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2| E3SM-MMF ﬂ

m Clouds are a dominant source of uncertainty in climate predictions — how
can we improve their representation?

m Superparameterization (=multiscale modeling framework): embed a cloud
resolving model (CRM) inside each grid box of a coarse global

m On modern GPU machines can obtain 5 simulated years per day (SYPD) =
enough for many climate simulations
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The Portable Atmospheric Model (PAM)

m Developing a new CRM for ESM-MMF: the Portable Atmospheric Model
(PAM)
m Uses SCREAM physics: two-moment microphysics (P3), turbulence (SHOC)
and radiation (RRTGMP)
m New dynamical core: SPAM++ (the Structure Preserving Atmospheric Model in
C++)
m Written in C++ using YAKL (Yet Another Kernel Launcher) and Kokkos for
portability
m PAM is based on a curl-form Hamiltonian formulation (advected densities
model)

m PAM is designed around new structure-preserving spatial (discrete exterior
calculus) and temporal (energy-conserving Poisson integrator) numerics
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4 | Advected Densities Model underlying PAM

m General advected densities model in height coordinates with n densities Dy
(k=1,...,n, ex. mass density p, water vapor density p, and entropy density
S = pn) and velocity v written in Hamiltonian curl form for an arbitrary
Hamiltonian ¢ |v, Dg]:

ov

at+Q><F+deVBk =0 (1)
oD
at"+V (dkF) = 0 (2)

where Q = VB", dk = D , D is total density (a linear combination of Dy’s),

sH SH
F =%, and By k= 5D, -

m With appropriate choices of 7# and densities Dy can get many different GFD
models: ex. (thermal) shallow water, (multicomponent) compressible Euler
and anelastic with arbitrary thermodynamic potentials
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5 | Spatial Numerics: Discrete Exterior Calculus

Spatially discretize Hamiltonian formulation (1) - (2) using a
(structure-preserving) discrete exterior calculus (DEC) scheme

(shown in 2D): )
Dy B}
d
a‘/t QF"1+Z DB’ = 0 (3) ]
,“1 Fn,—l
8D” ~ =
51 TDa(DCF™) =0 (4)

where Q=1 [G°W+W 3], F-1 = &% and B,® = ggf for (discrete)  Figure: Discrete
Hamiltonian 2[v', Df]. Uses new DEC features developed at SNL: ~ Variables and C-grid
staggering used in the

m Treatment of arbitrary boundary conditions general scheme in 2D,

with solid lines for the

primal grid and

m Structure-preserving, high-order, oscillation-limiting transport dashed lines for the
operators with optional positivity-preservation (SPHOOL-PD) dual grid.
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m Higher-order Hodge stars




6 | Properties of Spatial Discretization

m Conservation laws: mass, entropy, energy

m Mimetic: no spurious vorticity production, freedom from spurious
computational modes, good representation of linear modes

m Accuracy: 2nd order accurate

m Realistic transport: transport is oscillation-limiting and positive-definite
(could be made global or local bounds preserving as well)
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7 I Temporal Numerics: Energy Conserving Poisson Integrator @i

Temporally discretize (3) - (4) in a way that preserves the invariants (Hamiltonian
and Casimirs), by using a fully implicit energy-conserving Poisson integrator (EC2,
a type of discrete gradient method):

X xn N
AL =J(x )W (5)

where 55)( = Jo (X" +T(x™1 —x"))dT ~ ;w8 (x') with

x' = x"+7/(x"1 —x") (discrete gradient) and x* = X #*"_ Conserves
linear/quadratic Casimirs and arbitrary Hamiltonians to machine-precision (with
enough quadrature points /, ~4 in practice for compressible Euler and anelastic)

Lacks positive-definiteness, but we are working on this
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g | Implementation Details of Time Integrator: @i

m Solve (5) using a quasi-Newton method (simplified Jacobian, from the
linearized equations) for compressible Euler; and fixed point for anelastic

m Simplify resulting linear system to a single positive-definite Helmholtz (fully
compressible and thermal shallow water) or Poisson problem (anelastic) using
static condensation.

m Solve this problem using a direct solve (FFT + banded diagonal solvers).

m This step is specific to CRM configuration (no topography, uniform horizontal
rids
[ Ig:or n)on-uniforms grids and topography, could use multigrid-based
preconditioners + an iterative solver.

m Resulting nonlinear system requires =5 (anelastic) or ~7 (compressible)
iterations = comparable to # of stages in an explicit Runge-Kutta scheme;
takes around 15% of total runtime
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9 I Rising Bubble

E maximum advective
CFL~ 0.6

m 3 quadrature points

m Compressible
iterations average
7.3

m Anelastic iterations
average 5.3

August 14, 2023

z[m]

z[m]

Compressible

max As=1.73520
min As=-0.00932

260 460 660 560
x [m]

Anelastic

max As=1.73425
min As=-0.00937

260 460 660 560
X [m]

Relative change

Relative change

Entropy 5.35e-14

Energy Mwmwmmw 2.28e-14

Mass WMWM -2.19e-14
0

250 500
time [s]

Entropy M 5.2le-14

Energy -1.26e-14

Energy explicit

-1.85e-11

0 250 500
time [s]




10 | Density Current

Compressible

Anelastic

minAf =-8.764

z [km]

-

No diffusion

maxAB = 2.38e-06 Xfront=18.575 km

minAf =-8.842
maxAB = 1.52e-08 Xfront=18.489 km

No diffusion

minA6 =-12.133

z [km]

-

August 14, 2023

maxAB = 5.59e-02 Xfront=18.932 km

minA6 =-11.532

maxAB =6.77e-02 Xfront=18.814 km
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Splitting Supercell Storm

m Benchmark with simplified moist physics (Kessler microphysics)
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12 | Supercell Statistics

Precipitation rate [10°kg/s]
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13 I Conclusions [ﬁ

m New CRM in ESSM-MMF: PAM (SPAM++ dycore + SCREAM physics)

m Based on curl-form Hamiltonian formulations and structure-preserving spatial
(discrete exterior calculus) and temporal (energy conserving poisson
integrator) numerics

m Provides exact conservation of invariants (mass, energy, entropy) to machine
precision along with SPHOOL-PD transport

m Does well on standard dynamical core test cases

ov! 1 n+1 _ yn S o
—p TQF" +2 DiB° = 0 X7 X 59

At (X)Sx

oDy
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14 I Future Work

m Improved vertical spatial numerics (summer student, ongoing): high-order
Hodge stars for variable grids, CFV/WENO recons

m Improve Newton solver convergence to fix exact energy conservation for
some tests (solutions are fine even with convergence stalls)

m Positivity-preserving version of time integrator to fix exact
positivity-definiteness

m More sophisticated treatment of moist thermodynamics and moist
parameterizations:

m non-equilibrium thermodynamics + better thermodynamic potentials
m bring (some) microphysics into the dycore
m single set of equations for dynamics + physics? ie true multiscale formulations?
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