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ABSTRACT: 
The tension between accuracy and computational cost is a common thread throughout 
computational simulation.  One such example arises in the modeling of mechanical joints.  Joints 
are typically confined to a physically small domain and yet are computationally expensive to 
model with a high-resolution finite element representation.  A common approach is to substitute 
reduced-order models that can capture important aspects of the joint response and enable the use 
of more computationally efficient techniques overall.  Unfortunately, such reduced-order models 
are often difficult to use, error prone, and have a narrow range of application.  In contrast, we 
propose a new type of reduced-order model, leveraging machine learning, that would be both 
user-friendly and extensible to a wide range of applications.

INTRODUCTION AND EXECUTIVE SUMMARY OF RESULTS: 
There are two common types of reduced-order models commonly used in linear structural 
dynamics.  The first is general linear reduced-order models, with Craig-Bampton reduction1 and 
component-mode synthesis2 being two well-known examples.  These reduced-order models are 
well-suited for representing a general domain, as well as being computationally efficient and 
accurate.  However, they can only capture linear behavior and thus are a poor choice for more 
complex models involving mild nonlinearities such as the joint models as mentioned above.  

Nonlinear reduced-order models have been developed for linear structural dynamics,3,4 but they 
are typically focused on a narrow use case.  Nonlinear reduced-order models frequently suffer 
from poor usability, require extensive “tuning” to fit expected behavior, and are not extensible to 
domains beyond what they were developed for.  The hypothesis of this exploratory LDRD is that 
machine-learned reduced-order models can offer an attractive third option to analysts.  Namely: a 
reduced-order model that offers the same usability and generality benefits as linear reduced-order 
models, but also offers the potential for additional extensibility beyond what linear reduced-order 
models currently support.

Our core development team has prior experience developing machine-learned reduced-order 
models for fully nonlinear quasi-statics under the Advanced Simulation and Computing 
Advanced Machine Learning initiative.  That work was also foundational to several subsequent 
research efforts.5,6  However, those previous efforts have all focused on predicting static or 
quasi-static response via learning effective stiffness properties.  As mentioned above, a key 
departure of this work from the previous state of the art is in the prediction of dynamic response 
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via learning the mass properties of a system.  Specifically, we are trying to learn the dynamic 
equation of motion,

𝑀𝑎 + 𝐾𝑑 = 𝑓
where 𝑀 is the mass matrix of the system, 𝐾is the system stiffness matrix, 𝑓 represents the 
external forces on the system, 𝑑 is the system displacement, and 𝑎 = 𝑑 is the acceleration.  
Previous efforts had focused on solving the steady state or static equation of motion,

𝐾𝑑 = 𝑓
which ignores any effects of the system mass or acceleration.

The finite element simulations for training the models were obtained using the Sierra/SD finite 
element code,7 which is a part of the Sierra simulation code suite developed at Sandia National 
Laboratories.  Sierra/SD provides a massively parallel implementation of structural dynamics 
finite element analysis and is frequently used for high fidelity, validated models used in modal, 
vibration, static, and shock analysis of weapons systems.  While the trained models could be 
exercised in isolation, one of the main goals of this project was to provide an interface for 
running machine-learned submodels embedded into larger structural dynamics simulations.  For 
this goal, we again focused our efforts towards Sierra/SD.  Firstly, we use a lightweight interface 
layer that allows TensorFlow,8 Keras,9 and PyTorch10 models to be ran natively in C++ 
application codes.  This interface layer was built on top of the pocket-tensor library11 with 
extensions added for our use case.  Additionally, we developed a suite of end-user focused 
workflow tools for training the models, which can be challenging to new users.  Finally, this 
work was developed using agile software best practices, and we have also developed an 
extensive suite of tests of the capability that are run nightly.  The culmination of this effort is the 
development of a robust and user-friendly embedded machine-learning submodeling capability 
in Sierra/SD.  This capability provides users with an attractive alternative to the existing Craig-
Bampton reduced-order modeling capability and is extensible to incorporate a variety of training 
data as well as capturing more complex phenomena in a way that the existing offerings cannot 
easily replicate.

DETAILED DESCRIPTION OF RESEARCH AND DEVELOPMENT AND 
METHODOLOGY: 
As mentioned above, our research departed from previous endeavors by learning dynamic system 
matrices.  Recalling again the finite element equation of motion, we seek to learn an effective 
representation of the following system of equations:

𝑀𝑀𝐿𝑎 + 𝐾𝑀𝐿𝑑 = 𝑓
where 𝑀𝑀𝐿 is a machine-learned approximation of the system mass matrix and 𝐾𝑀𝐿 is the 
machine-learned stiffness matrix approximation.  To learn both an effective mass and stiffness, 
we use a two-stage learning procedure where we first learn the stiffness and then the mass.



Solving for the stiffness matrix proceeds as follows.  A series of static finite element simulations 
are conducted, solving the following linear system of equations:

𝐾𝐹𝐸𝑀𝑑 = 𝑓
where 𝐾𝐹𝐸𝑀 is simply the standard finite-element stiffness matrix, which is derived from the 
element formulation and material properties of the system.

Subsequently, the system displacement 𝑑 and total force 𝑓 (comprised of the sum of reaction and 
external forces on the system) are used an inputs and outputs for training a machine-learned 
model, with the goal of learning an effective system matrix 𝐾𝑀𝐿𝑑 ≈  𝑓.

After the stiffness matrix has been learned, we proceed to learning a mass matrix.  To do so, we 
again conduct a series of finite element simulations.  However, our training data now utilizes the 
results of a dynamic simulation as opposed to the static simulations that were used to learn the 
stiffness matrix,

𝑀𝐹𝐸𝑀𝑎 + 𝐾𝐹𝐸𝑀𝑑 = 𝑓
where 𝑀𝐹𝐸𝑀 is again the standard finite-element mass matrix.

Once again, we use the outputs from these dynamic simulations as inputs and outputs for training 
a machine-learned model.  However, as opposed to learning the stiffness matrix, the input is now 
acceleration 𝑎 and output 𝑓 ― 𝐾𝑀𝐿𝑑.  Note the change from 𝐾𝐹𝐸𝑀 to 𝐾𝑀𝐿, meaning that we are 
feeding the results of the machine-learned stiffness prediction model into the training set of the 
second, mass machine-learned model.  This approach eliminates the need for (potentially 
application intrusive) knowledge of the system matrices when training their machine-learned 
surrogates.  This approach also enables the seamless fusion of data from disparate sources such 
as nonlinear simulations or physical experiments, which is something our team would like to 
investigate further in follow-on work.

When training our machine-learned surrogate models, we found that a stochastic gradient 
descent optimizer was a good choice of optimizer and significantly outperformed other popular 
choices such as Adam.  We also found an adaptive learning rate to significantly improve the 
speed and robustness of the fit.  Finally, we utilized PyTorch as our machine-learning framework 
due to ease of customization and straightforward application of constraints on the learning 
approach.

In this initial work, we chose to focus on a single dense layer as our neural network architecture.  
As expected, this choice proved more than adequate for predicting linear response.  We also 
discovered that using double precision for our machine-learned models was essential to obtaining 
good accuracy and solution robustness, especially for eigen-analysis simulations.



Another significant departure from our previous work was in the decision to incorporate physical 
properties of the system directly into our training procedure (e.g., a physics-informed neural 
network).  The desired properties were enforced via a custom loss function in our machine-
learned model.  Recall that the model is predicting a matrix quantity.  When training the stiffness 
surrogate, we enforce through a penalty approach that the stiffness prediction should be 
symmetric, the diagonal entries should be positive, and there should be six rigid-body (zero-
energy) eigenvalue modes.  These virtues are all properties of well-formed stiffness matrices that 
we would like our machine-learned surrogate to have as well.  Likewise, for the mass matrix 
surrogate model, we enforce predications to be symmetric, have positive diagonal entries, and 
the overall sum (a multiple of the total mass) should be greater than zero.  

We have found including physical properties in this way to lead to more accurate results, as well 
as reduced training iterations.  Additionally, encapsulation of these properties in the machine-
learned model itself enables a less intrusive implementation when compared to enforcing them 
posteriorly in the finite element application code.  Finally, this approach is easily modified to 
include more (or less) constraints based on experimental results, physical quantities, element 
formulation, etc.

RESULTS AND DISCUSSION: 
We first consider the problem of learning the mass and stiffness properties of a single eight-
noded linear hexahedral element (shown below).  The dimension of the element is 2”x2”x2”, and 
an isotropic material model was used with aluminum material properties (Young’s modulus 1e7 
psi, density 0.1 lb/in^3, Poissons Ratio 0.35).  In this case, the exact finite element mass and 
stiffness matrices are known, so we can compare them directly to their machine-learned 
surrogates.  

 
Stiffness Mass

Single hex element



The training procedure described above is used here: a series of static and transient simulations 
were conducted to obtain displacements, accelerations, and forces that were in turn used to train 
machine-learned models to approximate the mass and stiffness matrix of the element.  In this 
case, a training procedure was used by which a sine-wave forcing function with a maximum 
amplitude of 1e9 was applied to a single degree of freedom at a time (i.e., a single node, in a 
single x/y/z direction) over a series of 64 time steps of size 0.01, while the remaining degrees of 
freedom were held fixed.  In the case of the static simulations, the density of the material model 
was set to zero, leading to a sequence of quasistatic simulations.

The relative error in the stiffness matrix approximation was approximately 1e-15, which is close 
to machine precision.  The relative error in the mass matrix is 1e-12.  Recall that the mass matrix 
is trained with results from the stiffness surrogate model and thus incurs a slight accumulation of 
errors, so a slightly higher error is expected.  Even so, the matrix is still extremely accurate.  
From these results, we can see that a machine-learned model as outlined above is able to predict 
mass and stiffness properties to a high degree of accuracy.  From these results, we can see that 
the machine learning procedure outlined above is indeed capable of learning the mass and 
stiffness properties of a system. 

Secondly, we examine a collection of eight linear hexahedral elements arranged into a cube.  The 
same training procedure as the single cube example is also used here.  However, when 
generating the training set for the machine-learned models, the center node is intentionally left 
out.  The result of this change is that in contrast to the previous example, in this case the training 
data is not complete, and the model must learn a reduced representation of the full system 
matrices.  A similar training procedure as the single element example above was used.  However, 
a linear sweep of force from 1e9 to 1e9 was used instead of a sine wave, and prescribed 
displacements were used at the free degree-of-freedom instead of prescribed force, with a range 
of 1 to 1.
  

Eight hex elements Boundary conditions



To exercise the machine-learned model, we run a transient analysis of both the original model 
and the machine-learned model that was trained with the missing data.  The vertex nodes of the 
back face of the cube were fixed, and a bi-directional shearing load of 1e7 was applied to the 
vertex nodes of the front face (see boundary conditions figure above).  A short transient analysis 
was conducted, with a simulation duration of 0.4 s and a timestep of 0.1s.  The relative error over 
all time steps was less than 0.1%.  A side-by-side comparison of the displacements for both the 
original and machine-learned surrogate models are plotted at the final time step below, where 
good agreement can be seen between the two approaches.

From this example, we can see that the machine-learned mass and stiffness approach is able to 
approximate the properties of multiple elements simultaneously, but also that the data set need 
not be complete to obtain an accurate approximation.

Finally, we consider a tuning fork model (shown below).  This model is both geometrically more 
complex than the previous examples, and also utilizes a 20-noded quadratic hexahedral element 
formulation.  The lower tine (shaded in red) is replaced with a machine-learned surrogate model 
at a subset of the nodes.  As opposed to the previous two examples, however, the subregion to be 
replaced was simulated independently to obtain the training data.  Another added complexity 
over the previous examples is in the amount of data: while the previous example was missing 
data from 1 node out of 27, we will be training this problem using only 40 out of a total of 68 
nodes in the surrogate region.  A similar training procedure was used to the previous example.  
However, two degrees-of-freedom are now free at a time, and less data (20 steps) was provided 
for each loading case.  Additionally, 500 gaussian-random displacement & force distributions 
(for static & transient simulations respectively) were included in the training set at all degrees-of-

Original Machine-Learned



freedom simultaneously, with amplitudes matching the linear sweep (1 for displacement and 1e9 
for force).

After the machine-learned models were trained, they were coupled back to the residual structure 
as seen in the image above.  Subsequently, an eigen-analysis simulation was conducted for both 
the original and coupled surrogate model.  ten modes were simulated: six rigid body (zero-
energy) modes, and four elastic.  As seen in the following table, the percent error in the 1st four 
elastic modes is all below 5%.  Additionally, a comparison of the mode shapes shows good 
agreement, even in the surrogate region.

1st elastic 2nd elastic 3rd elastic 4th elastic
% error 1.7 0.7 3.2 4.5

1st elastic:

Original model Residual model + 
ML surrogate



2nd elastic:

3rd elastic:

4th elastic:

This example demonstrates the applicability of the machine-learned approach to more complex 
models and element formulations.  Additionally, the example demonstrates that a moderate 
amount of data can be missing from your training data set while still obtaining reasonable 
accurate results.  Finally, this example demonstrates that this approach is well-suited for the 
typical reduced-order modeling workflow of off-line learning followed by embedded simulation.



ANTICIPATED OUTCOMES AND IMPACTS: 

Based on our discussions with interested analysts, we anticipate this work having an immediate 
impact on both system and component modeling across many current and future weapons 
programs.  This approach offers structural dynamics analysts a user-friendly alternative to the 
current state of the art found in existing reduced-order modeling approaches like Craig-Bampton 
reduction and opens the door to many exciting possibilities in the future.

One way that this machine-learned approach offers an immediate impact to Sandia analyses is 
through the incorporation of experimental results into the reduced-order model formulation.  For 
example, there will always be model-form error in any numerical simulation, where the 
underlying assumptions of the chosen model do not match the physical reality.  In such 
situations, we envision this machine-learned modeling approach being useful to account for such 
discrepancies.  This accounting could take two forms.  First, experimental data could be used to 
augment the simulation training data, thereby giving the machine-learned model a “richer” data 
set from which to learn.  Alternatively (or additionally), experimental data could also be used to 
influence the machine-learning approach directly, similarly to the loss-penalty approach we 
utilized to embed key physical properties of system matrices into our machine-learned models.

This research was conducted using agile best practices, and all code development utilized test-
driven development to ensure a clean and easily maintainable software implementation.  Robust 
testing is vital to the longevity of a software product and was a key focus of our work here as 
well.  We have well over 150 version-controlled tests, as well as two dozen unit tests.  Nearly all 
the tests are run nightly on a wide variety of computing platforms and compilers, are easily 
accessible to all users of the Sierra software suite, and are illustrative of the basic workflow and 
use cases of this capability. In fact, all three examples presented in this document are part of our 
nightly testing suite.

We have also developed a robust suite of workflow tools that support every step from initial 
training setup to model generation and subsequent (re)use.  This development represents a 
significant shift away from user-maintained one-off workflows and scripts, which are prone to 
being brittle, to a generable, maintained, and well-tested approach.  Finally, this work opens the 
door to many exciting possibilities and serves as the foundation for several follow-on areas of 
research that we hope to explore.

One natural extension of this work would be in the modeling of system damping properties, 
which frequently require extensive tuning of the finite element model to obtain accurate 
predictive simulations.  The equations of motion for a damped system are shown below: 

𝑀𝑎 + 𝐶𝑣 + 𝐾𝑑 = 𝑓



where 𝑣 = 𝑑 represents the system velocity and 𝐶 is the damping matrix, which often requires 
calibration against experimental data.  In contrast, one could envision a three-step approach, 
starting with the existing simulation-driven two-step mass-and-stiffness learning procedure 
outlined here and then feeding forward into a third training leveraging experimental results to 
learn the damping properties.

Another area of interest is the development of a general nonlinear reduced-order modeling 
approach, where subsystems with mild nonlinearities could be incorporated into a linear 
dynamics application space.  Indeed, previous work from our team in the area of reduced-order 
modeling of nonlinear structural mechanics systems has shown great promise.  We would like to 
explore marrying the two application spaces, and we envision a use case where machine-learned 
(linearized) system properties would be coupled with a nonlinear machine-learned forcing 
function.  Recalling again to the equation of motion, the system of equations we would be 
solving is the following:

𝑀𝑀𝐿𝑎 + 𝐾𝑀𝐿𝑑 = 𝑓𝑀𝐿(𝑑, 𝑎) + 𝑓𝐹𝐸𝑀
where the machine-learned force correction vector 𝑓𝑀𝐿 that would correct for any nonlinearity 
that the mass and stiffness matrix models would not be able to capture.  Such an approach would 
represent a revolutionary improvement in usability and generality vs. the domain-specific 
nonlinear ROMs commonly used today.

CONCLUSION:

In this work, we have demonstrated the viability of a machine-learned approach for 
approximating structural dynamic system matrices.  The results presented here demonstrate that 
this approach has the ability to accurately reproduce mass and stiffness properties of a variety of 
element formulations, even in the presence of missing data.  An interface is also provided to 
embed machine-learned mass and stiffness models in the widely used structural dynamics code, 
Sierra/SD.



REFERENCES:
[1] Craig, R. R. (1981). Structural Dynamics: An Introduction to Computer Methods. John Wiley 
& Sons.
[2] Kubomura, K. (1982). A Theory of Substructure Modal Synthesis. ASME. J. Appl. Mech., 
49(4): 903–909.
[3] Segalman, D. J. (2005). A four-parameter Iwan model for lap-type joints. ASME. J. Appl. 
Mech., 72(5): 752–760.
[4] Mathis, A. T., Balaji, N. N., Kuether, R. J., Brink, A. R., Brake, M. R., & Quinn, D. D. 
(2020). A review of damping models for structures with mechanical joints. Applied Mechanics 
Reviews, 72(4).
[5] Mersch, J, Parish, E, Lindsay, P, & Shelton, T. (2022, October 16-19). Machine-Learned 
Surrogate Models for Threaded Fastener Geometries Subjected to Multiaxial Loadings 
[Conference presentation]. SES Annual Technical Meeting, College Station, TX, United States.
[6] de Oca Zapiain, DM, Bergel, GL, Lim, H, & Romero, V. (2022, Oct. 2-7). Estimating 
Uncertainty of Neural Network Predictions for Inelastic Mechanical Deformation using Coupled 
FEM-NN Approach [Conference presentation]. MMM10 Conference, Baltimore, MD, United 
States.
[7] Crane, N, Day, D, Dohrmann, C, Stevens, B, Lindsay, P, Plews, J, Vo, J, Bunting, G, Walsh, 
T, & Joshi, S. Sierra/SD - User's Manual - 5.10. United States.
[8] Tensorflow. https://www.tensorflow.org/
[9] Keras. https://keras.io/
[10] PyTorch. https://pytorch.org/
[11] G. Valiente, pocket-tensor. https://github.com/GValiente/pocket-tensor, 2018.

https://www.tensorflow.org/
https://keras.io/
https://pytorch.org/


ADDENDUM: 














