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OUTLINE

Motivating Problem
«  Compression of numerical simulation data

Existing Method

- Low-rank decompositions of tensor data (i.e., multidimensional arrays) ' X
New Method
« Goal-oriented tensor decompositions (Tucker/Canonical Polyadic Models) A

- Better modeling of quantities of interests (i.e., functions of simulation data) Tensor Data

Demonstration of New Approach on Multiple Applications
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MOTIVATING PROBLEM

Physics Numerical

Problem Simulation
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HOMOGENEOUS CHARGE COMPRESSION IGNITION (HCCI)

* Ignition processes in ethanol-air mixture under op _ _opt
conditions similar to piston compression in o o
combustion engine with exhaust gas recirculation [1] opu; __opuity  OF | Oty
g g ot (3Xj OX; (9Xj
- 2D simulation data in S3D, a compressible reacting ope: _ _Opey OPw  O(ty-ui) 94
flow solver [2] ot ox;  Ox; ox; X
672 x 672 spatial grid 0pYr _  0pYiw; 9
P 5 ot 8Xj 8Xj + Ok

« 50 time steps (snapshot from 626 time steps)

« 32 variables: 28 chemical species,
temperature, pressure, 2 velocities

* Data: 672x672x 32 x50 (x Xy Xvariable X time) tensor y

Compressible Navier-Stokes Equations
- .
\'J/
-
=\ Q
728,
capturing combustion dynamics /{K\ A /

Temperature after 2e-3 seconds

Problem: Compress data while

[1] Bhagatwala, Chen, Lu, Direct numerical simulations of HCCI/SACI with ethanol. Combustion and Flame, 161(7):826-1841, 2014.
[2] Chen et al,, Terascale direct numerical simulations of turbulent combustion using S3D, Computational Science & Discovery, 2(1):015001, 2009.

B a




TOKAMAK FUSION REACTOR DESIGN AND DISRUPTION MITIGATION >
N\

* Develop and evaluate plasma physics models and %w.(pu):o,
scalable solution methods to understand disruption 0% | G l(pus )4 pl+ 7] —jx B =0 \
physics and explore mitigation strategies to avoid n 8§T+ N YT (0 £V il - s Va0
damage to tokamak fusion reactors. [1] o1 Ty ! e
. . . - 4V . lu®B-Bgu- (VB - (VB)T)| =0,
- 2D simulation data in Drekar, a finite element code ‘9; L Ho ]

for magnetohydrodynamics (MHD) [2]
* 101 x 51 spatial grid

« 13 variables: magnetic field (3), density, pressure, velocity (3),
momentum (3), temperature, constraint Lagrange multiplier

* 410 time steps
* Data: 101 x 51 x 13 x410 (x X y X variable X time) tensor

Compressible Visco-resistive MHD Equations

Problem: Compress data while

capturing plasma physics dynamics

International Thermonuclear Experimental

Reactor (ITER) [under construction, France]

[1]1 U.S. Department of Energy, Tokamak Disruption Simulation (TDS) SciDAC Center, https://tds-scidac.github.io/.
[2] Shadid, et al., Scalable Implicit Incompressible Resistive MHD with Stabilized FE and Fully-coupled Newton-Krylov-AMG, Comput. Methods Appl. Mech. Engrg. 304, 1-25, 2016.
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EXISTING METHOD: LOW-RANK TENSOR DATA COMPRESSION N\
AN
Sequentially-Truncated Higher-Order Singular Value Decomposition (ST-HOSVD): )
Low-rank Tucker tensor model with specified bound (¢) on relative root mean squared error \
(i.e., model error) [1,2]:
Ny
n N, x N, x N, x &
9,?2(2)} x X Y X [Ny X t \,/ 7, ﬁy N
‘Q!/J/ A(Z)
bioet 101X =Xl _ SN
subject to TR <e€ N, x N || A - N,
N . J (data) Ny
model error - -

N..
R N. N, N, N
X(x,y,v,t) y‘ y‘ Y Y 9 zm,zy,zv,zt)A(l)(:E Zx)A(2)(y,’Ly)A(3)(’U zv)A(4)(t zt)

lp=11y=11,=1 zt=1

core tensor factor matrlces

Alternatively, we can minimize model error given a fixed core tensor size

[1]1 Kolla, et al., Higher Order Tensors for DNS Data Analysis and Compression. In Data Analysis for Direct Numerical Simulations of Turbulent Combustion. Springer, 2020.

[2] Vannieuwenhoven, Vandebril, Meerbergen, A new truncation strategy for the higher-order singular value decomposition. SISC, 34(2), 2012.
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LOW-RANK TENSOR DATA COMPRESSION: COMBUSTION EXAMPLE N\

Original Combustion Compression: ~7700X
Simulation Data Model Error: e = 1e-2 Model Error: e = 1e-1

Temperature after 2e-3 seconds




QUANTITIES OF INTEREST: COMBUSTION EXAMPLE

Mass (linear) Kinetic Energy (nonlinear)

Vg?)(a:,y,t) = X(x,y,31,1) Vgcy)(x,y,t) = X(x,y,32,1)

Kx(x,y,t) = Mo (x,y,1t) [(Vgcn)(x’y’t))Q T (V%)(a:,y,t)) 2]

x(z,y,t) Z?C:z:y,vt

N:z: Ny Nm Ny
Gra(X) =) ) Mx(z,y.t) Got(X) =) ) Kx(z,y,t)
r=1y=1 r=1y=1

Goal: Preserve quantities of interest (Qols) at each time step
between the simulation data and low-rank Tucker tensor model data




NEW METHOD: GOAL-ORIENTED LOW-RANK TENSOR DATA COMPRESSION\
AN

X — Xl o N G0 — a0\ h
nin ol X =T SAE (G0~ G

SR PV PP Gya(X)

N J N J
Y Y

model error Quantity of Interest (Qol) errors

Z N N’U

*  Tucker model: X(z,y,v,t) 7 Y M 7 iz, iy, iv, it) A (2, 15) AP (y, iy ) A®) (v, 4,) A (2, i)

tpy=1iy=11,=11,=1

- Low-rank tensor modeling framework: Tensor Toolbox for MATLAB [1]
* Loss function: model error + sums of N, Qol per-time constraints
- Derivatives: MATLAB Deep Learning Toolbox (d1feval/dlgradient) [2]
« Minimization: limited-memory quasi-Newton (L-BFGS-B) [3,4]
Bader, Kolda, Dunlavy and others, Tensor Toolbox for MATLAB, Version 3.4, http://www.tensortoolbox.org, September 21, 2022.
MathWorks, https://www.mathworks.com/help/deeplearning/ug/deep-learning-with-automatic-differentiation-in-matlab.html, accessed February 14, 2023.

R. H. Byrd, P. Lu and J. Nocedal. A Limited Memory Algorithm for Bound Constrained Optimization, SIAM Journal on Scientific and Statistical Computing, 16(5):1190-1208, 1995.
Becker, https://github.com/stephenbeckr/L-BFGS-B-C, accessed February 14, 2023.

[ i S [ T |

[
[2
[3
[4
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AN

GOAL-ORIENTED LOW-RANK TENSOR DATA COMPRESSION: EXPERIMENTS\

\s
: AN
N,y N -
win aol X=X, SASS(GarlX) = Gou(K)
X 1] il Gg,t(X)
\modeTerror/ \ Quantity oflntevrest (Qol) errors /

Initialization: ST-HOSVD solution (uses model error only)
Model errors: e={1e-3, 5e-3, 1e-2, 5e-2, 1e-1}
Weights: o, = 1.0 (¢={1,2}; t={1..50})
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GOAL-ORIENTED LOW-RANK TENSOR DATA COMPRESSION: RESULTS

10" g
- | —e—ST-HOSVD Method
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Goal-oriented tensor data compression significantly reduces Qol error




GOAL-ORIENTED LOW-RANK TENSOR DATA COMPRESSION: RESULTS N

\s
- X| A
Model Error:
1]
Compression Goal-Oriented Goal-Oriented
Ratio Model Core Tensor Size ST-HOSVD WERS) (Energy)
2.74E+01 233 x229x 28 x 18 9.32E-04 9.32E-04 9.33E-04
1.00E+02 163 x160x23x12 4.57E-03 4.57E-03 4.57E-03
2.14E+02 134 x130x19x 10 9.05E-03 9.06E-03 9.06E-03
2.18E+03 70x65x11x5 4.47E-02 4.50E-02 4.48E-02
7.70E+03 46 x40 x 7 x 3 9.35E-02 9.39E-02 9.39E-02

Goal-oriented tensor data compression leads to negligible model error




N

LOW-RANK DECOMPOSITIONS: TWO POINTS OF VIEW N
Matrix Decompositions Tensor Decompositions N\ \
Viewpoint 1: High-variance subspaces, WEELEFIAEREE Prejee: on.to high-var?ance
useful for compression subspaces to reduce dimensionality

Q

Q

HOSVD, Best Rank-(R4, R,, ..., R;) decomposition

CP Model: Sum of d-way vector outer
products, useful for interpretation

R R

Viewpoint 2: Sum of vector outer
products, useful for interpretation

~ + SRR
Canonical Polyadic, CANDECOMP, PARAFAC, CP
Singular value decomposition (SVD), eigendecomposition Other models for compression include hierarchical
(EVD), nonnegative matrix factorization (NMF), etc. Tucker, tensor train, tensor ring, tensor network, etc.

‘Kolda and Bader (2009), Tensor Decompositions and Applications, https://doi.org/10.1137/07070111X
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QUANTITIES OF INTEREST: PLASMA PHYSICS EXAMPLE

Divergence of Magnetic Field (B)

z=1y=1v="7

G1,t(X) = (;w: %%x(%y,%ﬁ) | G2,t(X) = <//D (V- B(xayat))zdxdy)%

Goal: Preserve quantities of interest (Qols) at each time step

between the simulation data and low-rank CP tensor model data

14




GOAL-ORIENTED LOW-RANK TENSOR DATA COMPRESSION (CP MODEL) N
AN

~ Nq Nt ~ 2 \
HDC — fX:H | S‘ S‘ o, 4 Gq,t(x) _ Gq,t(x)
-/ / %,

N

min o
X 1] = Gg,t(X)
model error Quantity of Interest (Qol) errors
R R
« Rank-R CP Model: X(z,y,v,t) = ZA(l)(:B, VAP (y, r)A® (v, r) AY (¢, 1)
r=1

« Low-rank tensor modeling framework: Tensor Toolbox for MATLAB
* Loss function: model error + sums of N, Qol per-time constraints

- Derivatives: MATLAB Deep Learning Toolbox (d1feval/dlgradient)
« Minimization: generalized CP (GCP) using L-BFGS-B [1] and ADAM [2]
«  Weights: manual tuned for improved model fitting

[11D. Hong, T. G. Kolda, and J. A. Duersch. Generalized Canonical Polyadic Tensor Decomposition. SIAM Review, 62(1):133-163, January 2020.
[2] T. G. Kolda and D. Hong, Stochastic Gradients for Large-Scale Tensor Decomposition, SIAM Journal on Mathematics of Data Science, 2 (2020), pp. 1066-1095.
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GOAL-ORIENTED LOW-RANK TENSOR DATA COMPRESSION: RESULTS

\

o Original CP decomposition 100 Goal-oriented CP decomposition \
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Goal-oriented tensor data compression significantly reduces Qol error




GOAL-ORIENTED LOW-RANK TENSOR DATA COMPRESSION: RESULTS

Divergence B Qol Error

Goal-oriented CP decomposition

Original CP decomposition 3
1071 . . . 3 10
10 2 ’v\_ﬁ(—_’//'
F . (-
I
10 AT
re)
(@4
m
()]
v
c
()]
o]
| -
(]
2
() —
Original data ] Original data
Reduced data | o —— Reduced data
-8 ! ! ; 10 8 | 1 | ;
10 0 50 100 150 200 0 50 100 150 200
Time Time

Much improved Qol error with negligible increase in model error




SUMMARY: GOAL-ORIENTED TENSOR DECOMPOSITIONS N
AN

N

- Conclusions AN
- Goal-oriented low-rank tensor decompositions reduce errors for quantities of interest without

much increase in model error

« L-BFGS-B minimization can be slow for current goal-oriented model fitting formulation;
initializing with fast methods for fitting model error alone is critical

«  Weights for model error and goal terms in loss functions may require manual tuning

* Next Steps
« Comparison of minimization methods (ADMM, interior point method, etc.)

« Scalable goal-oriented tensor modeling leveraging stochastic methods (SGD, ADAM)
 In-situ goal-oriented tensor modeling to provide adaptive compression during simulations

» More challenging application problems (3D, more complex/realistic physics, etc.)
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