
Reduced Representation and Compression
Techniques for Patch-Based Relaxation

Graham Harper*, Ray Tuminaro
Center for Computing Research

Sandia National Laboratories
ICIAM 2023/8/25

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy?s National Nuclear Security Administration under contract DE-NA0003525. SAND NO.

SAND2023-07862C

SAND2023-07862CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do
not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract
DE-NA0003525.

Acknowledgements

Trilinos/MueLu/Ifpack2
Funding: Harper’s LDRD, Ridzal’s LDRD, Tuminaro’s ASCR
Team: Ray Tuminaro
Sandia National Laboratories LDRD Office, U.S. Department
of Energy, Office of Science, Office of Advanced Scientific
Computing Research

ICIAM 2023/8/25 2

Outline

Background
Smoothers & Patch Smoothers

Details
Observations
Main Idea
Algorithms

Results
Timings
Multigrid
Visualization

Conclusion
ICIAM 2023/8/25 3

Overview for Smoothers

Traditional simple smoothers (Jacobi) work well for low-order
problems, but tend to struggle as the polynomial degree
increases or coupling increases.

Patch-based smoothers reduce iteration counts at the cost of
storing/solving many small linear systems.
What if we could reduce those costs?

ICIAM 2023/8/25 4

Overview for Smoothers

Traditional simple smoothers (Jacobi) work well for low-order
problems, but tend to struggle as the polynomial degree
increases or coupling increases.

Patch-based smoothers reduce iteration counts at the cost of
storing/solving many small linear systems.

What if we could reduce those costs?

ICIAM 2023/8/25 4

Overview for Smoothers

Traditional simple smoothers (Jacobi) work well for low-order
problems, but tend to struggle as the polynomial degree
increases or coupling increases.

Patch-based smoothers reduce iteration counts at the cost of
storing/solving many small linear systems.
What if we could reduce those costs?

ICIAM 2023/8/25 4

Patch-Based Smoothers

Recall a smoother takes the form

x← x + ωM̃−1(b− Ax) (1)

Consider an (overlapping) domain decomposition with np
domains and boolean restriction operators Ri .

A patch-based smoother utilizes

M̃−1 =

np∑
i=1

RT
i WiA−1

i Ri (2)

ICIAM 2023/8/25 5

Patch-Based Smoothers

Recall a smoother takes the form

x← x + ωM̃−1(b− Ax) (1)

Consider an (overlapping) domain decomposition with np
domains and boolean restriction operators Ri .

A patch-based smoother utilizes

M̃−1 =

np∑
i=1

RT
i WiA−1

i Ri (2)
ICIAM 2023/8/25 5

Patch-Based Smoothers

M̃−1 =

np∑
i=1

RT
i WiA−1

i Ri

Ri is the boolean restriction
Wi are the global weights, (overlap)−1

Ai = RiART
i is the ps × ps patch matrix

Patch methods:
Pros: Converge more quickly, handle complex coupling more
effectively
Cons: More expensive to compute, similar storage cost to
original matrix

ICIAM 2023/8/25 6

Patch-Based Smoothers

M̃−1 =

np∑
i=1

RT
i WiA−1

i Ri

Ri is the boolean restriction
Wi are the global weights, (overlap)−1

Ai = RiART
i is the ps × ps patch matrix

Patch methods:
Pros: Converge more quickly, handle complex coupling more
effectively
Cons: More expensive to compute, similar storage cost to
original matrix

ICIAM 2023/8/25 6

Clarifications

(a) Vertex-star patches

There are many kinds of patch smoothers:
(a) Scales for high values of p, difficult solves, depends on

connectivity

(b) Allows for structured patches, not p-robust
(c) Most efficient to detect, most structure to exploit

ICIAM 2023/8/25 7

Clarifications

(a) Vertex-star patches (b) Cell-centered patches

There are many kinds of patch smoothers:
(a) Scales for high values of p, difficult solves, depends on

connectivity
(b) Allows for structured patches, not p-robust

(c) Most efficient to detect, most structure to exploit

ICIAM 2023/8/25 7

Clarifications

(a) Vertex-star patches (b) Cell-centered patches (c) Cell-restricted patches

There are many kinds of patch smoothers:
(a) Scales for high values of p, difficult solves, depends on

connectivity
(b) Allows for structured patches, not p-robust
(c) Most efficient to detect, most structure to exploit
*left figures: P. Brubeck, P. Farrell, A Scalable and Robust Vertex-Star Relaxation for High-Order FEM. SISC 2022

ICIAM 2023/8/25 7

Observations

1. In many applications of interest, if you zoom in far enough,
patterns appear.

2. If patches are “similar enough,” why store and solve them
multiple times?

Question: How “bad” can the approximation get before the solver
(smoother-only or multigrid) starts to struggle?

ICIAM 2023/8/25 8

Observations

1. In many applications of interest, if you zoom in far enough,
patterns appear.

2. If patches are “similar enough,” why store and solve them
multiple times?

Question: How “bad” can the approximation get before the solver
(smoother-only or multigrid) starts to struggle?

ICIAM 2023/8/25 8

Observations

1. In many applications of interest, if you zoom in far enough,
patterns appear.

2. If patches are “similar enough,” why store and solve them
multiple times?

Question: How “bad” can the approximation get before the solver
(smoother-only or multigrid) starts to struggle?

ICIAM 2023/8/25 8

The Main Idea

Construct a database of patches B = {B1,B2, . . . ,Bmp}.
Criterion 1: B should approximate {Ai} sufficiently well.
Criterion 2: B should be small compared to {Ai}.

Seek B = {B1,B2, . . . ,Bmp} and mapping
φ : {1, . . . , np} → {1, . . . ,mp} minimizing

L(B, φ) = β|B|+
np∑

k=1

‖I − AkB−1
φ(k)‖

2
2, (3)

balancing efficiency and accuracy.
Also referred to as a sparse approximation problem.

ICIAM 2023/8/25 9

The Main Idea

Construct a database of patches B = {B1,B2, . . . ,Bmp}.
Criterion 1: B should approximate {Ai} sufficiently well.
Criterion 2: B should be small compared to {Ai}.

Seek B = {B1,B2, . . . ,Bmp} and mapping
φ : {1, . . . , np} → {1, . . . ,mp} minimizing

L(B, φ) = β|B|+
np∑

k=1

‖I − AkB−1
φ(k)‖

2
2, (3)

balancing efficiency and accuracy.
Also referred to as a sparse approximation problem.

ICIAM 2023/8/25 9

Greedy Algorithm

Algorithm 1 Greedy Construction of B, φ()

1: Input: {A1,A2, . . . ,Anp}, ε
2: B := {}, ~φ = 0
3: for i = 1, . . . , np do
4: match:=false;
5: for j = 1, . . . ,mp do
6: if ‖I − AiB−1

j ‖2 < ε then
7: match=true, φ(i) = j, break;
8: end if
9: end for

10: if match==false then
11: append Ai to B, φ(i) = |B|;
12: end if
13: end for
14: Output: B = {B1,B2, . . . ,Bmp}, ~φ

ICIAM 2023/8/25 10

← check patch
against database

← if no matches,
store patch explicitly

Greedy Local Error Bounds

Bonus: ‖I − AiB−1
φ(i)‖ < ε, ensures solver quality. If

Aix = v , (4)

then approximating Bφ(i)y = v yields

‖x − y‖ = ‖A−1
i v − B−1

φ(i)v‖

= ‖A−1
i (I − AiB−1

φ(i))v‖

< ε‖A−1
i ‖‖v‖.

(5)

*then extend to the global problem

ICIAM 2023/8/25 11

Clustering Algorithm

Algorithm 3 Clustering Construction of B, φ()

1: Input: {A1,A2, . . . ,Anp}, mp
2: ~φ = randperm(np ,mp);
3: Bi = Aφ(i), i = 1, . . . ,mp ;
4: while not converged do
5: for i = 1, . . . , np do
6: for j = 1, . . . ,mp do
7: dij = d(Ai ,Bj);
8: end for
9: φ(i) = argminj(dij);

10: end for
11: Bi =

1
ni

∑
j in cluster i

Aj , i = 1, . . . ,mp ;

12: end while
13: Output: B = {B1,B2, . . . ,Bmp}, ~φ

ICIAM 2023/8/25 12

← choose number of clusters

← d(Ai ,Bj) = ‖I − AiB−1
j ‖2

*treat boundaries separately!

Clustering Local Error Bounds

For clustering, the idea is similar. However,
d(Ai ,Bφ(i)) := ‖(I − AiB−1

φ(i)‖ is not bounded a priori.

‖x − y‖ = ‖A−1
i v − B−1

φ(i)v‖

= ‖A−1
i (I − AiB−1

φ(i))v‖

< max
i

d(Ai ,Bφ(i))‖A−1
i ‖‖v‖.

(6)

may be bounded by cluster diameters.

ICIAM 2023/8/25 13

Clustering Variations

There are a number of different ways to approach clustering.
1. Entrywise k-means d(Ai ,Bj) = ‖Ai − Bj‖`1 ,

B−1
j = inverse of entrywise cluster average.

2. Spectral k-means d(Ai ,Bj) = ‖I − AiB−1
j ‖2,

B−1
j = inverse of entrywise cluster average.

3. Variance-minimizing clustering d(Ai ,Bj) = ‖I − AiB−1
j ‖2,

B−1
j = inverse of member minimizing in-cluster variance.

ICIAM 2023/8/25 14

Bootstrapped Algorithm

“But clustering is slow!”
Make it faster by bootstrapping:
1. Run Algorithm 1, obtain B
2. Initialize Algorithm 2 clustering with B
3. Do very few iterations of Algorithm 2

Pros:
Better database assignments than Algorithm 1
Faster time to result than Algorithm 2

Cons:
More complex
Slower than Algorithm 1

ICIAM 2023/8/25 15

Poisson Equation
−∇· (ρ(x , y)∇u) = f . (7)

Dirichlet BCs, p = 2, 3, 4, 5 FEMs, uniform grid, solution

u = sin(πx) sin(πy)

Figure: (left) smooth coefficient, (right) piecewise discontinuous coefficient.
Not pictured: constant coefficient

ICIAM 2023/8/25 16

Timing Results

Configuration: ρ = 1 Poisson, 20× 20× 20 grid, p = 5
GMRES with 10−7 tolerance, ε = 10−7, |B| = 8000, 27.
Implemented in Trilinos/Ifpack2 as a preconditioner using LAPACK
GETRF, GETRS. Used as additive Schwarz inner solve. Compress if
‖Ai − Bj‖`1 < ε. 39 iterations.

Configuration
(N = 5) runs

Setup (s)
mean±std

Apply (s)
mean±std

Storage

No compression 269.52± 1.46 39.10± 0.46 2.8GB
Compression 253.12± 0.61 28.87± 0.047 9.6MB

+ 62.5KB

Single node of Attaway supercomputer, Intel Xeon Gold 6140 Processor.
Cache size is 24.75MB.

Jacobi would cost 7.9MB.

ICIAM 2023/8/25 17

Timing Results

Configuration: ρ = 1 Poisson, 20× 20× 20 grid, p = 5
GMRES with 10−7 tolerance, ε = 10−7, |B| = 8000, 27.
Implemented in Trilinos/Ifpack2 as a preconditioner using LAPACK
GETRF, GETRS. Used as additive Schwarz inner solve. Compress if
‖Ai − Bj‖`1 < ε. 39 iterations.

Configuration
(N = 5) runs

Setup (s)
mean±std

Apply (s)
mean±std

Storage

No compression 269.52± 1.46 39.10± 0.46 2.8GB
Compression 253.12± 0.61 28.87± 0.047 9.6MB

+ 62.5KB

Single node of Attaway supercomputer, Intel Xeon Gold 6140 Processor.
Cache size is 24.75MB.
Jacobi would cost 7.9MB.

ICIAM 2023/8/25 17

Burgers’ Equation
du
dt +∇·

(
1

2
~νu2 − g(u)∇u

)
= f , (8)

where ~ν = [1, 1]T , g is nonlinear entropy-viscosity term, and SUPG
stabilization is utilized in the discretization. 100× 100 grid.

Figure: (left) t = 0 starting profile for Burgers’ equation (right) t = 1 end
profile for Burgers’ equation

ICIAM 2023/8/25 18

Burgers’ Equation

Plotting greedy algorithm np−|B|
np

against ε shows it’s compressible.

Algorithm\Database Size 10000 371 293 213 146 76 25 13
Greedy Tolerance 1 224 240 310 238 278 463 829 882
Entrywise k-means 224 342 343 377 317 353 416 420

ICIAM 2023/8/25 19

Burgers’ Equation

Plotting greedy algorithm np−|B|
np

against ε shows it’s compressible.

Algorithm\Database Size 10000 371 293 213 146 76 25 13
Greedy Tolerance 1 224 240 310 238 278 463 829 882
Entrywise k-means 224 342 343 377 317 353 416 420

ICIAM 2023/8/25 19

Poisson Multigrid Method

We use the following multigrid configuration for Poisson:
ω = 0.5,
(ν1, ν2) = (1, 0),
N = 2 V-cycle levels,
Case 1: P uniform linear interp.
Case 2: P from Ruge-Stüben AMG
R = PT , Ac = RAP

With the data-driven smoother, compute B, ~φ during setup; use
them during apply.

ICIAM 2023/8/25 20

Results (Smooth Permeability, Linear P)
p
=

2

Algorithm\Database Size 3600 74 35 18 15 13 7 6
Greedy Tolerance 1 11 12 13 14 17 26 61 68
Spectral k-means 3 11 12 12 14 16 17 − −
Var-Minimizing Clustering 11 12 12 13 14 15 − −
Entrywise k-means 11 11 12 12 14 16 − −

p
=

3

Algorithm\Database Size 3600 71 34 18 15 13 8 6
Greedy Tolerance 1 12 13 13 15 18 26 58 69
Spectral k-means 3 12 12 12 15 17 18 − −
Var-Minimizing Clustering 12 12 12 13 14 15 − −
Entrywise k-means 12 12 12 12 14 16 − −

p
=

4

Algorithm\Database Size 3600 71 34 18 15 13 8 7
Greedy Tolerance 1 14 14 15 17 20 29 68 67
Spectral k-means 3 14 14 14 17 19 20 − −
Var-Minimizing Clustering 14 14 14 15 16 17 − −
Entrywise k-means 14 14 14 14 16 18 − −

p
=

5

Algorithm\Database Size 3600 73 35 18 15 13 9 7
Greedy Tolerance 1 15 16 17 19 22 32 78 76
Spectral k-means 3 15 16 16 19 21 22 − −
Var-Minimizing Clustering 15 15 16 17 18 19 − −
Entrywise k-means 15 15 15 16 18 20 − −

ICIAM 2023/8/25 21

Results (Piecewise Constant Permeability, Linear P)
p
=

2

Algorithm\Database Size 3600 131 113 96 52 25 5 3
Greedy Tolerance 1 11 12 12 14 17 22 47 52
Spectral k-means 3 11 17 19 19 26 27 − −
Var-Minimizing Clustering 11 20 20 20 29 31 − −
Entrywise k-means 11 12 17 17 26 31 − −

p
=

3

Algorithm\Database Size 3600 131 114 100 59 32 8 5
Greedy Tolerance 1 12 12 13 14 17 26 48 50
Spectral k-means 3 12 20 26 26 34 35 − −
Var-Minimizing Clustering 12 24 24 24 32 32 − −
Entrywise k-means 12 13 19 19 29 33 − −

p
=

4

Algorithm\Database Size 3600 130 114 103 70 36 12 9
Greedy Tolerance 1 14 14 15 15 19 28 51 53
Spectral k-means 3 14 23 32 32 33 38 36 −
Var-Minimizing Clustering 14 27 27 27 27 38 37 −
Entrywise k-means 14 16 22 22 22 35 37 −

p
=

5

Algorithm\Database Size 3600 130 116 103 78 38 15 10
Greedy Tolerance 1 15 16 16 17 21 29 60 64
Spectral k-means 3 15 25 35 30 35 40 43 39
Var-Minimizing Clustering 15 28 28 54 47 40 40 44
Bootstrapped Var-Minimizing 15 16 16 17 22 26 44 39
Entrywise k-means 15 18 25 25 25 38 40 38

ICIAM 2023/8/25 22

Maxwell’s Equations, Distorted Mesh

−∇×∇× u− σu = f. (9)

where σ = 10−4. Arnold-Falk-Winther patches are utilized. 30× 30× 30

grid, 293 = 24389 patches. Perturbed structured grid

x = x̂ + 0.6 sin(πx̂/2) sin(πŷ/2) sin(πẑ/2),
y = ŷ + 0.6 cos(πx̂/2) cos(πŷ/2) cos(πẑ/2),
z = ẑ + 0.6 cos(πx̂/2) cos(πŷ/2).

(10)

Solution

u =

 sin(πx) sin(πy)
y
z

 .

ICIAM 2023/8/25 23

Results (Maxwell’s Equations, Distorted Mesh)

Unrestarted GMRES, relative tolerance 10−6, initial guess 102x +10y + z.
2-level MG, two sweeps as a pre-smoother with a damping parameter
ω = 0.7.

Case 1: linear interp. P (ignoring distortion)
Algorithm\Database Size 24389 361 129 43 16
Greedy Tolerance 1 33 34 34 35 DNC
Spectral k-means 3 33 33 DNC DNC DNC

Case 2: Ruge-Stüben AMG
Algorithm\Database Size 24389 361 129 43 16
Greedy Tolerance 1 56 57 58 60 DNC
Spectral k-means 3 56 57 DNC DNC DNC

ICIAM 2023/8/25 24

Results (Database Mappings)

Figure: Visualization of database φ mapping. (left) clustering algorithm on
smooth permeability, (right) greedy algorithm on piecewise constant
permeability

ICIAM 2023/8/25 25

Results (Other Visualization)

Figure: Database assignments for piecewise discontinuous problem, ε = 10−7

ICIAM 2023/8/25 26

Conclusion

Takeaways:
Memory cost = O(Jacobi)
Faster apply than without database
Generalizes for any structure detection method

Current/Future Work:
Utilize Kokkos, not LAPACK
Time-dependent problems
Ridzal’s LDRD: R-adaptivity to detect and enhance
compressibility
Unsupervised deep learning

ICIAM 2023/8/25 27

Thank You

Questions?

ICIAM 2023/8/25 28

Supplemental Slides

R-adaptivity refers to moving mesh nodes.
We’re interested in the following scenario:

for finite element basis reuse. This also results in patch reuse.

ICIAM 2023/8/25 29

Supplemental Slides

Preliminary investigations by summer students Nichole Etienne
(Emory) and Eugene Agyei-Kodie (Michigan State) on different
clustering approaches

ICIAM 2023/8/25 30

	Background
	Smoothers & Patch Smoothers

	Details
	Observations
	Main Idea
	Algorithms

	Results
	Timings
	Multigrid
	Visualization

	Conclusion

