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Overview for Smoothers

m Traditional simple smoothers (Jacobi) work well for low-order
problems, but tend to struggle as the polynomial degree
increases or coupling increases.
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Overview for Smoothers

m Traditional simple smoothers (Jacobi) work well for low-order
problems, but tend to struggle as the polynomial degree
increases or coupling increases.

m Patch-based smoothers reduce iteration counts at the cost of
storing/solving many small linear systems.

m What if we could reduce those costs?
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Patch-Based Smoothers @ .

m Recall a smoother takes the form
X ¢ x+wM™ (b — Ax) (1)

m Consider an (overlapping) domain decomposition with n,
domains and boolean restriction operators R;.
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Patch-Based Smoothers @ .

m Recall a smoother takes the form
X ¢ x+wM™ (b — Ax) (1)

m Consider an (overlapping) domain decomposition with n,
domains and boolean restriction operators R;.

m A patch-based smoother utilizes

np
7 = 3 RTWiA IR (2)

ICIAM 2023/8/25 =1




Patch-Based Smoothers @ .

np
M=t =>"RTWA'R;
i=1

m R; is the boolean restriction
m W; are the global weights, (overlap)~!
m A= R,-AR,-T is the ps X ps patch matrix
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Patch-Based Smoothers @ .

np
M=t =>"RTWA'R;
i=1

m R; is the boolean restriction
m W; are the global weights, (overlap)~!
m A= R,-AR,-T is the ps X ps patch matrix
Patch methods:
m Pros: Converge more quickly, handle complex coupling more
effectively
m Cons: More expensive to compute, similar storage cost to

original matrix
ICIAM 2023/8/25
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Clarifications

(a) Vertex-star patches

There are many kinds of patch smoothers:

(a) Scales for high values of p, difficult solves, depends on
connectivity
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Clarifications

CEEE pEEEn

(a) Vertex-star patches (b) Cell-centered patches

There are many kinds of patch smoothers:

(a) Scales for high values of p, difficult solves, depends on
connectivity

(b) Allows for structured patches, not p-robust
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Clarifications D]

o o o

HE

(a) Vertex-star patches (b) Cell-centered patches (c) Cell-restricted patches

. |e

There are many kinds of patch smoothers:

(a) Scales for high values of p, difficult solves, depends on
connectivity

(b) Allows for structured patches, not p-robust
(c) Most efficient to detect, most structure to exploit

*left figures: P. Brubeck, P. Farrell, A Scalable and Robust Vertex-Star Relaxation for High-Order FEM. SISC 2022
ICIAM 2023/8/25 7




Observations (D=

1. In many applications of interest, if you zoom in far enough,

patterns appear.
)
& / - *
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1. In many applications of interest, if you zoom in far enough,

patterns appear.
\\) o

2. If patches are “similar enough,” why store and solve them
multiple times?
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Observations () ..

1. In many applications of interest, if you zoom in far enough,
patterns appear.

2. If patches are “similar enough,” why store and solve them
multiple times?

Question: How “bad” can the approximation get before the solver
(smoother-only or multigrid) starts to struggle?

ICIAM 2023/8/25 8




The Main Idea &

m Construct a database of patches B = {Bi, By, ..., Bp,}.
m Criterion 1: B should approximate {A;} sufficiently well.
m Criterion 2: B should be small compared to {A;}.
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The Main Ildea ) .

m Construct a database of patches B = {Bi, By, ..., Bp,}.
m Criterion 1: B should approximate {A;} sufficiently well.
m Criterion 2: B should be small compared to {A;}.

Seek B = {Bi,Bs,...,Bny,} and mapping
¢:{1,....,np} = {1,..., mp} minimizing

L(B,¢) = BIBI+ D Il = AcB I3, (3)
k=1

balancing efficiency and accuracy.
Also referred to as a sparse approximation problem.

ICIAM 2023/8/25 9




Greedy Algorithm .

Algorithm 1 Greedy Construction of B, ¢()

1 Input: {A1,Ay,... A} €

2 B:={},¢=0

3: fori=1,...,n, do

4 match:=false;

5 forjzl,...,nlquo

6: if ||| — AiB; ||z < € then

7 |r|'natch:tjrueH, ¢(i) = j, break; ¢ check patch
8 end if against database
9: end for

10:  if match==false then .
11: append A; to B, ¢(i) = |B|; ¢ ifno matChe?'_
12 end if store patch explicitly
13: end for

14: Output: B={B1,Bs,....Bn,}, &

ICIAM 2023/8/25 10
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Greedy Local Error Bounds
Bonus: ||/ — A,-B(;&)H < g, ensures solver quality. If
AiX =V, (4)

then approximating Byj)y = v yields

Iyl = A7y = By vl
— A7 (= ABL Y (5)

<ellA7 vl

*then extend to the global problem

ICIAM 2023/8/25 11




Clustering Algorithm @

Algorithm 3 Clustering Construction of B, ¢()

: Input: {A1, Ay, ..., An L, mp < choose number of clusters

—

¢ = randperm(np, mp);
: B;=A¢(,-), i = 1,...,mp;
while not converged do
fori=1,...,n, do
for j=1,...,m, do
i = d(Aj, B)); . B =1/ — A,B~1
dj = d(A;, B)) — d(A,B) = Il — AB s
end for
6(i) = argmin;(dy);
end for
Bi= X A,i=1....,my  *treat boundaries separately!
j in cluster i
. end while

3: Output: B = {B1,Ba,...,Bn,}, ¢

©®N>T RN

==
= o

=
N
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Clustering Local Error Bounds

For clustering, the idea is similar. However,
d(Ai, Byiy) == ||(1 - A,-B(;(BH is not bounded a priori.
Ix =yl = 1A v = By vl
= |A7 (1 = AiB V| (6)
< max d(A;, By)| A7 Il vI]-

may be bounded by cluster diameters.
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Clustering Variations B

There are a number of different ways to approach clustering.
1. Entrywise k-means d(A;, Bj) = ||Ai — Bj|l¢,,
Bj_1 = inverse of entrywise cluster average.
2. Spectral k-means d(A;, B)) = ||| — AiB; |2,
Bj_1 = inverse of entrywise cluster average.
3. Variance-minimizing clustering d(A;, B;) = ||/ — A;BJ._1||2,

Bj_1 = inverse of member minimizing in-cluster variance.

ICIAM 2023/8/25




Bootstrapped Algorithm .

“But clustering is slow!”
Make it faster by bootstrapping:

1. Run Algorithm 1, obtain B
2. Initialize Algorithm 2 clustering with B
3. Do very few iterations of Algorithm 2
Pros:
m Better database assignments than Algorithm 1
m Faster time to result than Algorithm 2
Cons:
m More complex

m Slower than Algorithm 1

ICIAM 2023/8/25 15




Poisson Equation @ .
-V - (p(x,y)Vu) =f. (7)

Dirichlet BCs, p = 2,3,4,5 FEMs, uniform grid, solution

u = sin(mx) sin(my)

Loo
Loo

Figure: (left) smooth coefficient, (right) piecewise discontinuous coefficient.
Not pictured: constant coefficient

ICIAM 2023/8/25 16




Timing Results ) .

Configuration: p = 1 Poisson, 20 x 20 x 20 grid, p=5

GMRES with 10~7 tolerance, ¢ = 10~7, |B| = 8000, 27.
Implemented in Trilinos/Ifpack2 as a preconditioner using LAPACK
GETRF, GETRS. Used as additive Schwarz inner solve. Compress if
IAi — Bjlle, < e. 39 iterations.

Configuration Setup (s) Apply (s) Storage
(N =5) runs mean=std mean-=+tstd
No compression | 269.52 +1.46 | 39.10 = 0.46 | 2.8GB
Compression 253.12+0.61 | 28.87+0.047 | 9.6MB
+ 62.5KB

Single node of Attaway supercomputer, Intel Xeon Gold 6140 Processor.
Cache size is 24.75MB.
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Configuration: p = 1 Poisson, 20 x 20 x 20 grid, p=5

GMRES with 10~7 tolerance, ¢ = 10~7, |B| = 8000, 27.
Implemented in Trilinos/Ifpack2 as a preconditioner using LAPACK
GETRF, GETRS. Used as additive Schwarz inner solve. Compress if
IAi — Bjlle, < e. 39 iterations.

Configuration Setup (s) Apply (s) Storage
(N =5) runs mean=std mean-=+tstd
No compression | 269.52 +1.46 | 39.10 = 0.46 | 2.8GB
Compression 253.12+0.61 | 28.87+0.047 | 9.6MB
+ 62.5KB

Single node of Attaway supercomputer, Intel Xeon Gold 6140 Processor.
Cache size is 24.75MB.

Jacobi would cost 7.9MB.
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Burgers' Equation @&

d 1
dflg +V - <2ﬁu2 - g(u)Vu) =f, (8)

where 7 = [1,1]7, g is nonlinear entropy-viscosity term, and SUPG
stabilization is utilized in the discretization. 100 x 100 grid.

Figure: (left) t = 0 starting profile for Burgers' equation (right) t =1 end
profile for Burgers' equation

ICIAM 2023/8/25 18




Burgers' Equation .

. . —|B . o .
Plotting greedy algorithm ""n—H against € shows it's compressible.
p
1 ion Ratio for Burgers Problem
0.9 /,,/'// -
0s // |
0.7 / 4
.% /
Sos / |
2 /
g /
OnA /'/ 1
03 / i
//
0.2 44// 1
.1 - - -
10 10 10° 102 107 10° 10!
Absolute Tolerance
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Burgers' Equation

. . n,—|B| . . .

Plotting greedy algorithm "n—P against € shows it's compressible.

08 ////

go.s //”

804 /'/

/

Algorithm\Database Size | 10000 | 371 | 293 | 213 | 146 | 76 |25 | 13
Greedy Tolerance 1 224 240 | 310 | 238 | 278 | 463 | 829 | 882
Entrywise k-means 224 342 | 343 | 377 | 317 | 353 | 416 | 420
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Poisson Multigrid Method [ .

We use the following multigrid configuration for Poisson:
mw=0.5,
= (v1,12) = (1,0),
m N =2 V-cycle levels,

m Case 1: P uniform linear interp.
Case 2: P from Ruge-Stiilben AMG

m R=PT, A.=RAP

With the data-driven smoother, compute B, gi_; during setup; use
them during apply.

ICIAM 2023/8/25 20




Results (Smooth Permeability, Linear P) .

Algorithm\Database Size | 3600 | 74 |35 |18 |15 |13 |7 |6
~ | Greedy Tolerance 1 11 12 |13 |14 | 17 | 26 | 61 | 68
Il | Spectral k-means 3 11 1212|1416 | 17| — | —
2 | Var-Minimizing Clustering | 11 1212|1314 [15] - | —
Entrywise k-means 11 11 12|12 |14 |16 | — | —
Algorithm)\\Database Size | 3600 | 71 | 34 |18 |15 |13 |8 |6
o | Greedy Tolerance 1 12 13 13|15 |18 | 26 | 58 | 69
Il | Spectral k-means 3 12 12 12|15 |17 |18 | — | —
2 | Var-Minimizing Clustering | 12 12 11213 |14 |15 | — | —
Entrywise k-means 12 121212 |14 |16 | — | —
Algorithm\Database Size | 3600 | 71 | 34 | 18 | 15|13 |8 |7
< | Greedy Tolerance 1 14 14 115 |17 | 20 | 29 | 68 | 67
Il | Spectral k-means 3 14 14 |14 |17 |19 |20 | — | —
2 | Var-Minimizing Clustering | 14 1414151617 ] - |-
Entrywise k-means 14 14 |14 |14 |16 |18 | — | —
Algorithm\\Database Size | 3600 | 73 |35 |18 |15 |13 |9 |7
» | Greedy Tolerance 1 15 16 | 17 | 19 | 22 |32 | 78 | 76
Il | Spectral k-means 3 15 16 |16 |19 |21 |22 | — | —
2 | Var-Minimizing Clustering | 15 1516 |17 |18 |19 | — | —
Entrywise k-means 15 1511516 |18 |20 | — | —
ICIAM 2023/8/25 21



Results (Piecewise Constant Permeability, Linear P) @k

Algorithm\Database Size 3600 | 131 | 113 |96 |52 |25 |5 |3
~ | Greedy Tolerance 1 11 12 |12 | 14 |17 | 22 | 47 | 52
Il | Spectral k-means 3 11 17 |19 |19 (26|27 | — | —
2 [ Var-Minimizing Clustering 11 20 |20 |20 |29 (31| — | —
Entrywise k-means 11 12 |17 |17 |26 |31 | — | —
Algorithm\Database Size 3600 | 131 | 114 | 100 | 59 |32 |8 |5
o | Greedy Tolerance 1 12 12 |13 |14 |17 |26 | 48|50
Il | Spectral k-means 3 12 20 |26 |26 |34 |35 | — | —
2 | 'Var-Minimizing Clustering 12 24 124 124 132132| - | —
Entrywise k-means 12 13 |19 |19 (29|33 | — | —
Algorithm\Database Size 3600 | 130 | 114 | 103 | 70 | 36 | 12| 9
< | Greedy Tolerance 1 14 14 |15 |15 |19 |28 |51 |53
Il | Spectral k-means 3 14 23 |32 |32 |33|38|36]|—
2 [ Var-Minimizing Clustering 14 27 |27 |27 |27 |38 |37 | —
Entrywise k-means 14 16 |22 |22 | 223537 | —
Algorithm\Database Size 3600 | 130 | 116 | 103 | 78 | 38 | 15 | 10
Greedy Tolerance 1 15 16 |16 |17 | 21|29 |60 | 64
“‘T Spectral k-means 3 15 25 [35 [30 [35]40]43]39
o | Var-Minimizing Clustering 15 28 |28 |54 |47 |40 |40 | 44
Bootstrapped Var-Minimizing | 15 16 |16 |17 | 22|26 |44 |39
Entrywise k-means 15 18 |25 |25 |25 |38 4038
ICIAM 2023/8/25 22



Maxwell's Equations, Distorted Mesh )

—-VXxVxu—ou=Hf (9)

where o = 10~%. Arnold-Falk-Winther patches are utilized. 30 x 30 x 30
grid, 293 = 24389 patches. Perturbed structured grid

x = X+ 0.6 sin(wx/2) sin(7wy/2) sin(rz/2),

=y + 0.6 cos(mx/2) cos(my/2) cos(mz/2), (10)
z =2+ 0.6cos(mx/2) cos(my/2).

<

Solution
sin(mx) sin(my)
u= y
z
ICIAM 2023/8/25 23




Results (Maxwell's Equations, Distorted Mesh) &

Unrestarted GMRES, relative tolerance 1079, initial guess 102x + 10y + z.
2-level MG, two sweeps as a pre-smoother with a damping parameter
w=0.7.

Case 1: linear interp. P (ignoring distortion)
Algorithm\Database Size | 24389 | 361 | 129 | 43 16
Greedy Tolerance 1 33 34 | 34 35 DNC
Spectral k-means 3 33 33 | DNC | DNC | DNC

Case 2: Ruge-Stiben AMG
Algorithm\Database Size | 24389 | 361 | 129 | 43 16

Greedy Tolerance 1 56 57 | 58 60 DNC
Spectral k-means 3 56 57 | DNC | DNC | DNC
ICIAM 2023/8/25 24




Results (Database Mappings) .

Figure: Visualization of database ¢ mapping. (left) clustering algorithm on
smooth permeability, (right) greedy algorithm on piecewise constant
permeability
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Results (Other Visualization) [ i

600 T T T T T T T T

300 - 1

Total assignments

200 [ T

. |
0 20 40 60 80 100 120 140
Database index

Figure: Database assignments for piecewise discontinuous problem, e = 10~
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Conclusion

Takeaways:

m Memory cost = O(Jacobi)

m Faster apply than without database

m Generalizes for any structure detection method
Current/Future Work:

m Utilize Kokkos, not LAPACK

m Time-dependent problems

m Ridzal's LDRD: R-adaptivity to detect and enhance

compressibility

m Unsupervised deep learning

ICIAM 2023/8/25 27




Thank You .

m Questions?
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Supplemental Slides @ .

R-adaptivity refers to moving mesh nodes.
We're interested in the following scenario:

8000

00% —— solve time w/ partial storage
7000 % % solve time with database storage
6000
__ 5000
&
2z
v 4000
3
e
£ 3000
2000
basis
1000 compression
The entire structured region 0d x %|
compresses to a single cell!
30 40 50 60 70 80 %

Time (sec)

for finite element basis reuse. This also results in patch reuse.
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Supplemental Slides @ .

Preliminary investigations by summer students Nichole Etienne
(Emory) and Eugene Agyei-Kodie (Michigan State) on different
clustering approaches
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