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ABSTRACT

Infrasound, characterized by low-frequency sound inaudible to humans (<20 Hz), emanates from
natural and anthropogenic sources. Its efficacy for monitoring phenomena necessitates robust
sensing networks. Traditional ground-based infrasound sensors have limitations due to atmospheric
dynamics and noise interference. Balloon-bore sensors have emerged as an alternative, offering
reduced noise and improved capabilities. This study bridges clustering algorithms with balloon-
borne infrasound data, a domain yet to be explored. Employing K-Means, DBSCAN, and GMM
algorithms on normalized and reshaped data and only normalized data from a New Zealand-based
NASA balloon flight, insights into background noise at stratospheric altitudes were revealed.
Despite challenges arising from distinguishing signals amid unique background noise, this research
provides vital reference material for noise analysis and calibration. Beyond infrasound event capture,
the dataset enriches comprehension of background noise characteristics in the southern hemisphere.
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1. INTRODUCTION

Infrasound is low frequency sound below the range of human hearing (< 20 Hz). It is generated by
both natural and anthropogenic sources including chemical and nuclear explosions, rocket launches,
volcanoes, earthquakes, and ocean processes. Infrasound travels efficiently through the atmosphere,
making it useful for monitoring and characterizing sources of interest. Infrasound sensors have
traditionally been ground-based (see Burlacu et al, 2010; Christie & Campus, 2010; Alaska Volcano
Observatory, 2016; Marty, 2019; Bondar et al., 2022). Unfortunately, these ground-based networks
are at the mercy of atmospheric winds and source characteristics. They can only record distant
sources when the stratospheric winds are favorable and/or the signal can be transmitted through the
thermosphere. Ground-based sensors are also often plagued by wind noise (Raspet et al., 2019).
More recently, balloon-borne infrasound sensors have gained attention due to lower background
noise over their ground-based counterparts. Balloon-borne infrasound sensors have shown utility in
recording ocean processes (Bowman, 2016; Bowman & Lees, 2017), lightning (Lamb et al., 2018),
earthquakes (Brissaud et al., 2021; Garcia et al., 2022;), chemical explosions (Bowman & Albert,
2018; Young et al., 2018; Bowman et al., 2021; Silber et al., 2023), and the Hunga Tonga volcanic
eruption (Podglajen et al., 2022).

Clustering algorithms play a prominent role in understanding complex datasets by grouping data
points into clusters based on shared characteristics. In unsupervised machine learning, these
algorithms are essential tools as they enable the exploration of data structures without prior
knowledge of class labels. Some of the more commonly used clustering algorithms include K-Means,
Density-based Spatial Clustering of Applications with Noise (DBSCAN), and Gaussian Mixture
Models (GMM). A number of previous studies have used clustering methods on infrasound data,
focusing on characterizing volcanic activity (Cannata et al., 2011; Watson, 2020; Witsil et al., 2020)
and battlefield acoustics (Fields et al., 2021). However, clustering methods have yet to be applied to
infrasound data recorded on balloon-borne sensors. Therefore, we present a novel study analyzing
single-day records from a balloon-borne infrasound dataset. We present results from clustering
algorithms, including K-Means, DBSCAN, and GMM and compare them against each single-day
output to ascertain the emergence of any variations or patterns across several days of data.
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2. METHODS

2.1. Balloon Experiment

On May 16, 2016 a NASA Ultra Long Duration Balloon was launched out of Wanaka, New
Zealand. An infrasound payload was attached to the gondola of the balloon and recorded data for
19.5 days. The balloon flew for a total of 46 days, circumnavigating the southern hemisphere
(Bowman & Lees, 2018). The attached infrasound payload consisted of three InfraBSU infrasound
microphones (Marcillo et al., 2012) and an Omnirecs Datacube digitizer which recorded data at 200
samples per second at a gain of 64. Data was converted to a single channel using the method
outlined in Bowman & Lees (2018). The balloon maintained a float altitude of ~33 km; the full
trajectory is shown in Figure 1. A detailed description of the experiment can be found in Bowman &
Lees (2018).
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2016-06-22
2016-06-15
2016-06-08

2016-06-01

2016-05-22

Figure 1. Trajectory of the NASA Ultra Long Duration Balloon that was launched out of Wanaka,
New Zealand on May 16, 2016. The balloon carried an infrasound payload that recorded data for
19.5 days.

2.2. Data Curation

In any time series analysis, informative data processing is essential to unveiling meaningful insights
from recorded signals. Prior to analysis, the Wanaka dataset underwent a series of preprocessing
steps. This section outlines the filter method, generation of spectrograms for visual representation,
and normalization of data.

2.2.1.  Preprocessing

The ObsPy library is a widely used tool in seismology, and provides a range of functionalities for
signal processing and analysis. In the first step of preprocessing, the Wanaka dataset was detrended
and lowpass filtered below 20 Hz using ObsPy. This filter was chosen to attenuate high-frequency


https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL077737#grl57337-bib-0020

noise and unwanted data. The 20 Hz cutoff frequency for the lowpass filter was chosen based on
characteristics of the dataset and the frequency band for infrasound (< 20 Hz).

2.2.2. Generating Spectrograms

Spectrograms provide a comprehensive view of data, aiding in the identification of short-term
and/or long-term patterns. After applying the lowpass filter, the pre-processed data was transformed
into spectrograms by computing the Short-Time Fourier Transform (STFT), which involved
dividing the data into hour-long segments and calculating the Fourier Transform for each. We used
a Tukey window with shape parameter of 0.25 and a segment length of 625.

2.2.3. Normalization

Normalization is an essential step in data processing to ensure different datasets can be compared
and analyzed on a common scale. In the context of the Wanaka dataset, a simple manual min-max
normalization technique is utilized. Manual min-max scaling is a linear transformation technique that
maps data values to a specific range, between 0 and 1. Min-max scaling was chosen over other
normalization techniques due to its several advantages, including simplicity and transparency. This
scaling technique is particularly useful when the distribution of the data varies widely and when the
data range is known to be consistent across different subsets of the dataset.

2.3. Clustering Algorithms
2.3.1.  Clustering Methods

In the initial phase of preprocessing, the data was reshaped to align with the input expectations of
the following clustering algorithms: K-Means, DBSCAN, and GMM. This step was pivotal in
ensuring that the algorithms could accurately operate on the data’s dimensions. The initial dataset
included both spectrograms and date/time information. After experimenting with reshaping of the
initial data, the date/time dimension was removed from the dataset for analysis. This step was
essential in mitigating issues related to varying scales and magnitudes of features, thereby allowing
the clustering algorithms to perform optimally on comparable scales.

2.3.2.  Graphical User Interface (GUI)

To facilitate a deeper understanding of the clustering algorithm’s output, a graphical user interface
(GUI) was developed to provide interactive data visualization of data points in a given clustering
algorithm plot. This GUI was crafted to enable users to gain insight to the nature of individual data
points in a plot by hovering over them. Upon hovering over a specific data point, the GUI
dynamically generates and displays the corresponding spectrogram. This visualization tool bridges
the gap between abstract cluster assignments and underlying infrasound events, enhancing the
interpretability of the clustering algorithm’s results.
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3. RESULTS AND DISCUSSION

First, we focused on a single day if data collected from the Wanaka region. This dataset was
subjected to clustering using K-Means, DBSCAN, and GMM algorithms with two types of inputs:
(1) normalized and reshaped data and (2) only normalized data. While utilizing normalized and
reshaped data for clustering, a notable observation emerged. The results indicated significant
presence of noise within data, which appeared to be clustered with signals that could potentially be
interpreted as relevant infrasound events. The clustering algorithms struggled to distinctly separate
noise from the signal-bearing data points, resulting in cluster assignments that were less coherent.
This led us to believe that only normalizing the data may prove more useful.
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Figure 2. Data visualization of DBSCAN and GMM models on Julian day 138, which is the first day

applied to clustering algorithms.
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Figure 3. Data visualization of DBSCAN and GMM models on Julian day 156, which is the last day

applied to clustering algorithms.

Interestingly, the application of the same clustering algorithms to only normalized data displayed a
similar trend. The results still exhibited a considerable amount of noise, suggesting that the
normalization process did not entirely alleviate the issue of noise contamination within the clusters.
The abundance of noise in the clustering algorithm results warrants a comprehensive discussion,
particularly in the context of the data collection methodology. As the infrasound data was collected
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from an airborne recording system in the stratosphere, this methodological approach presents
unique challenges in differentiating between relevant signals and background noise, something that
has never been done at these altitudes.
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Figure 4. DBSCAN plot and corresponding spectrogram for Julian day 138.
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Figure 5. GMM plot and corresponding spectrogram for Julian day 138. Cluster probability
displays which cluster the data point is assigned to. In this case, out of the three clusters, data
point 26 belongs to cluster 1.

As the airborne sensor continued to collect infrasound data from the atmosphere, an analysis of
each clustering output of the 19.5-day dataset indicated a changing distribution pattern, which can be
seen in Figures 2 and 3. When observing each day’s DBSCAN and GMM output, noticeable
infrasound events are present above the background noise. Example spectrograms are shown in
Figures 6 a-f and were generated from data collected at the same time over several days, specifically
between the hours of 21:00 and 23:30. For all days, most of the recorded energy falls below ~5 Hz.
However, on Julian days 142, 150, and 153 there are obvious broadband signals, suggesting
infrasound events were recorded. However, it is important to note that the majority of spectrograms
resemble those from Julian days 138, 147, and 1506, which do not contain signals. Clustering
algorithms typically struggle with data inequality such as this.
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Figure 6. Generated spectrograms for Julian days 138, 142, 147, 150, 153, and 156 respectively.

The presence of significant noise in the clustering results poses challenges in accurately identifying
and isolating genuine infrasound events. Clustering algorithms rely on patterns and relationships
within data points to form distinct clusters. Additional investigations into the origin and
characteristics of the noise detected in the dataset are necessary. Identifying the sources of noise and
understanding their behavior can aid in developing tailored preprocessing methods. However, the
dataset’s richness in background noise serves as a reference point for noise analysis and calibration.
As the dataset encompasses a diverse range of noise sources, it can aid researchers in developing
noise reduction techniques, enhancing the quality of infrasound data collected from similar altitudes
and regions. Despite these challenges, this dataset contributes to the broader understanding of
infrasound recorded at stratospheric altitudes in the southern hemisphere. While capturing events
may not have been the primary outcome, the dataset offers a glimpse into the background noise
characteristics unique to this region. By acknowledging and leveraging this information, researchers
can enhance their comprehension of infrasound-generating processes on a global scale.
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4, CONCLUSIONS

We employed K-Means, DBSCAN, and GMM clustering algorithms on both reshaped and
normalized data and only normalized data from a NASA Ultra Long Duration Balloon flight out of
Wanaka, New Zealand. When clustering reshaped data, the outcomes were dominated by the
presence of noise within the dataset, assigning both noise and potential events of interest to clusters.
Interestingly, applying the same clustering algorithms to normalized data yielded similar results.
Given that the infrasound data was sourced from an airborne recording system at stratospheric
altitudes, and little is known about background noise in this region, there are unique challenges
inherent to distinguishing between relevant signals and background noise. This work provides
insight into background noise at these altitudes and holds potential as a reference for noise analysis
and calibration. While infrasound event capture was not the primary outcome, this dataset allows a
glimpse into the distinctive background noise and characteristics specific to stratospheric altitudes in
the southern hemisphere.
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