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2 A "new" framework for continuum mechanics
A powerful framework for building continuum mechanics models is a geometric
mechanics formulation (variational, Hamiltonian, metriplectic, etc.) written using
exterior calculus (differential forms):

δ

∫
L [x] = 0

∂x
∂ t

= J(x)
δH

δx
+M(x)

δS

δx

Coordinate and orientation independent description valid on arbitrary
manifolds
Exposes key features such as conservation laws and involution
constraints
Basis for building structure-preserving numerical methods

*Not new, but there have been recent developments regarding treatment of
momentum/stress/etc. in these approaches
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3 Structure-preserving discretizations

Structure-preserving = discretize the framework above using mimetic
discretizations in a way that keeps the key features of continuous GM

formulations

mimetic = discrete version of (exterior) calculus with discrete analogues of key
(exterior) calculus identities such as

annihilation/exact sequence: ∇ ·∇×= 0, ∇×∇ = 0
integration by parts:

∫
Ω a∇ ·b+

∫
Ω ∇a ·b =

∫
Ω ∇ · (ab) =

∫
∂Ω ab · n̂

deRham cohomology: harmonic spaces have the correct size

Discretize objects from GM formulations (such as H [x] and J(x)) instead of
equations of motion
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4 Types of mimetic (spatial) discretizations

Single deRham Complex
standard exterior calculus

compatible Galerkin methods (ex. finite
element exterior calculus, compatible

isogeometric methods, mimetic Galerkin
differences)

Double deRham Complex
split exterior calculus

discrete exterior calculus (DEC), split
compatible Galerkin methods

This approach is well-understood for scalar-valued differential forms (SVDFs):
ex. mass density ρ, specific entropy η , velocity v, electromagnetic fields D and B
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5 Exterior calculus of (vector) bundle-valued differential forms

Momentum (and stress) are not SVDFs, instead they are (vector)-bundle valued
differential forms (BVDFs)!

BVDFs: xk
E ∈ Λk (E) and x̃k

E ∈ Λ̃k (E): smooth section of the tensor product bundle
of vector bundle E with the k th exterior power of the cotangent bundle T ⋆

Vector bundle: A vector space V (x) attached to each point x of a M

Can define an exterior calculus for BVDFs that mirrors the one used for SVDFs:
(covariant) exterior derivative dX, Hodge star ⋆̃, topological pairing ⟨⟨,⟩⟩

χ
,

inner product ⟨,⟩
χ
, Trace T, Inclusion, I, flat ♭1, sharp ♯1, Lie derivative, L

interior product i
BVDF exterior calculus reduces to SVDF exterior calculus when E = R or
E =Ψ
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6 Aside: measures of fluid flow
Four commonly used measures of fluid flow∗:

Object Geometric Mechanics Relations Name
u0
T L [u0

T,a],
δH

δm̃n
T⋆

convective velocity

m̃n
T⋆

δL
δu0

T
, H[u0

T,a] momentum

v1 ”
m̃n

T⋆

D ”, H [v1,a] velocity
F̃ n−1 δH

δv1
mass flux

Look the "same" in vector calculus in R3, (very) distinct in exterior calculus:
source of much confusion; ex. compressible Euler has m = ρv, F = ρu, u = v
All play a key role in geometric mechanics formulations: m̃n

T⋆ and u0
T in

Euler-Poincaré and Lie-Poisson formulations; v1 and F̃ n−1 in Kelvin-Noether
and Curl-Form formulations
This fits with the discussion in Tonti2013/Tonti2014 about the dual nature of
velocity, see for example FLU3 (=SVDFs) vs. FLU6 (=BVDFs) in Tonti2014

*These are the four vector proxies in exterior calculus. Also have "pseudovector proxies": x̃0
T , xn

T⋆ , x̃1 and xn−1, not discussed here
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7 Key ideas of SVDF DEC I

Two grids in duality (straight and twisted , 1-1 relationship between k and
(n−k) cells on opposite grids
Discrete differential forms are integrated values over geometric entities, 1-1
relationship between k -form and (n−k)-forms on opposite grids (Hodge star)
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8 Key ideas of SVDF DEC II

Operators are either topological (exterior derivative, wedge product) or
metric (Hodge star, interior product), discretize accordingly + separately

Key: topological operators give most of the desirable properties (ex.
conservation, involutions, no spurious computational modes), metric
operators give accuracy
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9 Recent SVDF DEC developments

SVDF DEC is now competitive with compatible Galerkin methods:
consistent treatment of arbitrary boundaries and boundary conditions
structure-preserving high-order, oscillation-limiting, positive-definite
(SPHOOL-PD) transport operators

"Usual" DEC transport operator SPHOOL-PD DEC transport operator
higher-order Hodge stars (work in progress on unstructured grids)
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10 BVDF DEC

Extended key operators of SVDF discrete exterior calculus to (vector)
bundle-valued differential forms

Borrows heavily from SVDF DEC, reduces to it for the case of E = R or E =Ψ
Focused on fundamental exterior calculus operators: dX, ⋆̃, ∧̇, ⟨,⟩

χ
, ⟨⟨,⟩⟩

χ

For R3, where tangent and cotangent bundles are flat: trivial connection and
metric, global basis
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11 Future Work

Transport operators for arbitrary SVDFs/BVDFs i.e. Lie derivatives Lu0
T

,
interior products i ; and associated raising/lowering operators: T, I, ♭1, ♯1, ♭, ♯

Eldred2021a C. Eldred et. al. PAM dynamical core- continuous formulation, discrete numerics and implementation, Technical Report WBS

2.2.3.05, Milestone ECP-AD-SE-15-1675, Sandia National Laboratories, 2021

Application to momentum-based formulations of fluids, especially charged
fluid models
Extension to arbitrary manifolds i.e. non-flat bundles: will require a discrete
connection XE and metric gE

Schubel2018 M. Schubel. Discretization of differential geometry for computational gauge theory, University of Illinois at Urbana-Champaign,
2018

BerwickEvans2021 D. Berwick-Evans et. al. Discrete Vector Bundles with Connection and the Bianchi Identity, arxiv, 2021
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12
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