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| Meissner-Effect Transition-Edge-Sensor (ME-TES): Introduction
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* An ME-TES microcalorimeter employs thermal : —
detection of radiation, as shown schematically above o
with incident radiation as wavy lines, in particular
gamma-ray radiation.
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Separation or gap between outer diameter
of tin and inner diameter of niobium coil.

S=(Dci-Dsc)/2=

W = (Dco - Dcr) / 2 = Width of niobium coil.




s 1| Meissner-effect transition edge sensor (ME-TES) @
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» I Device size and geometries

Scanning Electron Micrograph (SEM) images of completed devices (a)
Dsc =10 ym and Hsc =10 um and (b) Dsc = 50 pm and Hsc =10 um.




. | Pick up coils: "Lift off” and "etch” microfabrication
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ME-TES Fabrication layout

150 mm silicon nitride wafers

Layer 1 defines Al/Nb/Pd superconductor

Layer 2 defines electroplated tin disc
Electroplating tin one quarter wafer at a time after
Microscopy, SEM, XRF, and EDS for analysis

Wafer Ya wafer Die
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| Process flow

Die/device level

Diced quarter wafer
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¢ I Nb Film stress vs. resistivity at room temperture

Niobium Resistivity (n€2 * m)
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o 1 Deposition parameters and resulting film resistivity

Thickness Stress| Rs(/sq | Arscem | Power| mT BulkR
nm MPa W n{)-m
341.3 50.7 2.38 43 150 8 812.3
335.3 46.1 2.40 43 150 8 804.7
274.0 822.6 0.89 22.5 225 4.5 243.9
294 .4 797.2 0.83 22.5 225 4.5 244 4
267.5 802.6 0.86 22.5 225 4.5 230.1
262.5 642.5 1.05 22.5 225 4.5 275.6

Sputter deposition parameters and resulting stress and room-
temperature resistivity measurements.

As the power increases from 160 W to 240 W and chamber pressure decreases from
8 mTorr to 4.5 mTorr and argon (Ar) gas flows decrease from 43.3 sccm to 22.9 sccm,
transition temperature of the Nb is higher, closer to 10 K, which provides a greater
contrast to that of the Sn. The transition temperature od Sn is 3.7 K. We attribute the
difference to film stress, which is correlated with room-temperature resistivity



10 | Optimization superconductivity of nanostructured Nb films
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Row DC Power | Argon Flow Rate | Pressure | dyp ONb RNb PND I | Te
Number (W) (scem) (mTorr) | (nm) | (MPa) | (©/0) | (nQ- m) | (A) | (K)
1 225 22.5 4.5 274 823 0.89 244 36 | 9.6
2 150 43.0 8.0 341 51 2.38 812 11 4.2

Experimental data showing the resistance as a function of temperature for sputtered niobium |
For (a) the transition temperature near 4 Kelvin is so low that it could interfere with the transition

for tin (approximately 3.7 Kelvin in bulk). For (b) the transition temperature is near the expected

bulk value and well separated from the transition for tin. I



[1] Irwin, K., \Squids and transition-edge sensors," Journal of Superconductivity and Novel Magnetism. 34,
1601{1606 (2021).

[2] Irwin, K. and Hilton, G., \Transition-edge sensors," in [Cryogenic Particle Detection (Topics in Applied Physics)
volume 99], Enss, C., ed., 63{149, Springer-Verlag, Berlin Heidelberg (2005).

[3] Ullom, J. and Bennett, D., \Review of superconducting transition-edge sensors for x-ray and gamma-ray
spectroscopy,” Superconductor Science and Technology. 28, 084003 (2015).

[4] Stevenson, T. and et al, \Superconducting eects in optimization of magnetic penetration thermometers for x-ray
microcalorimeters," IEEE Transactions on Applied Superconductivity. 23, 2300605 (2013).

[5] Bandler, S. and et al, \Magnetically coupled microcalorimeters," Journal of Low Temperature Physics. 167,
254{268 (2012).

[6] Ashcroft, N. W. and Mermin, N. D., [Solid State Physics], Harcourt Brace College Publishers, Orlando, Florida
(1976 (college edition)).

1 I References m
[7] Kittel, C., [Introduction to Solid State Physics], John Wiley & Sons, New York, New York (1996 (seventh edition)). l

[8] Tinkham, M., [Introduction to Superconductivity], Dover Publications, Mineola, New York (2004 (second edition)).

[9] Henry, M., Woley, S., Monson, T., Clark, B. G., Shaner, E., and Jarecki, R., \Stress dependent oxidation of
sputtered niobium and eects on superconductivity," Journal of Applied Physics. 115, 083903 (2014). I

[10] Halbritter, J., \On the oxidation and on the superconductivity of niobium," Applied Physics A Solids and

QiivrfFAarnAnce A0 AMMOQ /10077\ I



Questions?




