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OUTLINE

• Motivating Problem
• Compression of numerical simulation data

• Existing Method
• Low-rank decompositions of tensor data (i.e., multidimensional arrays)

• New Method
• Goal-oriented tensor decompositions (Tucker/Canonical Polyadic Models)
• Better modeling of quantities of interests (i.e., functions of simulation data)

• Demonstration of New Approach on Multiple Applications
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MOTIVATING PROBLEM
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How should we compress the data to best support downstream analysis?



HOMOGENEOUS CHARGE COMPRESSION IGNITION (HCCI) 

• Ignition processes in ethanol-air mixture under 
conditions similar to piston compression in 
combustion engine with exhaust gas recirculation [1]

• 2D simulation data in S3D, a compressible reacting 
flow solver [2]
• 672 x 672 spatial grid
• 50 time steps (snapshot from 626 time steps)
• 32 variables: 28 chemical species, 

temperature, pressure, 2 velocities
• Data:  672 x 672 x 32 x 50 (𝑥 x 𝑦 x 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 x 𝑡𝑖𝑚𝑒) tensor
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[1] Bhagatwala, Chen, Lu, Direct numerical simulations of HCCI/SACI with ethanol. Combustion and Flame, 161(7):826–1841, 2014.
[2] Chen et al., Terascale direct numerical simulations of turbulent combustion using S3D, Computational Science & Discovery, 2(1):015001, 2009.  

Compressible Navier-Stokes Equations

Temperature after 2e-3 seconds

Problem: Compress data while 
capturing combustion dynamics



TOKAMAK FUSION REACTOR DESIGN AND DISRUPTION MITIGATION

• Develop and evaluate plasma physics models and 
scalable solution methods to understand disruption 
physics and explore mitigation strategies to avoid 
damage to tokamak fusion reactors. [1]

• 2D simulation data in Drekar, a finite element code 
for magnetohydrodynamics (MHD) [2]
• 101 x 51 spatial grid
• 13 variables: magnetic field (3), density, pressure, velocity (3), 

momentum (3), temperature, constraint Lagrange multiplier
• 410 time steps
• Data:  101 x 51 x 13 x 410 (𝑥 x 𝑦 x 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 x 𝑡𝑖𝑚𝑒) tensor
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[1] U.S. Department of Energy, Tokamak Disruption Simulation (TDS) SciDAC Center, https://tds-scidac.github.io/.
[2] Shadid, et al., Scalable Implicit Incompressible Resistive MHD with Stabilized FE and Fully-coupled Newton-Krylov-AMG, Comput. Methods Appl. Mech. Engrg. 304, 1-25, 2016.

Compressible Visco-resistive MHD Equations

International Thermonuclear Experimental 
Reactor (ITER) [under construction, France]

Problem: Compress data while 
capturing plasma physics dynamics



EXISTING METHOD: LOW-RANK TENSOR DATA COMPRESSION

Sequentially-Truncated Higher-Order Singular Value Decomposition (ST-HOSVD): 
Low-rank Tucker tensor model with specified bound (𝜖) on relative root mean squared error 
(i.e., model error) [1,2]:
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core tensor factor matrices

model error

[1] Kolla, et al., Higher Order Tensors for DNS Data Analysis and Compression. In Data Analysis for Direct Numerical Simulations of Turbulent Combustion. Springer, 2020. 
[2] Vannieuwenhoven, Vandebril, Meerbergen, A new truncation strategy for the higher-order singular value decomposition. SISC, 34(2), 2012.

Alternatively, we can minimize model error given a fixed core tensor size

(data)



LOW-RANK TENSOR DATA COMPRESSION: COMBUSTION EXAMPLE
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Original Combustion 
Simulation Data

Compression: ~7700X
Model Error: 𝜖 = 1e-1

Compression: ~213X
Model Error: 𝜖 = 1e-2

: 134 x 130 x 19 x 10 : 46 x 40 x 7 x 3: 672 x 672 x 32 x 50

Temperature after 2e-3 seconds



QUANTITIES OF INTEREST: COMBUSTION EXAMPLE
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Mass (linear) Kinetic Energy (nonlinear)

Goal: Preserve quantities of interest (QoIs) at each time step 
between the simulation data and low-rank Tucker tensor model data



NEW METHOD: GOAL-ORIENTED LOW-RANK TENSOR DATA COMPRESSION

• Tucker model: 

• Low-rank tensor modeling framework: Tensor Toolbox for MATLAB [1]
• Loss function: model error + sums of 𝑁𝑞 QoI per-time constraints
• Derivatives: MATLAB Deep Learning Toolbox (dlfeval/dlgradient) [2]
• Minimization: limited-memory quasi-Newton (L-BFGS-B) [3,4]
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model error Quantity of Interest (QoI) errors

[1] Bader, Kolda, Dunlavy and others, Tensor Toolbox for MATLAB, Version 3.4, http://www.tensortoolbox.org, September 21, 2022.
[2] MathWorks, https://www.mathworks.com/help/deeplearning/ug/deep-learning-with-automatic-differentiation-in-matlab.html, accessed February 14, 2023.
[3] R. H. Byrd, P. Lu and J. Nocedal. A Limited Memory Algorithm for Bound Constrained Optimization, SIAM Journal on Scientific and Statistical Computing, 16(5):1190-1208, 1995.
[4] Becker, https://github.com/stephenbeckr/L-BFGS-B-C, accessed February 14, 2023.



GOAL-ORIENTED LOW-RANK TENSOR DATA COMPRESSION: EXPERIMENTS

• Initialization: ST-HOSVD solution (uses model error only)
• Model errors: 𝜖={1e-3, 5e-3, 1e-2, 5e-2, 1e-1}
• Weights: 𝛼!,# = 1.0 (𝑞={1,2}; 𝑡={1..50})
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model error Quantity of Interest (QoI) errors



GOAL-ORIENTED LOW-RANK TENSOR DATA COMPRESSION: RESULTS
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Goal-oriented tensor data compression significantly reduces QoI error



GOAL-ORIENTED LOW-RANK TENSOR DATA COMPRESSION: RESULTS
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Compression 
Ratio Model Core Tensor Size ST-HOSVD

Goal-Oriented 
(Mass)

Goal-Oriented 
(Energy)

2.74E+01 233 x 229 x 28 x 18 9.32E-04 9.32E-04 9.33E-04
1.00E+02 163 x 160 x 23 x 12 4.57E-03 4.57E-03 4.57E-03
2.14E+02 134 x 130 x 19 x 10 9.05E-03 9.06E-03 9.06E-03
2.18E+03 70 x 65 x 11 x 5 4.47E-02 4.50E-02 4.48E-02
7.70E+03 46 x 40 x 7 x 3 9.35E-02 9.39E-02 9.39E-02

Model Error:

Goal-oriented tensor data compression leads to negligible model error



LOW-RANK DECOMPOSITIONS: TWO POINTS OF VIEW
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Matrix Decompositions

Viewpoint 2: Sum of vector outer 
products, useful for interpretation

Viewpoint 1: High-variance subspaces, 
useful for compression

Singular value decomposition (SVD), eigendecomposition 
(EVD), nonnegative matrix factorization (NMF), etc. 

CP Model: Sum of 𝑑-way vector outer 
products, useful for interpretation

Canonical Polyadic, CANDECOMP, PARAFAC, CP

Other models for compression include hierarchical 
Tucker, tensor train, tensor ring, tensor network, etc.

Tucker Model: Project onto high-variance 
subspaces to reduce dimensionality

HOSVD, Best Rank-(𝑅1, 𝑅2, … , 𝑅𝑑)	decomposition

Tensor Decompositions

Kolda and Bader (2009), Tensor Decompositions and Applications, https://doi.org/10.1137/07070111X

https://doi.org/10.1137/07070111X


QUANTITIES OF INTEREST: PLASMA PHYSICS EXAMPLE
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Momentum Divergence of Magnetic Field (B)

Goal: Preserve quantities of interest (QoIs) at each time step 
between the simulation data and low-rank CP tensor model data



GOAL-ORIENTED LOW-RANK TENSOR DATA COMPRESSION (CP MODEL)

• Rank-R CP Model:
 
• Low-rank tensor modeling framework: Tensor Toolbox for MATLAB 
• Loss function: model error + sums of 𝑁𝑞 QoI per-time constraints
• Derivatives: MATLAB Deep Learning Toolbox (dlfeval/dlgradient)
• Minimization: generalized CP (GCP) using L-BFGS-B [1] and ADAM [2]
• Weights: manual tuned for improved model fitting
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model error Quantity of Interest (QoI) errors

[1] D. Hong, T. G. Kolda, and J. A. Duersch. Generalized Canonical Polyadic Tensor Decomposition. SIAM Review, 62(1):133–163, January 2020. 
[2] T. G. Kolda and D. Hong, Stochastic Gradients for Large-Scale Tensor Decomposition, SIAM Journal on Mathematics of Data Science, 2 (2020), pp. 1066–1095. 



GOAL-ORIENTED LOW-RANK TENSOR DATA COMPRESSION: RESULTS
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Goal-oriented tensor data compression significantly reduces QoI error
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GOAL-ORIENTED LOW-RANK TENSOR DATA COMPRESSION: RESULTS
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Much improved QoI error with negligible increase in model error
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SUMMARY: GOAL-ORIENTED TENSOR DECOMPOSITIONS

• Conclusions
• Goal-oriented low-rank tensor decompositions reduce errors for quantities of interest without 

much increase in model error

• L-BFGS-B minimization can be slow for current goal-oriented model fitting formulation; 

initializing with fast methods for fitting model error alone is critical

• Weights for model error and goal terms in loss functions may require manual tuning

• Next Steps
• Comparison of minimization methods (ADMM, interior point method, etc.)

• Scalable goal-oriented tensor modeling leveraging stochastic methods (SGD, ADAM)

• In-situ goal-oriented tensor modeling to provide adaptive compression during simulations

• More challenging application problems (3D, more complex/realistic physics, etc.)
18



QUESTIONS?

Contact: 

Danny Dunlavy

dmdunla@sandia.gov

Goal-Oriented 

Tensor Modeling


