Base by phoenixNAP, Jan.
20, 2022. https://phoenixnap.com/kb/what-is-jenkins (accessed Jul. 17, 2023).

[30]
JenkinsCI, “Pipeline,” Pipeline. https://www.jenkins.io/doc/book/pipeline/

[31]
U. Unclassified, “DoD Enterprise DevSecOps Strategy Guide CLEARED For Open Publication
Department of Defense OFFICE OF PREPUBLICATION AND SECURITY REVIEW,” Sep.
2021. Accessed: Jul. 18, 2023. [Online]. Available:
https://dodcio.defense.gov/Portals/0/Documents/Library/DoD%20Enterprise%20DevSecOps%
20Strategy%20Guide_DoD-CIO_20211019.pdf

[31]
G. Lab, “CI/CD pipelines | GitLab,” docs.gitlab.com. https://docs.gitlab.com/ee/ci/pipelines/

[32]
Neotys, “Deploying NeoLoad Web,” Neotys Connect.
https://connect.neotys.com/tutorials/deploying-neoload-web (accessed Jul. 18, 2023).

[33]
MongoDB, “MongoDB Atlas Database | Multi-Cloud Database Service,” MongoDB, Oct. 19, 2021.
https://www.mongodb.com/atlas/database

[34]
paulsbruce, “neoload_kube/aws/nlw_deploy_eks.md at master · Neotys-Connect/neoload_kube,”
GitHub, Dec. 01, 2020. https://github.com/Neotys-
Connect/neoload_kube/blob/master/aws/nlw_deploy_eks.md (accessed Jul. 18, 2023).

[35]
paulsbruce , “neoload_kube/aws/dynamic_infra.md at master · Neotys-Connect/neoload_kube,”
GitHub, Dec. 01, 2020. https://github.com/Neotys-
Connect/neoload_kube/blob/master/aws/dynamic_infra.md (accessed Jul. 18, 2023).

[36]
neotysbde, “neoload-web-test-launcher-docker/AzureDevops-usage.md at master · Neotys-
Labs/neoload-web-test-launcher-docker,” GitHub, Nov. 18, 2019. https://github.com/Neotys-

57

Labs/neoload-web-test-launcher-docker/blob/master/AzureDevops-usage.md (accessed Jul. 18,
2023).

[37]
FROD-Neotys , “NeoLoad Web OpenShift template,” GitHub, Jan. 28, 2023.
https://github.com/Neotys-Labs/neoload-web-openshift-template (accessed Jul. 18, 2023).

[38]
P. Kirvan, “What is Red Hat OpenShift? | Definition from TechTarget,” Cloud Computing.
https://www.techtarget.com/searchcloudcomputing/definition/Red-Hat-OpenShift (accessed Jul.
18, 2023).

[39]
A. Gillis, “What is MongoDB? A definition from WhatIs.com,” SearchDataManagement.
https://www.techtarget.com/searchdatamanagement/definition/MongoDB

[40]
Lambdatest, “Stress Testing Tutorial: Comprehensive Guide With Best Practices,”
www.lambdatest.com. https://www.lambdatest.com/learning-hub/stress-testing#best-practices
(accessed Jul. 19, 2023).

[42]
atatus, “What is Load Testing? Processes, Types, Best Practices, Tools, and More,” Atatus Blog - For
DevOps Engineers, Web App Developers and Server Admins., Aug. 25, 2021.
https://www.atatus.com/blog/what-is-load-testing/#best-practices-for-lt (accessed Jul. 19, 2023).

[43]
Dr. C. Thun, S. Prioux, and M. Cañamero, “Stress Testing Best Practices: A Seven Steps Model |
Moody’s Analytics,” www.moodysanalytics.com, Sep. 2013. https://www.moodysanalytics.com/risk-
perspectives-magazine/stress-testing-europe/approaches-to-implementation/stress-testing-best-
practices-a-seven-steps-model

[44]
Joe, “9 Load Testing Best Practices (Don’t Make These Mistakes),” Automation Testing Made Easy
Tools Tips & Training, Mar. 17, 2020. https://testguild.com/best-load-testing/ (accessed Jul. 19,
2023).

[45]
M. Souppaya, M. Ogata, P. Watrobski, and K. Scarfone, “Software Supply Chain and DevOps
Security Practices: Implementing a Risk-Based Approach to DevSecOps,” csrc.nist.gov, Nov. 2022,
Accessed: Jul. 20, 2023. [Online]. Available:
https://csrc.nist.gov/pubs/pd/2022/11/09/implementing-a-riskbased-approach-to-
devsecops/final#:~:text=To%20help%20improve%20the%20security%20of%20DevOps%20practi
ces%2C

[45]

58

G2, “Best Load Testing Tools,” G2, May 2023. https://www.g2.com/categories/load-testing-tools
(accessed Jul. 20, 2023).

[46]
Apache Software Foundation, “Apache JMeter - Apache JMeterTM,” Apache.org, 2019.
https://jmeter.apache.org/

[47]
Microsoft, “Microsoft Azure Marketplace,” azuremarketplace.microsoft.com.
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/micro-focus.ms-
loadrunner?tab=overview (accessed Jul. 20, 2023).

[48]
A. Murray, “Vulnerability Management - Everything You Need To Know,” Mend, Dec. 2, 2021.
https://www.mend.io/blog/vulnerability-management/ (accessed Jul. 18, 2023).

[49]
A. Murray, “All About Application Security: Tools, Types, Trends in 2023,” Mend, Dec. 29, 2022.
https://www.mend.io/blog/application-security/ (accessed Jul. 18, 2023).

[50]
“Application Security Verification Standard 4.0 Final,” 2019. Available: https://owasp.org/www-
pdf-archive/OWASP_Application_Security_Verification_Standard_4.0-en.pdf

[51]
“Azure security test practices - Microsoft Azure Well-Architected Framework,” learn.microsoft.com,
Mar. 24, 2023. https://learn.microsoft.com/en-us/azure/well-architected/security/monitor-test
(accessed Jul. 20, 2023).

[52]
“Burp Suite for Beginners Part 1: Setup and Target/Proxy Tools,” jaimelightfoot.com, Jan. 12, 2019.
https://jaimelightfoot.com/blog/burp-suite-for-beginners-setup-and-target-proxy-tools/ (accessed
Jul. 18, 2023).

[53]
“Center for Internet Security (CIS) Benchmarks - Microsoft Compliance,” learn.microsoft.com. June
5, 2021. https://learn.microsoft.com/en-us/compliance/regulatory/offering-cis-benchmark
(accessed Jul. 18, 2023).

[54]
“Cyber security assessments,” RedSquall, https://www.redsquall.com/ (accessed Jul. 18, 2023).

[55]
D. Support, “Microsoft Security Code Analysis – a tool that seamlessly empowers customers to
enable security controls in your CI/CD pipeline,” Developer Support, Dec. 02, 2019.
https://devblogs.microsoft.com/premier-developer/microsoft-security-code-analysis/ (accessed Jul.
20, 2023).

59

[56]
“Home,” GitHub. https://github.com/Microsoft/AttackSurfaceAnalyzer/wiki/ (accessed Jul. 20,
2023).

[57]
“Microsoft Security Assessment.” Accessed: Jul. 20, 2023. [Online]. Available:
https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RWOdEk#:~:text=Microsoft%20Se
curity-Microsoft.com, 2023.
https://download.microsoft.com/documents/uk/technet/downloads/technetmagazine/utilityukde
sfin.pdf (accessed Jul. 20, 2023).

[58]
N. G. Cuthbert Daniel, “Practical tips on how to use application security testing and testing
standards,” Microsoft Security Blog, Oct. 05, 2021. https://www.microsoft.com/en-
us/security/blog/2021/10/05/practical-tips-on-how-to-use-application-security-testing-and-testing-
standards/ (accessed Jul. 20, 2023).

[59]
O. Moradov, “Security testing: Types, tools, and best practices,” Bright Security, May 29, 2022.
https://brightsec.com/blog/security-testing/ (accessed Jul. 18, 2023).

[60]
O. Moradov, “What Is OWASP and What Are OWASP Top 10 for Web/API/Mobile?,” Bright
Security, Jul. 20, 2022. https://brightsec.com/blog/owasp/ (accessed Jul. 18, 2023).

[61]
OWASP, “OWASP Application Security Verification Standard,” owasp.org.
https://owasp.org/www-project-application-security-verification-standard/
“System requirements for standard deployments,” portswigger.net. July 3, 2023.
https://portswigger.net/burp/documentation/enterprise/getting-started/system-
requirements/standard-sys-req (accessed Jul. 18, 2023).

[62]
“Vulnerabilities detected by Burp Scanner,” portswigger.net. June 8, 2023.
https://portswigger.net/burp/documentation/scanner/vulnerabilities-list (accessed Jul. 18, 2023).

[63]
“Configuring your environment network and firewall settings,” PortSwigger, Nov. 11, 2022.
Accessed: Nov. 20, 2022. [Online]. Available:
https://portswigger.net/burp/documentation/enterprise/getting-started/network-firewall-config

[64]
zaproxy, “The ZAP Homepage,” Zaproxy.org, 2022. https://www.zaproxy.org (accessed Jul. 20,
2023).

[65]
D. Lukanov, “How to integrate OWASP ZAP in Gitlab CI/CD pipeline.,” Codific, Dec. 29, 2022.
https://codific.com/integrate-owasp-zap-and-gitlab/ (accessed Jul. 20, 2023).

60

[66]
G. Hegde , “Configure OWASP ZAP Security Tests in Azure DevOps - DZone,” dzone.com, Jul. 10,
2019. https://dzone.com/articles/owasp-zap-security-tests-in-azure-devops-pipeline (accessed Jul.
20, 2023).

[67]
I. T. L. Computer Security Division, “DevSecOps | CSRC | CSRC,” CSRC | NIST, Oct. 21, 2020.
https://csrc.nist.gov/Projects/devsecops

[68]
“NIST’s recommendations for secure DevSecOps,” GitGuardian Blog - Automated Secrets Detection,
Aug. 04, 2021. https://blog.gitguardian.com/nist-recommendations-for-secure-devsecops/

[69]
“Microsoft Azure Marketplace,” azuremarketplace.microsoft.com.
https://azuremarketplace.microsoft.com/en-
us/marketplace/apps/smartbearsoftware.readyapi_testengine?tab=overview (accessed Jul. 24, 2023).

 [70]
“Gatling,” GitHub, May 28, 2023. https://github.com/gatling/gatling

[71]

Microsoft, “Microsoft Security Development Lifecycle Practices,” Microsoft.com, 2019.
https://www.microsoft.com/en-us/securityengineering/sdl/practices

[72]
“Azure Boards | Microsoft Azure,” azure.microsoft.com. https://azure.microsoft.com/en-
us/products/devops/boards/

[73]
“Appendix N: SDL Security Bug Bar (Sample),” learn.microsoft.com. https://learn.microsoft.com/en-
us/previous-versions/windows/desktop/cc307404(v=msdn.10)?redirectedfrom=MSDN

[74]
“OSS Secure Supply Chain Framework,” www.microsoft.com. https://www.microsoft.com/en-
us/securityengineering/opensource

[75]
“Microsoft SDL Cryptographic Recommendations,” Microsoft.com, 2022.
http://download.microsoft.com/download/6/3/A/63AFA3DF-BB84-4B38-8704-
B27605B99DA7/Microsoft%20SDL%20Cryptographic%20Recommendations.pdf

[76]

61

Microsoft, “Microsoft Security Development Lifecycle Threat Modelling,” Microsoft.com, 2018.
https://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling

[77]
TerryLanfear, “Microsoft Security Code Analysis documentation overview,” learn.microsoft.com, Jan.
09, 2023. https://learn.microsoft.com/en-us/previous-versions/azure/security/develop/security-
code-analysis-overview (accessed Jul. 28, 2023).

[78]
TerryLanfear, “Azure threat protection,” learn.microsoft.com. https://learn.microsoft.com/en-
us/azure/security/fundamentals/threat-detection

[79]
“Managing Security Risks Inherent in the Use of Third- party Components.” Available:
https://safecode.org/wp-content/uploads/2017/05/SAFECode_TPC_Whitepaper.pdf

[80]
“Microsoft Security Development Lifecycle Resources,” www.microsoft.com.
https://www.microsoft.com/en-us/securityengineering/sdl/resources

[81]
“Attack Surface Analyzer,” GitHub, Oct. 07, 2022.
https://github.com/Microsoft/AttackSurfaceAnalyzer

[82]
dcurwin, “Alert response tutorial - Microsoft Defender for Cloud,” learn.microsoft.com, Jun. 29, 2023.
https://learn.microsoft.com/en-us/azure/defender-for-cloud/tutorial-security-incident (accessed
Jul. 31, 2023).

62

DISTRIBUTION

Email—Internal
Name Org. Sandia Email Address

Tanya DeLara 09744 tdelara@sandia.gov

Andrew Brungard 09762 tabrung@sandia.gov

Zane Parker 09744 zparker@sandia.gov

Technical Library 1911 sanddocs@sandia.gov

Email—External
Name Company Email Address Company Name

Dominic D’Onofrio Dominic.donofrio@student.nmt.edu New Mexico Tech

Lorie Liebrock Loire.liebrock@nmt.edu NMCCoE

63

This page left blank

Sandia National Laboratories
is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc. for the U.S.
Department of Energy’s
National Nuclear Security
Administration under contract
DE-NA0003525.

