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21 A "new" framework for continuum mechanics

A powerful framework for building continuum mechanics models is a geometric
mechanics formulation (variational, Hamiltonian, metriplectic, etc.) written using
exterior calculus (differential forms):
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m Coordinate and orientation independent description valid on arbitrary
manifolds

m Exposes key features such as conservation laws and involution
constraints

m Basis for building structure-preserving numerical methods

*Not new, but there have been recent developments regarding treatment of
momentum/stress/etc. in these approaches

August 14, 2023

o




3 I Structure-preserving discretizations @i

Structure-preserving = discretize the framework above using mimetic
discretizations in a way that keeps the key features of continuous GM
formulations

m mimetic = discrete version of (exterior) calculus with discrete analogues of key
(exterior) calculus identities such as
m annihilation/exact sequence: V-Vx =0,V xV =0
m integration by parts: [aV-b+ [,Va-b= [,V-(ab) = [;oab-R
m deRham cohomology: harmonic spaces have the correct size
m Discretize objects from GM formulations (such as .7’[x] and J(x)) instead of
equations of motion
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4 | Types of mimetic (spatial) discretizations

Single deRham Complex Double deRham Complex
standard exterior calculus split exterior calculus
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compatible Galerkin methods (ex. finite discrete exterior calculus (DEC), split
element exterior calculus, compatible compatible Galerkin methods
isogeometric methods, mimetic Galerkin
differences)

This approach is well-understood for scalar-valued differential forms (SVDFs):
ex. mass density p, specific entropy 7, velocity v, electromagnetic fields D and B
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5 | Exterior calculus of (vector) bundle-valued differential forms @i

Momentum (and stress) are not SVDFs, instead they are (vector)-bundie valued
differential forms (BVDFs)!

BVDFs: xk € AK(E) and X£ € AK(E): smooth section of the tensor product bundle
of vector bundle E with the kth exterior power of the cotangent bundle T*

Vector bundle: A vector space V/(x) attached to each point x of a .#

Can define an exterior calculus for BVDFs that mirrors the one used for SVDFs:
m (covariant) exterior derivative dx, Hodge star %, topological pairing <<’>>x’
inner product (,)%, Trace T, Inclusion, 1, flat b1, sharp #1, Lie derivative, L
interior product i
m BVDF exterior calculus reduces to SVDF exterior calculus when E =R or
E=v
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s | Aside: measures of fluid flow @i

Four commonly used measures of fluid flow*:

| Object | Geometric Mechanics Relations | Name |
ud z[uoT,a] 55—” convective velocity
my. u° , H[uT,a] momentum
v! “‘TT AV, 8 velocity
En—1 % mass flux

m Look the "same" in vector calculus in R3, (very) distinct in exterior calculus:
source of much confusion; ex. compressible Eulerhas m=pv, F=pu,u=v

m All play a key role in geometric mechanics formulations: Mm%, and u? in
Euler-Poincaré and Lie-Poisson formulations: v and F"~! in Kelvin-Noether
and Curl-Form formulations

m This fits with the discussion in Tonti2013/Tonti2014 about the dual nature of
velocity, see for example FLU3 (=SVDFs) vs. FLU6 (=BVDFs) in Tonti2014 |
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7 I Key ideas of SVDF DEC |

m Two grids in duality (straight and twisted , 1-1 relationship between k and
(n— k) cells on opposite grids

m Discrete differential forms are integrated values over geometric entities, 1-1
relationship between k-form and (n— k)-forms on opposite grids (Hodge star)
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8 | Key ideas of SVDF DEC II @i

m Operators are either topological (exterior derivative, wedge product) or
metric (Hodge star, interior product), discretize accordingly + separately

m Key: topological operators give most of the desirable properties (ex.
conservation, involutions, no spurious computational modes), metric
operators give accuracy
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9 | Recent SVDF DEC developments

SVDF DEC is now competitive with compatible Galerkin methods:
m consistent treatment of arbitrary boundaries and boundary conditions
m structure-preserving high-order, oscillation-limiting, positive-definite

(SPHOOL-PD) transport operators
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1o | BVDF DEC

Extended key operators of SVDF discrete exterior calculus to (vector)
bundle-valued differential forms

m Borrows heavily from SVDF DEC, reduces to it for the case of E=Ror E=V¥

m Focused on fundamental exterior calculus operators: dx, %, A, (,),, ((,)),

m For R3, where tangent and cotangent bundles are flat: trivial connection and
metric, global basis
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11 I Future Work

m Transport operators for arbitrary SVDFs/BVDFs i.e. Lie derivatives Lyo
interior products i ; and associated raising/lowering operators: T, I, by, fi1, b, #
Eldred2021a C. Eldred et. al. PAM dynamical core- continuous formulation, discrete numerics and implementation, Technical Report WBS
2.2.3.05, Milestone ECP-AD-SE-15-1675, Sandia National Laboratories, 2021
m Application to momentum-based formulations of fluids, especially charged
fluid models

m Extension to arbitrary manifolds i.e. non-flat bundles: will require a discrete
connection Xg and metric gg

Schubel2018 M. Schubel. Discretization of differential geometry for computational gauge theory, University of lllinois at Urbana-Champaign,
2018

BerwickEvans2021 D. Berwick-Evans et. al. Discrete Vector Bundles with Connection and the Bianchi Identity, arxiv, 2021
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12

Questions?
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