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Overview for Smoothers

Traditional simple smoothers (Jacobi) work well for low-order
problems, but tend to struggle as the polynomial degree
increases or coupling increases.

Patch-based smoothers reduce iteration counts at the cost of
storing/solving many small linear systems.
What if we could reduce those costs?
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Patch-Based Smoothers

Recall a smoother takes the form

x← x + ωM̃−1(b− Ax) (1)

Consider an (overlapping) domain decomposition with np
domains and boolean restriction operators Ri .

A patch-based smoother utilizes

M̃−1 =

np∑
i=1

RT
i WiA−1

i Ri (2)
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Patch-Based Smoothers

M̃−1 =

np∑
i=1

RT
i WiA−1

i Ri

Ri is the boolean restriction
Wi are the global weights, (overlap)−1

Ai = RiART
i is the ps × ps patch matrix

Patch methods:
Pros: Converge more quickly, handle complex coupling more
effectively
Cons: More expensive to compute, similar storage cost to
original matrix
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Clarifications

(a) Vertex-star patches

There are many kinds of patch smoothers:
(a) Scales for high values of p, difficult solves, depends on

connectivity

(b) Allows for structured patches, not p-robust
(c) Most efficient to detect, most structure to exploit
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Clarifications

(a) Vertex-star patches (b) Cell-centered patches (c) Cell-restricted patches

There are many kinds of patch smoothers:
(a) Scales for high values of p, difficult solves, depends on

connectivity
(b) Allows for structured patches, not p-robust
(c) Most efficient to detect, most structure to exploit
*left figures: P. Brubeck, P. Farrell, A Scalable and Robust Vertex-Star Relaxation for High-Order FEM. SISC 2022
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Observations

1. In many applications of interest, if you zoom in far enough,
patterns appear.

2. If patches are “similar enough,” why store and solve them
multiple times?

Question: How “bad” can the approximation get before the solver
(smoother-only or multigrid) starts to struggle?
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The Main Idea

Construct a database of patches B = {B1,B2, . . . ,Bmp}.
Criterion 1: B should approximate {Ai} sufficiently well.
Criterion 2: B should be small compared to {Ai}.

Seek B = {B1,B2, . . . ,Bmp} and mapping
φ : {1, . . . , np} → {1, . . . ,mp} minimizing

L(B, φ) = β|B|+
np∑

k=1

‖I − AkB−1
φ(k)‖

2
2, (3)

balancing efficiency and accuracy.
Also referred to as a sparse approximation problem.

ICIAM 2023/8/25 9



The Main Idea

Construct a database of patches B = {B1,B2, . . . ,Bmp}.
Criterion 1: B should approximate {Ai} sufficiently well.
Criterion 2: B should be small compared to {Ai}.

Seek B = {B1,B2, . . . ,Bmp} and mapping
φ : {1, . . . , np} → {1, . . . ,mp} minimizing

L(B, φ) = β|B|+
np∑

k=1

‖I − AkB−1
φ(k)‖

2
2, (3)

balancing efficiency and accuracy.
Also referred to as a sparse approximation problem.

ICIAM 2023/8/25 9



Greedy Algorithm

Algorithm 1 Greedy Construction of B, φ()

1: Input: {A1,A2, . . . ,Anp}, ε
2: B := {}, ~φ = 0
3: for i = 1, . . . , np do
4: match:=false;
5: for j = 1, . . . ,mp do
6: if ‖I − AiB−1

j ‖2 < ε then
7: match=true, φ(i) = j, break;
8: end if
9: end for

10: if match==false then
11: append Ai to B, φ(i) = |B|;
12: end if
13: end for
14: Output: B = {B1,B2, . . . ,Bmp}, ~φ

ICIAM 2023/8/25 10

← check patch
against database

← if no matches,
store patch explicitly



Greedy Local Error Bounds

Bonus: ‖I − AiB−1
φ(i)‖ < ε, ensures solver quality. If

Aix = v , (4)

then approximating Bφ(i)y = v yields

‖x − y‖ = ‖A−1
i v − B−1

φ(i)v‖

= ‖A−1
i (I − AiB−1

φ(i))v‖

< ε‖A−1
i ‖‖v‖.

(5)

*then extend to the global problem
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Clustering Algorithm

Algorithm 3 Clustering Construction of B, φ()

1: Input: {A1,A2, . . . ,Anp}, mp
2: ~φ = randperm(np ,mp);
3: Bi = Aφ(i), i = 1, . . . ,mp ;
4: while not converged do
5: for i = 1, . . . , np do
6: for j = 1, . . . ,mp do
7: dij = d(Ai ,Bj);
8: end for
9: φ(i) = argminj(dij);

10: end for
11: Bi =

1
ni

∑
j in cluster i

Aj , i = 1, . . . ,mp ;

12: end while
13: Output: B = {B1,B2, . . . ,Bmp}, ~φ

ICIAM 2023/8/25 12

← choose number of clusters

← d(Ai ,Bj) = ‖I − AiB−1
j ‖2

*treat boundaries separately!



Clustering Local Error Bounds

For clustering, the idea is similar. However,
d(Ai ,Bφ(i)) := ‖(I − AiB−1

φ(i)‖ is not bounded a priori.

‖x − y‖ = ‖A−1
i v − B−1

φ(i)v‖

= ‖A−1
i (I − AiB−1

φ(i))v‖

< max
i

d(Ai ,Bφ(i))‖A−1
i ‖‖v‖.

(6)

may be bounded by cluster diameters.
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Clustering Variations

There are a number of different ways to approach clustering.
1. Entrywise k-means d(Ai ,Bj) = ‖Ai − Bj‖`1 ,

B−1
j = inverse of entrywise cluster average.

2. Spectral k-means d(Ai ,Bj) = ‖I − AiB−1
j ‖2,

B−1
j = inverse of entrywise cluster average.

3. Variance-minimizing clustering d(Ai ,Bj) = ‖I − AiB−1
j ‖2,

B−1
j = inverse of member minimizing in-cluster variance.
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Bootstrapped Algorithm

“But clustering is slow!”
Make it faster by bootstrapping:
1. Run Algorithm 1, obtain B
2. Initialize Algorithm 2 clustering with B
3. Do very few iterations of Algorithm 2

Pros:
Better database assignments than Algorithm 1
Faster time to result than Algorithm 2

Cons:
More complex
Slower than Algorithm 1

ICIAM 2023/8/25 15



Poisson Equation
−∇· (ρ(x , y)∇u) = f . (7)

Dirichlet BCs, p = 2, 3, 4, 5 FEMs, uniform grid, solution

u = sin(πx) sin(πy)

Figure: (left) smooth coefficient, (right) piecewise discontinuous coefficient.
Not pictured: constant coefficient
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Timing Results

Configuration: ρ = 1 Poisson, 20× 20× 20 grid, p = 5
GMRES with 10−7 tolerance, ε = 10−7, |B| = 8000, 27.
Implemented in Trilinos/Ifpack2 as a preconditioner using LAPACK
GETRF, GETRS. Used as additive Schwarz inner solve. Compress if
‖Ai − Bj‖`1 < ε. 39 iterations.

Configuration
(N = 5) runs

Setup (s)
mean±std

Apply (s)
mean±std

Storage

No compression 269.52± 1.46 39.10± 0.46 2.8GB
Compression 253.12± 0.61 28.87± 0.047 9.6MB

+ 62.5KB

Single node of Attaway supercomputer, Intel Xeon Gold 6140 Processor.
Cache size is 24.75MB.

Jacobi would cost 7.9MB.
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Burgers’ Equation
du
dt +∇·

(
1

2
~νu2 − g(u)∇u

)
= f , (8)

where ~ν = [1, 1]T , g is nonlinear entropy-viscosity term, and SUPG
stabilization is utilized in the discretization. 100× 100 grid.

Figure: (left) t = 0 starting profile for Burgers’ equation (right) t = 1 end
profile for Burgers’ equation
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Burgers’ Equation

Plotting greedy algorithm np−|B|
np

against ε shows it’s compressible.

Algorithm\Database Size 10000 371 293 213 146 76 25 13
Greedy Tolerance 1 224 240 310 238 278 463 829 882
Entrywise k-means 224 342 343 377 317 353 416 420
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Poisson Multigrid Method

We use the following multigrid configuration for Poisson:
ω = 0.5,
(ν1, ν2) = (1, 0),
N = 2 V-cycle levels,
Case 1: P uniform linear interp.
Case 2: P from Ruge-Stüben AMG
R = PT , Ac = RAP

With the data-driven smoother, compute B, ~φ during setup; use
them during apply.

ICIAM 2023/8/25 20



Results (Smooth Permeability, Linear P)
p
=

2

Algorithm\Database Size 3600 74 35 18 15 13 7 6
Greedy Tolerance 1 11 12 13 14 17 26 61 68
Spectral k-means 3 11 12 12 14 16 17 − −
Var-Minimizing Clustering 11 12 12 13 14 15 − −
Entrywise k-means 11 11 12 12 14 16 − −

p
=

3

Algorithm\Database Size 3600 71 34 18 15 13 8 6
Greedy Tolerance 1 12 13 13 15 18 26 58 69
Spectral k-means 3 12 12 12 15 17 18 − −
Var-Minimizing Clustering 12 12 12 13 14 15 − −
Entrywise k-means 12 12 12 12 14 16 − −

p
=

4

Algorithm\Database Size 3600 71 34 18 15 13 8 7
Greedy Tolerance 1 14 14 15 17 20 29 68 67
Spectral k-means 3 14 14 14 17 19 20 − −
Var-Minimizing Clustering 14 14 14 15 16 17 − −
Entrywise k-means 14 14 14 14 16 18 − −

p
=

5

Algorithm\Database Size 3600 73 35 18 15 13 9 7
Greedy Tolerance 1 15 16 17 19 22 32 78 76
Spectral k-means 3 15 16 16 19 21 22 − −
Var-Minimizing Clustering 15 15 16 17 18 19 − −
Entrywise k-means 15 15 15 16 18 20 − −
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Results (Piecewise Constant Permeability, Linear P)
p
=

2

Algorithm\Database Size 3600 131 113 96 52 25 5 3
Greedy Tolerance 1 11 12 12 14 17 22 47 52
Spectral k-means 3 11 17 19 19 26 27 − −
Var-Minimizing Clustering 11 20 20 20 29 31 − −
Entrywise k-means 11 12 17 17 26 31 − −

p
=

3

Algorithm\Database Size 3600 131 114 100 59 32 8 5
Greedy Tolerance 1 12 12 13 14 17 26 48 50
Spectral k-means 3 12 20 26 26 34 35 − −
Var-Minimizing Clustering 12 24 24 24 32 32 − −
Entrywise k-means 12 13 19 19 29 33 − −

p
=

4

Algorithm\Database Size 3600 130 114 103 70 36 12 9
Greedy Tolerance 1 14 14 15 15 19 28 51 53
Spectral k-means 3 14 23 32 32 33 38 36 −
Var-Minimizing Clustering 14 27 27 27 27 38 37 −
Entrywise k-means 14 16 22 22 22 35 37 −

p
=

5

Algorithm\Database Size 3600 130 116 103 78 38 15 10
Greedy Tolerance 1 15 16 16 17 21 29 60 64
Spectral k-means 3 15 25 35 30 35 40 43 39
Var-Minimizing Clustering 15 28 28 54 47 40 40 44
Bootstrapped Var-Minimizing 15 16 16 17 22 26 44 39
Entrywise k-means 15 18 25 25 25 38 40 38
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Maxwell’s Equations, Distorted Mesh

−∇×∇× u− σu = f. (9)

where σ = 10−4. Arnold-Falk-Winther patches are utilized. 30× 30× 30

grid, 293 = 24389 patches. Perturbed structured grid

x = x̂ + 0.6 sin(πx̂/2) sin(πŷ/2) sin(πẑ/2),
y = ŷ + 0.6 cos(πx̂/2) cos(πŷ/2) cos(πẑ/2),
z = ẑ + 0.6 cos(πx̂/2) cos(πŷ/2).

(10)

Solution

u =

 sin(πx) sin(πy)
y
z

 .
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Results (Maxwell’s Equations, Distorted Mesh)

Unrestarted GMRES, relative tolerance 10−6, initial guess 102x +10y + z.
2-level MG, two sweeps as a pre-smoother with a damping parameter
ω = 0.7.

Case 1: linear interp. P (ignoring distortion)
Algorithm\Database Size 24389 361 129 43 16
Greedy Tolerance 1 33 34 34 35 DNC
Spectral k-means 3 33 33 DNC DNC DNC

Case 2: Ruge-Stüben AMG
Algorithm\Database Size 24389 361 129 43 16
Greedy Tolerance 1 56 57 58 60 DNC
Spectral k-means 3 56 57 DNC DNC DNC
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Results (Database Mappings)

Figure: Visualization of database φ mapping. (left) clustering algorithm on
smooth permeability, (right) greedy algorithm on piecewise constant
permeability
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Results (Other Visualization)

Figure: Database assignments for piecewise discontinuous problem, ε = 10−7
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Conclusion

Takeaways:
Memory cost = O(Jacobi)
Faster apply than without database
Generalizes for any structure detection method

Current/Future Work:
Utilize Kokkos, not LAPACK
Time-dependent problems
Ridzal’s LDRD: R-adaptivity to detect and enhance
compressibility
Unsupervised deep learning
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Thank You

Questions?
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Supplemental Slides

R-adaptivity refers to moving mesh nodes.
We’re interested in the following scenario:

for finite element basis reuse. This also results in patch reuse.

ICIAM 2023/8/25 29



Supplemental Slides

Preliminary investigations by summer students Nichole Etienne
(Emory) and Eugene Agyei-Kodie (Michigan State) on different
clustering approaches
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