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ABSTRACT:

The tension between accuracy and computational cost is a common thread throughout
computational simulation. One such example arises in the modeling of mechanical joints. Joints
are typically confined to a physically small domain and yet are computationally expensive to
model with a high-resolution finite element representation. A common approach is to substitute
reduced-order models that can capture important aspects of the joint response and enable the use
of more computationally efficient techniques overall. Unfortunately, such reduced-order models
are often difficult to use, error prone, and have a narrow range of application. In contrast, we
propose a new type of reduced-order model, leveraging machine learning, that would be both
user-friendly and extensible to a wide range of applications.

INTRODUCTION AND EXECUTIVE SUMMARY OF RESULTS:

There are two common types of reduced-order models commonly used in linear structural
dynamics. The first is general linear reduced-order models, with Craig-Bampton reduction' and
component-mode synthesis’ being two well-known examples. These reduced-order models are
well-suited for representing a general domain, as well as being computationally efficient and
accurate. However, they can only capture linear behavior and thus are a poor choice for more
complex models involving mild nonlinearities such as the joint models as mentioned above.

Nonlinear reduced-order models have been developed for linear structural dynamics,** but they
are typically focused on a narrow use case. Nonlinear reduced-order models frequently suffer
from poor usability, require extensive “tuning” to fit expected behavior, and are not extensible to
domains beyond what they were developed for. The hypothesis of this exploratory LDRD is that
machine-learned reduced-order models can offer an attractive third option to analysts. Namely: a
reduced-order model that offers the same usability and generality benefits as linear reduced-order
models, but also offers the potential for additional extensibility beyond what linear reduced-order
models currently support.

Our core development team has prior experience developing machine-learned reduced-order
models for fully nonlinear quasi-statics under the Advanced Simulation and Computing
Advanced Machine Learning initiative. That work was also foundational to several subsequent
research efforts.”® However, those previous efforts have all focused on predicting static or
quasi-static response via learning effective stiffness properties. As mentioned above, a key
departure of this work from the previous state of the art is in the prediction of dynamic response
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via learning the mass properties of a system. Specifically, we are trying to learn the dynamic
equation of motion,

Ma+Kd=f
where M is the mass matrix of the system, Kis the system stiffness matrix, f represents the
external forces on the system, d is the system displacement, and a = d is the acceleration.
Previous efforts had focused on solving the steady state or static equation of motion,

Kd=f

which ignores any effects of the system mass or acceleration.

The finite element simulations for training the models were obtained using the Sierra/SD finite
element code,” which is a part of the Sierra simulation code suite developed at Sandia National
Laboratories. Sierra/SD provides a massively parallel implementation of structural dynamics
finite element analysis and is frequently used for high fidelity, validated models used in modal,
vibration, static, and shock analysis of weapons systems. While the trained models could be
exercised in isolation, one of the main goals of this project was to provide an interface for
running machine-learned submodels embedded into larger structural dynamics simulations. For
this goal, we again focused our efforts towards Sierra/SD. Firstly, we use a lightweight interface
layer that allows TensorFlow,® Keras,” and PyTorch!’ models to be ran natively in C++
application codes. This interface layer was built on top of the pocket-tensor library'' with
extensions added for our use case. Additionally, we developed a suite of end-user focused
workflow tools for training the models, which can be challenging to new users. Finally, this
work was developed using agile software best practices, and we have also developed an
extensive suite of tests of the capability that are run nightly. The culmination of this effort is the
development of a robust and user-friendly embedded machine-learning submodeling capability
in Sierra/SD. This capability provides users with an attractive alternative to the existing Craig-
Bampton reduced-order modeling capability and is extensible to incorporate a variety of training
data as well as capturing more complex phenomena in a way that the existing offerings cannot
easily replicate.

DETAILED DESCRIPTION OF RESEARCH AND DEVELOPMENT AND
METHODOLOGY:

As mentioned above, our research departed from previous endeavors by learning dynamic system
matrices. Recalling again the finite element equation of motion, we seek to learn an effective
representation of the following system of equations:

Myra+ Ky d=f
where M, is a machine-learned approximation of the system mass matrix and K, is the
machine-learned stiffness matrix approximation. To learn both an effective mass and stiffness,
we use a two-stage learning procedure where we first learn the stiffness and then the mass.
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Solving for the stiffness matrix proceeds as follows. A series of static finite element simulations
are conducted, solving the following linear system of equations:

Kremd = f
where K gy 1s simply the standard finite-element stiffness matrix, which is derived from the
element formulation and material properties of the system.

Subsequently, the system displacement d and total force f (comprised of the sum of reaction and
external forces on the system) are used an inputs and outputs for training a machine-learned
model, with the goal of learning an effective system matrix Ky, d = f.

After the stiffness matrix has been learned, we proceed to learning a mass matrix. To do so, we
again conduct a series of finite element simulations. However, our training data now utilizes the
results of a dynamic simulation as opposed to the static simulations that were used to learn the
stiffness matrix,

Mrgma + Kpgmd = f
where M), is again the standard finite-element mass matrix.

Once again, we use the outputs from these dynamic simulations as inputs and outputs for training
a machine-learned model. However, as opposed to learning the stiffness matrix, the input is now
acceleration a and output f — K, d. Note the change from K gy, to Ky, meaning that we are
feeding the results of the machine-learned stiffness prediction model into the training set of the
second, mass machine-learned model. This approach eliminates the need for (potentially
application intrusive) knowledge of the system matrices when training their machine-learned
surrogates. This approach also enables the seamless fusion of data from disparate sources such
as nonlinear simulations or physical experiments, which is something our team would like to
investigate further in follow-on work.

When training our machine-learned surrogate models, we found that a stochastic gradient
descent optimizer was a good choice of optimizer and significantly outperformed other popular
choices such as Adam. We also found an adaptive learning rate to significantly improve the
speed and robustness of the fit. Finally, we utilized PyTorch as our machine-learning framework
due to ease of customization and straightforward application of constraints on the learning
approach.

In this initial work, we chose to focus on a single dense layer as our neural network architecture.
As expected, this choice proved more than adequate for predicting linear response. We also
discovered that using double precision for our machine-learned models was essential to obtaining
good accuracy and solution robustness, especially for eigen-analysis simulations.
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Another significant departure from our previous work was in the decision to incorporate physical
properties of the system directly into our training procedure (e.g., a physics-informed neural
network). The desired properties were enforced via a custom loss function in our machine-
learned model. Recall that the model is predicting a matrix quantity. When training the stiffness
surrogate, we enforce through a penalty approach that the stiffness prediction should be
symmetric, the diagonal entries should be positive, and there should be six rigid-body (zero-
energy) eigenvalue modes. These virtues are all properties of well-formed stiffness matrices that
we would like our machine-learned surrogate to have as well. Likewise, for the mass matrix
surrogate model, we enforce predications to be symmetric, have positive diagonal entries, and
the overall sum (a multiple of the total mass) should be greater than zero.
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We have found including physical properties in this way to lead to more accurate results, as well
as reduced training iterations. Additionally, encapsulation of these properties in the machine-
learned model itself enables a less intrusive implementation when compared to enforcing them
posteriorly in the finite element application code. Finally, this approach is easily modified to
include more (or less) constraints based on experimental results, physical quantities, element
formulation, etc.

RESULTS AND DISCUSSION:

We first consider the problem of learning the mass and stiffness properties of a single eight-
noded linear hexahedral element (shown below). The dimension of the element is 2”’x2”x2”, and
an isotropic material model was used with aluminum material properties (Young’s modulus 1e7
psi, density 0.1 Ib/in”3, Poissons Ratio 0.35). In this case, the exact finite element mass and
stiffness matrices are known, so we can compare them directly to their machine-learned
surrogates.

Stiffness Mass
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The training procedure described above is used here: a series of static and transient simulations
were conducted to obtain displacements, accelerations, and forces that were in turn used to train
machine-learned models to approximate the mass and stiffness matrix of the element. In this
case, a training procedure was used by which a sine-wave forcing function with a maximum
amplitude of 1e9 was applied to a single degree of freedom at a time (i.e., a single node, in a
single x/y/z direction) over a series of 64 time steps of size 0.01, while the remaining degrees of
freedom were held fixed. In the case of the static simulations, the density of the material model
was set to zero, leading to a sequence of quasistatic simulations.

The relative error in the stiffness matrix approximation was approximately le-15, which is close
to machine precision. The relative error in the mass matrix is 1e-12. Recall that the mass matrix
is trained with results from the stiffness surrogate model and thus incurs a slight accumulation of
errors, so a slightly higher error is expected. Even so, the matrix is still extremely accurate.
From these results, we can see that a machine-learned model as outlined above is able to predict
mass and stiffness properties to a high degree of accuracy. From these results, we can see that
the machine learning procedure outlined above is indeed capable of learning the mass and
stiffness properties of a system.

Secondly, we examine a collection of eight linear hexahedral elements arranged into a cube. The
same training procedure as the single cube example is also used here. However, when
generating the training set for the machine-learned models, the center node is intentionally left
out. The result of this change is that in contrast to the previous example, in this case the training
data is not complete, and the model must learn a reduced representation of the full system
matrices. A similar training procedure as the single element example above was used. However,
a linear sweep of force from —1e9 to 1e9 was used instead of a sine wave, and prescribed
displacements were used at the free degree-of-freedom instead of prescribed force, with a range
of-1to 1.

Eight hex elements Boundary conditions
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To exercise the machine-learned model, we run a transient analysis of both the original model
and the machine-learned model that was trained with the missing data. The vertex nodes of the
back face of the cube were fixed, and a bi-directional shearing load of 1e7 was applied to the
vertex nodes of the front face (see boundary conditions figure above). A short transient analysis
was conducted, with a simulation duration of 0.4 s and a timestep of 0.1s. The relative error over
all time steps was less than 0.1%. A side-by-side comparison of the displacements for both the
original and machine-learned surrogate models are plotted at the final time step below, where
good agreement can be seen between the two approaches.

Original Machine-Learned

From this example, we can see that the machine-learned mass and stiffness approach is able to
approximate the properties of multiple elements simultaneously, but also that the data set need
not be complete to obtain an accurate approximation.

Finally, we consider a tuning fork model (shown below). This model is both geometrically more
complex than the previous examples, and also utilizes a 20-noded quadratic hexahedral element
formulation. The lower tine (shaded in red) is replaced with a machine-learned surrogate model
at a subset of the nodes. As opposed to the previous two examples, however, the subregion to be
replaced was simulated independently to obtain the training data. Another added complexity
over the previous examples is in the amount of data: while the previous example was missing
data from 1 node out of 27, we will be training this problem using only 40 out of a total of 68
nodes in the surrogate region. A similar training procedure was used to the previous example.
However, two degrees-of-freedom are now free at a time, and less data (20 steps) was provided
for each loading case. Additionally, 500 gaussian-random displacement & force distributions
(for static & transient simulations respectively) were included in the training set at all degrees-of-
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freedom simultaneously, with amplitudes matching the linear sweep (1 for displacement and 1e9
for force).

Original model Residual model +
ML surrogate

After the machine-learned models were trained, they were coupled back to the residual structure
as seen in the image above. Subsequently, an eigen-analysis simulation was conducted for both
the original and coupled surrogate model. ten modes were simulated: six rigid body (zero-
energy) modes, and four elastic. As seen in the following table, the percent error in the 1%t four
elastic modes is all below 5%. Additionally, a comparison of the mode shapes shows good
agreement, even in the surrogate region.

18t elastic 2nd elastic 31 elastic 4th elastic
% error 1.7 0.7 3.2 4.5

1t elastic:
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2nd elastic:

3rd elastic:

4t elastic:

This example demonstrates the applicability of the machine-learned approach to more complex
models and element formulations. Additionally, the example demonstrates that a moderate
amount of data can be missing from your training data set while still obtaining reasonable
accurate results. Finally, this example demonstrates that this approach is well-suited for the
typical reduced-order modeling workflow of off-line learning followed by embedded simulation.
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ANTICIPATED OUTCOMES AND IMPACTS:

Based on our discussions with interested analysts, we anticipate this work having an immediate
impact on both system and component modeling across many current and future weapons
programs. This approach offers structural dynamics analysts a user-friendly alternative to the
current state of the art found in existing reduced-order modeling approaches like Craig-Bampton
reduction and opens the door to many exciting possibilities in the future.

One way that this machine-learned approach offers an immediate impact to Sandia analyses is
through the incorporation of experimental results into the reduced-order model formulation. For
example, there will always be model-form error in any numerical simulation, where the
underlying assumptions of the chosen model do not match the physical reality. In such
situations, we envision this machine-learned modeling approach being useful to account for such
discrepancies. This accounting could take two forms. First, experimental data could be used to
augment the simulation training data, thereby giving the machine-learned model a “richer” data
set from which to learn. Alternatively (or additionally), experimental data could also be used to
influence the machine-learning approach directly, similarly to the loss-penalty approach we
utilized to embed key physical properties of system matrices into our machine-learned models.

This research was conducted using agile best practices, and all code development utilized test-
driven development to ensure a clean and easily maintainable software implementation. Robust
testing is vital to the longevity of a software product and was a key focus of our work here as
well. We have well over 150 version-controlled tests, as well as two dozen unit tests. Nearly all
the tests are run nightly on a wide variety of computing platforms and compilers, are easily
accessible to all users of the Sierra software suite, and are illustrative of the basic workflow and
use cases of this capability. In fact, all three examples presented in this document are part of our
nightly testing suite.

We have also developed a robust suite of workflow tools that support every step from initial
training setup to model generation and subsequent (re)use. This development represents a
significant shift away from user-maintained one-off workflows and scripts, which are prone to
being brittle, to a generable, maintained, and well-tested approach. Finally, this work opens the
door to many exciting possibilities and serves as the foundation for several follow-on areas of
research that we hope to explore.

One natural extension of this work would be in the modeling of system damping properties,

which frequently require extensive tuning of the finite element model to obtain accurate

predictive simulations. The equations of motion for a damped system are shown below:
Ma+Cv+Kd=f
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where v = d represents the system velocity and C is the damping matrix, which often requires
calibration against experimental data. In contrast, one could envision a three-step approach,
starting with the existing simulation-driven two-step mass-and-stiffness learning procedure
outlined here and then feeding forward into a third training leveraging experimental results to
learn the damping properties.

Another area of interest is the development of a general nonlinear reduced-order modeling
approach, where subsystems with mild nonlinearities could be incorporated into a linear
dynamics application space. Indeed, previous work from our team in the area of reduced-order
modeling of nonlinear structural mechanics systems has shown great promise. We would like to
explore marrying the two application spaces, and we envision a use case where machine-learned
(linearized) system properties would be coupled with a nonlinear machine-learned forcing
function. Recalling again to the equation of motion, the system of equations we would be
solving is the following:

Muyra+ Kyrd = fui(d, @) + frem
where the machine-learned force correction vector f,; that would correct for any nonlinearity
that the mass and stiffness matrix models would not be able to capture. Such an approach would
represent a revolutionary improvement in usability and generality vs. the domain-specific
nonlinear ROMs commonly used today.

CONCLUSION:

In this work, we have demonstrated the viability of a machine-learned approach for
approximating structural dynamic system matrices. The results presented here demonstrate that
this approach has the ability to accurately reproduce mass and stiffness properties of a variety of
element formulations, even in the presence of missing data. An interface is also provided to
embed machine-learned mass and stiffness models in the widely used structural dynamics code,
Sierra/SD.
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ADDENDUM:

Machine-Learned Linear Structural Dynamics, LDRD 23-1116
Payton Lindsay (1542, Pl), Timothy Shelton (1542), Kendall Pierson (1542, PM)
Consulting: Robert Kuether (1556), David Najera-Flores {1556), Justin Wilbanks {1553), Eric Parish (8733)
Purpose, Approach, and Goal Kev R&D Results and Significance
Summary of R&D
* Modeling dynamic response (mass properties)
* 2-step training procedure

Hypothesis: ML-ROMs can provide the generality of linear ROMs, Ma+Kd=f =) Ky ,d ~ f B My,a~ f— Ky d
but be readily extensible to capture nonlinear behavior f ML f ML f ML

Motivation: nonlinear reduced-order modeling (e.g. joint
modeling) in linear structural dynamics is challenging

* Physics-constrained mass/stiffness models
R&D approach: provide a production-ready linear implementation *  Kpy: symmetric, positive diagonal, 6 rigid-body modes
that can easily be extended to model nonlinear response * My symmetric, positive diagonal, positive total mass
. o +  Production-ready implementation (accepts TensorFlow/PyTorch)
One key goal: demonstrate viability of ML-ROMs in linear «  Maintainable interface; extensive nightly testing

structural dynamics * Extensible suite of workflow tools

Representative Figure The linear implementation (one key goal) was successful, and no
issues were observed that would preclude a nonlinear extension

Modeling localized nonlinearities with ML-ROMs would be a

revolutionary improvement vs. the current domain-specific ROMs

*  We would like to explore this in the coming FY, through LDRD
funding or direct application-development support

. Lessons learned: consider using SGD optimization and PyTorch for
Mode shape comparison: full model vs. ML surrogate constrained learning problems

€
£ORD

Machine-Learned Linear Structural Dynamics
LDRD Number:23-1116

PRESENTED BY

Principal Investigator: Payron Lindsay

Payten Lindsay (1542), Timothy Shelton (1542), Kendal! Pierron (1542, PM}

Cansaliing: Rebert Kuether {1556), David Najera-Fleres {1556),
Justin Wilbanks (1553}, Eric Parish (8739)
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Summary

For 30 years, nonlinear submodeling in linear structural dynamics has relied on difficult, error-prone, and
physically spurious modeling strategies.

» Key Question: Can we leverage machine learning to address current limitations?

+ Current modeling approaches are narrow in scope and difficult to use My Plan

« Mission alignment: Joint modeling is a well-known pain point for linear
structural dynamics
* Many Sandia applications could see immediate impact by this work,
including system and component modeling

» Success metric: replicate current state of the art linear reduced-order My budget
modeling with a machine-learned representation ¢

* If successful, this work will result in the creation of a general and extensible
approach with broad application to many use cases

+ LDRD applicability: this work is foundational for several follow-on areas of research

+ Modeling localized nonlinearities (common in joint modeling, a high-impact capability) is a natural
extension of this work

* Shared advancements can advance the state of the art in fully nonlinear applications as well

Motivation: Joint Modeling

Modeling joints in large finite element models is challenging:

* Nonlinear analysis is typically needed to “

accurately capture joint behavior, but can be
prohibitively expensive
* Linear analysis is much more efficient, but Py S

cannot accurately capture nonlinearities
[ 5]

* Joints typically represent a (physically) m
small subregion of the overall model
* Solution: embed a small nonlinear submodel into a larger (linear) model

Reduced-order models offer a compromise between fidelity and efficiency, and are
well-suited to embed into a larger model
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Existing Reduced-Order Modeling Approaches

The current state of the art for reduced-order models (ROMs) in linear
structural dynamics falls into 2 main categories:

General linear ROMs Domain-specific ROMs3#
* Craig-Bampton reduction?, component-mode * Can capture nonlinear behavior
synthesis?, etc. * Focused on a targeted/narrow domain
* Canrepresent a general domain * Requires extensive “tuning”
* Only represents linear behavior * Not applicable outside the intended domain
-— Fidelity

I ,
(] p—

ROM Ll .
| Rl T i5)

71

Model Selection

* Physics-constrained learning

Ma +Kd = f Constraints on M: Constraints on K:
* Symmetric *  Symmetric
* Positive diagonal * Positive diagonal
* Positive total mass * 6rigid-body modes

* Dense neural network architecture is well-suited to predicting linear system matrices
* Only asingle layer is needed

* Stochastic gradient descent (SGD) optimizer is a good choice of optimizer
« Significantly outperformed other popular choices such as Adam in our testing

* Adaptive learning rate significantly improved the speed and robustness of the fit

* PyTorch framework enables easy customization and straightforward application of
constraints

« 2-step learning procedure for learning mass and stiffness (more later)
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User Experience

* Application-embedded interface to run trained models from the community-
standard libraries TensorFlow and PyTorch
» Handoff highly-vetted ROMs to (non-ML-expert) application end-users

* Clean and easily maintainable software implementation
» Followed software best practices such as test-driven development

* Extensive nightly testing suite
« Over 150 version-controlled tests; 2 dozen unit tests
* Wide variety of computing platforms & compilers
* Easily accessible to all users of the Sierra software suite

* Robust, well-tested suite of workflow tools
* Initial training simulation setup
* Model generation & sub-model embedding
* Easily modified / extended
« Significant shift from user-maintained one-off workflows and scripts

Learning Single Element Properties

B Ma+Kd = f 2-step training procedure
Training procedure: L J

* Force sweep one node+direction (dof) Static Kerned =
* Fix all other dofs remd = [ mm) learn Ky, st. Ky,d ~ f

* Repeat for one dof at a time Dynamic Mpgy@ + Kepyd = f Myra =~ f —Ky.d

Stiffness, le-15 error Mass, le-12 error

Single hex element ) PR i ’ R T ST
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Embedded ML Submodel

20-noded quadratic hexahedrons

Training procedure:

+ Static: displacement sweep two dofs at a time
* Dynamic: force sweep two dofs at a time

* Fix all other dofs

* 500 additional gaussian-random samples

1 1.7
2 0.7
3 3.2
4 45

"~ 40/68 nodes
L. . < 5% error

Original + ML submodel
Elastic Mode Comparison
st i
1 elastic (1.7%) 2% elastic (0.7%)

B ' I

E
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Mission Impact

* This work promises a significant improvement over existing approaches for
nonlinear submodeling in linear structural dynamics

* We anticipate current (linear) machine-learned ROMs having an immediate impact on
both system and component modeling at Sandia

* The planned extension to support localized nonlinearities would offer a revolutionary

improvement in usability and generality vs. the domain-specific nonlinear ROMs
commonly used today

Comments from Analysts:

“Modeling joints in complex structural models is a well-known challenge that requires analysts to make various model simplifications.
A ML-ROM representation of the joint, especially with the potential ability to handle nonlinear physics, presents an interesting
methodology that would enable Sandians to quickly deliver accurate results to our customers.”

“Providing the capability of a ML-ROM representation of a joint would greatly benefit the ability of structural dynamics (SD) analysts to

gquickly analyze complex systems and lay the foundations needed to help bridge the gap between our linear 5D models and fully nonlinear
representations.”

“Having d joint model that is easy to integrate into workflows is important for broad adoptability and modeling agility. A majority

of the upfront cost in model development in 5D is due to identifying an appropriate joint representation along with the
associated setup times for existing modeling approaches for full system models.”

Capability Summary

Where can this be used?  symbol |Meaning |

* Reduced-Order Modeling Implemented & tested
* Learn linear surrogate models
* Reduce/obfuscate geometric complexity A
* Embedded simulation

* Data Fusion

Testing needed

Development needed

* Incorporate experimental data into training/learning to address model-form error
* Experimentally-driven damping properties 4

» Capturing Nonlinear Response

+ Learn a linearized surrogate of a nonlinear model
* Model mild nonlinearities natively in a linear application code 4

Myra + Kypd = fu(d, @) + frem
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