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Abstract

A novel algorithm for explicit temporal discretization of the variable-density, low-Mach Navier-Stokes
equations is presented here. Recognizing there is a redundancy between the mass conservation equation,
the equation of state, and the transport equation(s) for the scalar(s) which characterize the thermochem-
ical state, and that it destabilizes explicit methods, we demonstrate how to analytically eliminate the
redundancy and propose an iterative scheme to solve the resulting transformed scalar equations. The
method obtains second-order accuracy in time regardless of the number of iterations, so one can termi-
nate this subproblem once stability is achieved. Hence, flows with larger density ratios can be simulated
while still retaining the efficiency, low cost, and parallelizability of an explicit scheme. The temporal
discretization algorithm is used within a pseudospectral direct numerical simulation which extends the
method of Kim, Moin, and Moser for incompressible flow [17] to the variable-density, low-Mach setting,
where we demonstrate stability for density ratios up to ∼ 25.7.

Keywords: Temporal discretization, Low-Mach-number, Variable-density Navier-Stokes, Iterative
methods

1. Introduction

Low-speed turbulent flows with significant density variations are common in engineering and nature,
such as in turbulent combustion, nonreacting mixing problems, the atmosphere, and the oceans. In
turbulent and other complex time-dependent flows, cost considerations drive a preference for explicit
time discretization of the convection processes because, in such flows, the explicit stability limits on
the time step are generally comparable to the limits imposed by accuracy requirements [24]. However,
when the compressible Navier-Stokes equations are applied to low-Mach-number flows, acoustic wave
propagation imposes much more severe stability limits on explicit time discretizations. For such flows,
low-Mach-number variable density formulations (low-Mach) of the Navier-Stokes equations are good
approximations to the fully compressible equations and eliminate the stability constraints imposed by
acoustic wave propagation. Therefore, for simulation of complex or turbulent low-speed variable density
flows, stable explicit time discretization of the low-Mach Navier-Stokes equations is needed, which is the
subject of this paper.

In the low-Mach-number limit, the pressure fluctuations are decoupled from the density fluctua-
tions. The pressure can then be decomposed into a uniform background, thermodynamic pressure and
a mechanical pressure. The mechanical pressure fluctuates in space and time and acts to enforce mass
conservation via a divergence constraint on the momentum as in incompressible flow. However, unlike
constant-density incompressible flow, there is a time derivative term in the mass conservation equa-
tion, ∂ρ/∂t, for variable-density flow which presents additional numerical challenges, particularly with
large density variation. Two particular challenges are additional complexity in the treatment of the
mechanical pressure and redundancy in the low-Mach-number Navier-Stokes equations which can lead
to inconsistencies in the state and, as a consequence, instability.
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Despite these challenges and the computational cost of addressing them, it is often advantageous to
employ the low-Mach formulation in low-speed flows instead of a conceptually simpler explicit treatment
of the compressible formulation. This is because of the orders of magnitude smaller time step that is
commonly needed for the compressible formulation due to the stability constraints imposed by acoustic
wave propagation. In flow problems requiring grids with fine resolution in regions where the fluid velocity
is small (e.g., near walls), the low-Mach formulation is advantageous even if, as is sometimes done, the
acoustic wave speed is artificially reduced in the compressible formulation.

1.1. Treatment of the mechanical pressure in fractional step methods

Due to the similar role of the mechanical pressure, most numerical methods for solving the low-
Mach equations are based on traditional incompressible fractional-step, projection methods [18, 27].
Fractional-step algorithms for incompressible flows solve for an intermediate velocity or momentum field
(u∗i or (ρui)

∗
) by neglecting (“pressure-free” methods [6]) or lagging (“incremental” methods [13]) the

pressure in the momentum equations and then projecting the result onto a divergence-free basis through
the solution of a Poisson equation derived from the momentum equations. Since the momentum field
is not divergence free in variable-density flows, standard incompressible projection methods must be
modified. Within the class of fractional-step methods for the low-Mach equations, two formulations
are commonly employed. One option is to take the divergence of the momentum equations, giving a
constant-coefficient Poisson equation for the pressure correction δp, e.g.,

∆t
∂2δp

∂xi∂xi
=
∂(ρui)

∗

∂xi
− ∂(ρui)

n+1

∂xi
. (1)

Here and throughout, we use Cartesian tensor notation and the Einstein summation convention. This
is akin to the pressure Poisson equation in algorithms for incompressible flow. The divergence of the
unknown momentum (ρui)

n+1
is replaced with − (∂ρ/∂t)

n+1
by applying the mass conservation equation.

A second option involves manipulating the advective form of the momentum equations to give a variable-
coefficient Poisson equation, e.g.,

∆t
∂

∂xi

(
1

ρn+1

∂δp

∂xi

)
=
∂u∗i
∂xi
− ∂un+1

i

∂xi
(2)

and employing the identity
∂ui
∂xi

= −1

ρ

Dρ

Dt

to replace the divergence of the unknown velocity un+1
i .

The first approach (equation (1)) has the advantage of being much easier to solve, but error in the
evaluation of the density time derivative can lead to instability, especially when density ratios are larger
than three [18, 29, 25]. To help alleviate this issue, predictor-corrector schemes or implicit formulations
have shown some success [33, 26, 34, 16, 10]. Predictor-corrector methods are attractive in scenarios where
only explicit or sequential time-stepping is practical (e.g., when spectral methods are employed) [16]. The
second approach (equation (2)) does allow for higher density ratios [27, 2], but cannot take advantage of
the wide array of efficient solution algorithms for the pressure Poisson equation in incompressible flows.
The solution of the variable-coefficient Poisson equation generally requires an iterative scheme, can be
an order of magnitude slower, and convergence can be hampered by large density ratios [9]. Finally, in a
third approach, for certain flow configurations, it can be practical to eliminate the pressure entirely from
the dynamic equations (see Appendix C). This is advantageous because only a cheap, constant-coefficient
Poisson solve for the momentum, rather than the pressure, is required and no splitting error is incurred.
In all three techniques, the time-dependence of the divergence constraint on the momentum (or velocity)
necessitates particular care in enforcing the constraint in the context of the time discretization scheme.

1.2. The Challenging Structure of the Low-Mach Equations

The low-Mach Navier-Stokes equations are a set of partial differential equations in space and time
representing conservation of mass and momentum, augmented by a thermodynamic equation of state
which directly relates the density to a set of scalar variables for which evolution equations are also written
(e.g., temperature and species mass fractions). However, there is a redundancy in the equations since
the density must simultaneously obey the equation of state and the mass conservation equation. The
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challenge in solving the low-Mach equations numerically is to time advance the equations in a way that
preserves the consistency. Inconsistencies between the evolution equations and the equation of state can
be numerically destabilizing, as kinetic energy can be incorrectly injected into the system [28]. Shunn
and Ham [32] suggest that equations of state that are sufficiently nonlinear can introduce prohibitive
resolution requirements on the density even when the other scalar fields are well resolved. In turn,
these under-resolved features can produce nonphysical velocity fields. More generally, instability can
occur due to inconsistencies that arise when the equations are time advanced in a sequential manner.
Knikker [18] notes it is impossible to advance the low-Mach equations in conservative form with such
sequential schemes and satisfy the equation of state without some sort of iterative procedure. Instead
predictor-corrector approaches are common, since they presumably can lessen, but not eliminate, the
degree of the inconsistencies and provide additional stability while being computationally cheaper than
a fully-coupled, temporally-implicit scheme. However, these predictor-corrector methods are susceptible
to instabilities when density gradients are large [25].

In the work reported here, we address the numerical inconsistency challenges discussed above by
reformulating the low-Mach equations to enable explicit time integration while preserving the consistency
between the equation of state and the evolution equations (section 2). This is similar in spirit to the
algorithm proposed in [20], which also directly enforces this consistency. Here however, by Helmholtz-
decomposing the momentum density, a formulation is proposed that consists of a part that can be treated
numerically like the constant density incompressible equations, and a modified transport equation that
ensures consistency with the equation of state. Further, a novel time-discretization scheme is proposed
that allows for incomplete iterative solution of the linear system that arises in this formulation, while
preserving the temporal stability and order of accuracy - in this case, second order (section 3). The
efficacy of these developments is tested on a Rayleigh-Taylor instability problem with density ratio up to
25.7 (section 4), and finally concluding remarks are provided in section 5. In these developments several
choices have been made that are particularly advantageous when used with Fourier spectral discretization
in at least two of the three spatial directions. This will be pointed out when it occurs, and alternatives
appropriate for more general spatial discretization will be proposed.

2. Governing equations

The low-Mach Navier-Stokes equations can be used with a wide variety of thermodynamic or ther-
mochemical systems, using a spatially-uniform background thermodynamic pressure. To address the
numerical inconsistency issues described above, we consider an idealized thermochemical state charac-
terized by a single state variable z. In the simplest case, this might be the temperature or internal energy,
but could be, for example, a reaction progress variable or a species mass fraction. The formulation devel-
oped here can also be generalized to more complex thermochemical descriptions. The low-Mach-number
Navier-Stokes equations representing conservation of mass, momentum, and z for a viscous fluid are,
along with the equation of state, given by

∂ρ

∂t
+
∂ρuj
∂xj

= 0

∂ρui
∂t

+
∂

∂xj
(ρuiuj) = − ∂p

∂xi
+
∂τij
∂xj

∂ρz

∂t
+

∂

∂xj
(ρujz) =

∂qj
∂xj

+ Sz

ρ = f(z)

(3)

where ui is the fluid velocity, ρ the density, p the mechanical pressure, τij the viscous stress tensor, and
qj is the diffusive flux of z. There may also be a source term Sz in the z equation. For example, if z is
the internal energy, Sz is the viscous dissipation of kinetic energy. For a Newtonian fluid with Fickian
(or Fourier) diffusive transport of z, the constitutive relations are

τij = −2

3
µ
∂uk
∂xk

δij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)

qj = ρDz
∂z

∂xj

(4)
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where µ is the fluid dynamic viscosity, ρDz is the effective diffusivity of z and δij is the Kronecker delta.
The transport coefficients µ = g(z) and Dz = h(z) are assumed to be known functions of z, as is the
density through the equation of state ρ = f(z).

As a first step in reformulating the low-Mach equations, consider the Helmholtz decomposition of the
momentum m = ρu:

m = md +mc (5)

where md is divergence free and mc is curl free, so that

mc = ∇ψ (6)

for some scalar potential ψ. With this decomposition, the conservation of mass equation is

∂ρ

∂t
= −∇ ·mc = −∆ψ , (7)

which represents a constraint on the curl-free momentum. Dynamic equations for md can then be
expressed as

∂md
i

∂t
+

∂

∂xj
(ρuiuj) = − ∂ζ

∂xi
+
∂τij
∂xj

(8)

where ζ = p+ ∂ψ/∂t. Note that in this formulation ζ is determined to ensure that the divergence of md

is zero, but has no direct influence on mc.
The eventual time discretization of the z evolution equation is complicated by the fact that the time

derivative of z directly determines mc, and therefore affects the velocities appearing in the z equation.
Consider that the equation of state ρ = f(z) and the mass conservation equation imply

∂ρ

∂t
=
df

dz

∂z

∂t
= −∇ ·mc = −∆ψ . (9)

Since the equation of state determines the density in terms of z, it is useful to rewrite the z evolution
equation in its convective form:

ρ
∂z

∂t
+ (md +mc) · ∇z = ∇ · q + Sz (10)

where ρu in the convection term has been rewritten as the sum of the divergence-free and curl-free
momenta. The fact that mc can be determined from ∂z/∂t from equation (9) means that there is
an explicit linear dependence of the convection term of equation (10) on ∂z/∂t. This is the root of
the challenge of stably time discretizing the low-Mach equations. When naively time advancing the
momentum and z equations, z and the momentum will not in general satisfy equation (9), which will be
destabilizing, especially when large density variations are present.

To address this challenge, the z equation can be reformulated to explicitly account for the dependence
of mc on ∂z/∂t. Using equation (9) to express ∂z/∂t and mc in terms of ψ and rearranging, the z
transport equation (10) becomes

∆ψ − 1

ρ
∇ρ · ∇ψ = − df

dz
Rz (11)

where

Rz ≡
1

ρ

(
−md · ∇z +∇ · q + Sz

)
, (12)

is the modified right-hand side. Thus, given z, md, and Sz at any time, the z transport equation can be
viewed as an elliptic partial differential equation for ψ. After solving equation (11) for ψ, one can then
calculate

∂z

∂t
= −

(
df

dz

)−1

∆ψ , mc = ∇ψ .

Obtaining the z time derivative and mc in this way ensures consistency between the equation of state,
the mass conservation equation, and the z transport equation. Having determined ∂z/∂t, one can use
standard explicit methods to time advance z. Having determined mc one has the total momentum
md + mc and therefore the total velocity, allowing the convection terms in the momentum equation
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(8) to be computed. Then existing explicit methods for the time discretization of the constant density
incompressible equations can be used to time advance equation (8) with ζ (instead of solely p) enforcing
the divergence-free constraint.

Before proceeding to discuss the solution of equation (11) it is worth considering how this formula-
tion might be generalized to accommodate a more complex thermochemical description, as the above
development appears to rely heavily on the simple thermochemical representation in terms of the single
variable z. In the above manipulation, the convective form of the z equation (10) is multiplied by df/dz
and divided by ρ, yielding the evolution equation for ρ implied by the z equation:

∂ρ

∂t
+

1

ρ

(
mc +md

)
· ∇ρ =

1

ρ

df

dz
(∇ · q + Sz) . (13)

Equation (11) is then obtained by substituting for ∂ρ/∂t and mc in terms of ψ from equations (6)
and (9). To generalize then, one uses the thermochemical state relation for ρ to transform the transport
equations for the thermochemical state variables so that they explicitly include a transport equation for
ρ, which will appear redundant with the mass conservation equation. Substituting in terms of ψ will
then yield equation (11) with a right-hand side specific to the thermochemical description. In this way
a much more complicated thermochemical description can be treated, which may include, for example,
chemical reactions with heat release and differential diffusion of species.

For non-trivial problems, solution of equation (11) for ψ will generally require an iterative linear
solver. When the Laplacian can be easily inverted, it may be advantageous to recast equation (11) in
terms of ∂ρ/∂t or equivalently ∂z/∂t using:

ψ = −∆−1 ∂ρ

∂t
= −∆−1

(
df

dz

∂z

∂t

)
, (14)

where ∆−1 is the inverse Laplacian with appropriate boundary conditions. It is thus clear that ψ, ∂ρ/∂t
and ∂z/∂t carry the same information, and that equation (11) can be rewritten

∂ρ

∂t
− 1

ρ
∇ρ · ∇∆−1

(
∂ρ

∂t

)
=
df

dz
Rz (15)

or equivalently
∂z

∂t
− 1

ρ
∇z · ∇∆−1

(
df

dz

∂z

∂t

)
= Rz . (16)

In the context of an iterative solution algorithm for equation (11), the inverse-Laplacian can be thought
of as a pre-conditioner, to improve convergence. Indeed, in section 3.2, a simple Richardson iteration
is proposed to solve equation (16) and used successfully in section 4. Of course, in most cases, the
Laplacian cannot be so easily inverted, in which case it would be preferable to solve equation (11) using
an appropriately selected iterative solver. One exception is when Fourier spectral discretizations are used
in at least two spatial directions, as with the computations reported in section 4.

3. Temporal discretization

The formulation described in section 2 requires a second elliptic solve for ψ (or ∂z/∂t), which is
in addition to the elliptic solve required in the equation for md (equation (8)). When explicit time
discretization methods are used, the elliptic solves dominate the computational cost, so it is important
to reduce the cost of this additional solve. The time-discretization approach described here does that by
allowing the iterative solution to terminate early while preserving the order of accuracy of the solution.
The minimum number of iterations is then dictated by stability rather than temporal accuracy.

The method proposed here is based on the explicit, second-order Runge-Kutta (RK2) scheme with
the intent that it can be used for massively parallel calculations. The iterative solution of equation (11)
or equation (16) for ψ or ∂z/∂t is formulated so that the solution for z will be temporally second
order regardless of the number of iterations. Rather than controlling temporal accuracy, the number
of iterations controls the magnitude of destabilizing inconsistencies between the equation of state, mass
conservation equation, and scalar transport equation. The cost is then minimized by reducing the number
of solver iterations to the minimum required for stability.
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3.1. Incomplete iterative solution

Once spatially discretized, the solution of equation (11) or equation (16) reduces to the solution of a
linear algebraic equation of the form:

Ay = b (17)

where A is a square non-singular matrix and y and b are column vectors. Assuming that a direct solution
of this system is not feasible, we can select an iterative algorithm from a wide variety of such algorithms
(see e.g., [3, 31, 12]). Generally for such algorithms, the magnitude of the residual rk = Ayk − b at the
kth iteration is proportional to the magnitude of r0 = b − Ay0, where y0 is the initial guess. This is
clearly true for stationary iterative methods (e.g., Jacobi or Gauss-Seidel) in which the solution error at
the kth iteration δyk = yk − y is given by Ckδy0 where δy0 is the error in the initial guess, and C is
a matrix determined from A depending on the particular algorithm being used. Trivially, the residual
sequence also satisfies rk = Ckr0. For Krylov subspace methods (e.g., conjugate gradient, GMRES), rk
is the remainder after the initial residual r0 is projected onto the Krylov subspace. Thus the magnitudes
of rk and δyk also scale with the magnitude of r0.

The consequence of this property of iterative liner solvers is that if the linear solution is part of a
time discretization and we arrange for the initial guess y0 to have an order ∆tn error, where ∆t is the
discretization time step, the solution at each iteration will also have an order ∆tn error. In this case, the
linear solver iterations can be terminated early to reduce costs while not impacting the temporal order
of accuracy.

3.2. A time-accurate initial guess

The linear system of relevance here arises from the spatial discretization of the z equation, whether
expressed in terms of ψ, ∂ρ/∂t, or ∂z/∂t. The matrix A is then a spatially discrete representation
of the operator on the left-hand side of equations (11), (15) or (16), and b represents the right-hand
side. To apply the incomplete iteration scheme described above, we thus need to develop an order ∆t2

approximation of ψ, ∂ρ/∂t, or ∂z/∂t, depending on the formulation used. For specificity, the formulation
in equation (16) for ∂z/∂t is considered here. Similar schemes can be developed for the other formulations.

To simplify the presentation, let I − L be the matrix representing the spatial discretization of the
linear operator acting on ∂z/∂t on the left-hand side of equation (16). That is

L(z̃)
dz̃

dt
≈ 1

ρ
∇z · ∇∆−1

(
df

dz

∂z

∂t

)
(18)

where z̃ is the spatially discrete representation of z. The spatial discretization of equation (16) then
reads

(I − L(z̃))
dz̃

dt
= R̃z (19)

where L is clearly depends on the current z̃ and R̃z is the spatial discretization of Rz from equation (16).
To time advance z̃, equation (19) must be solved for dz̃/dt. While any number of iterative linear

solvers could be used for this purpose, here a simple Richardson iterative algorithm given by

dz̃

dt

k

= L(z̃)
dz̃

dt

k−1

+ R̃z (20)

is used. Provided the spectral radius of L is less than one, this iteration will converge to the solution
for dz̃/dt. However, to reduce computational cost, we propose here to terminate this iteration early. To
preserve the second-order temporal accuracy of the RK2 scheme used to time-advance the z̃ equation,
the error in dz̃/dt must scale as ∆t2. As discussed in section 3.1, to ensure this accuracy it is sufficient
to select an initial guess such that the error in (dz̃/dt)0 scales with ∆t2. Then regardless of the number
of iterations, the expected time accuracy will be attained, so that only as many iterations as is required
to assure stability are needed, as discussed below.

To advance in time from tn to tn+1 = tn + ∆t, the RK2 time discretization requires that the time
derivative be evaluated at time tn and at an intermediate time tn+1/2 = tn + ∆t/2. Call the time

derivative evaluated at these times (dz̃/dt)
n

and (dz̃/dt)
n+1/2

, respectively. An initial guess for the
iterative solution of equation (16) for dz̃/dt at these times can be determined from past values of z̃ using
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a backwards difference-type formulation, as follows:

∆t
dz̃

dt

n,0

= 2z̃n − 2z̃n−1/2

∆t
dz̃

dt

n+1/2,0

=
(

4 + βn+1/2
)
z̃n+1/2 −

(
5 + 2βn+1/2

)
z̃n + βn+1/2z̃n−1/2 + z̃n−1

(21)

where βn+1/2 is a free parameter. As shown in Appendix A, the dz̃/dt estimates in equation (21) are
accurate to O(∆t2). Note that while the discretization used here is RK2, in principle a similar approach
could be used for third (or higher) order discretizations. However, this would require past values of z at
more time levels to retain higher order accuracy in the backward difference formulation of initial guesses.
This would introduce additional parasitic modes in the backward difference formula, with potential
negative impacts on stability, which would need to be addressed.

In addition to time advancing the z equation, dz̃/dt is used to determine the spatially discrete curl-free
momentum m̃c from equation (14):

m̃c = −∇∆−1

(
df

dz

dz̃

dt

)
. (22)

A temporally second-order approximation to dz̃/dt at any time level therefore also yields a temporally
second-order approximation to m̃c at that time level.

3.3. A simple test case

To see how the time discretization described in section 3.2 is applied and to explore its accuracy and
stability, consider a simple system of ODEs that with characteristics similar to the low-Mach-number,
variable density equations.

(1−M1(z))
dz

dt
=M2(z)

dmd

dt
=M3(md,mc)

dρ

dt
= G(mc)

ρ = f(z)

(23)

where M3(md,mc) is nonlinear in both md and mc and is a surrogate for the momentum equations
(equation (8)). G is a linear operator acting on mc akin to the divergence operator in the mass con-
servation equation. In the z equation, M1 is a z-dependent linear operator acting on dz/dt and M2 is
nonlinear in z – this equation has the same structure as equation (19) with M1 playing the role of L
and M2 the role of Rz.

For an arbitrary stage s ∈ {n, n+ 1/2} and a chosen number of linear solver iterations kf , (zs,md,s,mc,s)
are updated by algorithm 1.

3.3.1. Temporal convergence tests

To verify the order of accuracy of the temporal scheme, numerical solutions of system (23) are sought
with

M1(z) = c1 (1 + sin(z)) , M2(z) = c2 exp(z) , M3(md,mc) = c3m
d (mc)

3
,

G(mc) = c4m
c , f(z) = z ,

(24)

where c1 = .6i, c2 = −1, c3 = 2− .8i, c4 = −3+ .5i. The initial conditions for z and md are z0 = md
0 = .5.

A reference solution is obtained by inverting 1−M1 directly and integrating

dz

dt
=

M2(z)

1−M1(z)
. (25)

To control temporal errors in the reference solution a fine ∆t = 1× 10−9 is used, an order of magnitude
lower than the final test case shown here. To ensure consistency of the initial condition for the test cases

7



Algorithm 1 Time advancement of system (23)

1: Start with md,s,mc,s,
dz

dt

s,kf

,
dz

dt

s−1/2,kf

, M3(md,s−1/2,mc,s−1/2) from previous stages, evaluate

M3(md,s,mc,s).

2: Using
dz

dt

s,kf

,
dz

dt

s−1/2,kf

, advance zs → zs+1/2 with RK2.

3: Using M3(md,s,mc,s), M3(md,s−1/2,mc,s−1/2), advance md,s → md,s+1/2 with RK2.

4: Generate initial guess
dz

dt

s+1/2,0

as shown in equation (21).

5: k = 0

6: for k <= kf do

7:
dz

dt

s+1/2,k

=M1(zs+1/2)
dz

dt

s+1,k−1

+M2(zs+1)

8: end for

9: Evaluate
dρ

dt

s+1

=
df

dz
(zs+1)

dz

dt

s+1,kf

, solve for mc,s+1 = G−1 dρ

dt

s+1

.

and reference solution, mc
0 is specified as

mc
0 = G−1

[
df

dz

M2

1−M1

]

z=z0

. (26)

The backward difference parameter is set to βn+1/2 = −4 (equation (21)) for generating the initial
guesses for the iterative linear solution.

Figure 1 shows the convergence rate of z and md for the test problem with both double and extended
(long double) precision by comparing the solution at t = .1 to the reference solution. Four iterations
(kf = 4) are used to solve the z equation at each substep. Some noise in the error is expected close to
machine precision; however, the behavior seen for small ∆t needs further explanation. Round-off errors
in z are amplified during the estimation of dz/dt from the time history of z because a linear combination
of the four previous evaluations is scaled by 1/∆t (see equation (21)). These errors affect mc and, in turn,
can degrade the apparent convergence rate of md and z. In extended precision (long double) calculations
second-order convergence continues to smaller ∆t (figure 1), which demonstrates that the convergence
floor in the double precision result is solely a consequence of round-off error.

3.3.2. Linear stability analysis

To assess the stability of this algorithm, consider a linearized system modeling the characteristics of
the z equation in system (23)

(1− λ1)
dz

dt
= λ2z (27)

where λ1,λ2 ∈ C. Additionally, define λ∗ ≡ λ2

1− λ1
so that

dz

dt
= λ∗z (28)

is the underlying modified ODE (assuming λ1 6= 1). In this context, setting λ2 = 0 in equation (27)
yields the test problem to assess zero stability (see below).
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Figure 1: Convergence of the proposed time discretization scheme (algorithm 1) applied to the model problem defined in
system (23) and equation (24). Shown are errors in computed z (left) and md (right) at t = 0.1, relative to the reference
solution defined in equation (25). Calculations were done in double precision (DP) and long double, extended precision
(EP).

Applying the temporal scheme with k linear iterations to equation (27) gives

zn+1/2,k − zn = λk1

{
zn − zn−1/2

}
+

1

2
∆t

k−1∑

j=0

λj1λ2z
n

zn+1,k − zn+1/2 = λk1

{(
3 + βn+1/2

)
zn+1/2 −

(
6 + 2βn+1/2

)
zn +

(
βn+1/2 + 1

)
zn−1/2 + zn−1

}

+ ∆t

k−1∑

j=0

λj1λ2

(
zn+1/2 − 1

2
zn
)
.

(29)

Taking inspiration from linear differential equation analysis [22], this can be written as zn+1 = A1A2z
n =

Azn where zn = [zn zn−1/2 zn−1 zn−3/2]T (the matrices are detailed in Appendix B). For ρ (A) < 1,
the scheme is linearly stable.

Unlike traditional explicit Runge-Kutta methods designed for ODEs of the form dz/dt = f(z) (like
equation (28)), the scheme is not unconditionally zero stable (that is, stable with λ2 = 0). In this case,
λ1, the choice of βn+1/2, and the number of iterations impact the zero stability. The initial guesses for
dz/dt introduce parasitic modes (akin to linear multistep methods) which are damped by each linear
iteration if and only if ‖λ1‖ < 1. Generally, the size of the zero stability regions grows with the number
of iterations for a given βn+1/2 when ‖λ1‖ < 1 (figure 2.(a)). When fully converged, the zero-stability
region is a circle of radius 1, which is consistent with the scheme diverging for ρ (M1) ≥ 1 and recovering
the stability properties of RK2 otherwise. Setting βn+1/2 = −4 yields the optimal zero-stability region
(circle of radius 1) regardless of the number of iterations (figure 2.(b)), therefore βn+1/2 = −4 is used to
obtain all results from hereon out.

The absolute-stability region is defined in terms of the “true” eigenvalue, λ∗, and is plotted for
different values of λ1, see figure 3. As expected, when fully converged the absolute stability region
coincides with the standard RK2 result. For small ‖λ1‖ this convergence happens quickly so that only
two or three iterations are required for a stability region that approaches that of RK2. As the eigenvalue
magnitude approaches one, as in figure 3.d, around ten iterations are needed for the stability region to
near that of RK2. The type of analysis shown here can be used as a heuristic to determine an appropriate
number of linear iterations if an estimate of the largest eigenvalues of L is obtained a priori.
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Figure 2: Zero stability region of the proposed temporal discretization applied to equation (27) (i.e., with λ2 = 0) as a
function of the number of linear solver iterations for βn+1/2 = −1 (left) and βn+1/2 = −4 (right). For βn+1/2 = −4, the
stability region is independent of the number of iteration and always optimal.
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Figure 3: Absolute stability of the proposed temporal discretization applied to equation (27) as a function of the number
of iterations for varying λ1. (a): λ1 = .2i (iters. 5, 10 not shown), (b): λ1 = .4i (iters. 5, 10 not shown), (c): λ1 = .5 + .5i
(iters. 2,3 not shown), (d): λ1 = .7 + .25i (iters. 2,3 not shown – not stable for 1 iter.).
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4. Results

To demonstrate the utility of the scheme introduced in section 3, it is incorporated into an algorithm
for direct numerical simulation (DNS) of the variable-density, low-Mach Navier-Stokes equations, which
is briefly described first. Then a single-mode Rayleigh-Taylor (RT) instability is simulated over a range
of Atwood numbers to verify that the algorithm is obtaining solutions to the variable-density equations
and explore its stability with respect to density ratio.

The algorithm (detailed in Appendix C) is an extension of the pseudospectral scheme of Kim, Moin,
and Moser (KMM) [17] developed for incompressible flows. In their scheme, equations for one component
of the vorticity and the Laplacian of the velocity are advanced, eliminating the need to solve for the
pressure. Here, we define φ ≡ ∆md and Ω ≡ ∇ ×md and manipulate the momentum equations (by
taking the curl and double curl, which eliminates the pressure) to obtain equations for φ2 and Ω2, the
components of these quantities in the direction in which periodic boundary conditions are not applied.
The equations for φ2, Ω2, and z are time advanced, along with the planar averages of m1 and m3

(averaged in the x1 and x3 directions). Equation (9) constrains the curl-free momentum, mc. A similar
momentum decomposition was used in the work of Almagro et al. [1]. Their scheme, however, is only
first-order accurate in time despite using three RK stages and assumes constant fluid viscosity, thermal
conductivity, and specific heat. The algorithm employed here relaxes these restrictive assumptions,
achieves a higher-order temporal accuracy in two stages, and a priori guarantees discrete conservation of
mass (see Appendix C.2). The temporal scheme (section 3) is fully explicit, which enables efficient use of
parallelization, which is necessary for the large problem sizes encountered in, e.g., the direct numerical
simulation of turbulence.

At the same time, the formulation of the z equation and the determination of mc as outlined in
section 2 enable stable solutions for density ratios up to at least 25.7, as shown in the RT test problems
described here. When using the simple linear solver described in section 3.2, significantly larger density
ratios lead to instabilities. It appears that this occurs because the spectral radius of L defined in
equation (18) increases as the density ratio increases. The result is that at high density ratio, the simple
Richardson iteration cannot produce sufficiently accurate solutions to equation (19) to ensure stability.
We thus expect that a more sophisticated linear solver will allow stable computation at much larger
density ratios. None-the-less, the density ratio of 25.7 used here is already much larger than typical for
explicit methods.

For spatial discretization, the solution is represented using a Fourier bases in the x1 and x3 (streamwise
and spanwise) directions, in which periodic boundary conditions are applied, and high-order B-splines
[5, 4] in the x2 direction. Our implementation has been verified (results not shown) with a manufactured
solution created with MASA [21], a C++ library that generates source terms for arbitrary differential
equations by automatic differentiation. Additionally, we verify the temporal order of accuracy through
Richardson extrapolation for one of the RT cases studied below (see additionally Appendix D). An earlier
version of this algorithm was implemented for a combustion DNS in [30].

4.1. Single mode Rayleigh-Taylor test problem

Following the setup in, e.g., [15, 14, 19] of a single-mode Rayleigh-Taylor instability in a rectangular
box with square cross-section, we consider two fluids of differing density arranged with the heavier fluid
on top. They evolve under the influence of gravity, which is aligned with the vertical direction (x2). The
dynamic viscosity of the two fluids is taken to be the same as in [14] and to account for gravity, a body
force is added to the momentum equation in (3) as follows:

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
+
∂τij
∂xj
− ρgδi2 . (30)

We assume the fluids are miscible and simple binary, Fickian diffusion holds such that

z =
ρh

ρh − ρl

(
1− ρl

ρ

)
, (31)

which represents the volumetric mixing of the heavy and light fluids, satisfies the convection-diffusion
equation in system (3). Rearranging equation (31), the equation of state is

ρ =
ρlρh

ρh − (ρh − ρl)z
. (32)
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The Atwood number characterizes the density contrast between the heavy fluid, ρh, and light fluid, ρl,
and is given by

At =
ρh − ρl
ρh + ρl

=⇒ ρh
ρl

=
1 +At

1−At. (33)

Computations are performed in both two and three dimensions, in a horizontally periodic domain of
size W or W ×W . In the vertical (x2) direction the domain is x2 ∈ [−2W, 2W ] or [−3.5W, 3.5W ], with
the larger domains used for high Atwood number (At) cases.

A Fourier representation with 128 modes is used in the periodic directions (x1 and x3), and in the
x2 direction, either 512 (smaller domain) or 1024 (larger box) B-spline degrees of freedom are employed
(see Appendix D for a mesh convergence study). Note that the resolution in the large and small domains
is approximately equal. The B-splines are order 8 for all variables except the x2 component of the
momentum, which is order 9 to ensure discrete conservation of mass (see Appendix C.2). In general, the
timestep is chosen such that ∆t

√
At/

√
W/g = 2.5×10−4, although there are a few exceptions for higher

Atwood number cases due to viscous stability constraints. Appendix D includes the grid and timestep
for each case presented here.

The initial z is given by

z =
1

2

[
1 + tanh

(
x2 − h
2εW

)]
(34)

where ε = 0.05 and h is one of:

h3D(x1, x3)

W
= 0.05

[
cos

(
2πx1

W

)
+ cos

(
2πx3

W

)]
+ δ (35)

h2D(x1)

W
= 0.1

[
cos

(
2πx1

W

)]
+ δ (36)

for the three- and two-dimensional cases, respectively. At low At, when the smaller vertical domain is
used, the offset δ = 0. But, at higher At, for which the larger domain is used, δ = 0.5 because the heavy
fluid penetrates more rapidly into the light fluid. An example of the initial z field can be seen in the
leftmost panel of figure 4.

In the cases computed here the Schmidt number is taken to be unity (Sc = 1), so in system (3),
ρDz = µ is constant. A Reynolds number for this problem can be defined in terms of the heavy
fluid density, the wavelength W of the initial perturbation, and the acceleration of gravity; that is,
Re = ρh

√
W 3g/µ, which is set to 3000 for the 2D cases and 1024 for the 3D cases reported here.

To ensure that the initial condition is consistent with conservation of mass, the velocity field is
prescribed as

u√
Wg

= − 1

ReSc

1

ρ

dρ

dz
∇z . (37)

As described in Appendix C.4, potential matching boundary conditions are specified at the top and
bottom boundary for the fluctuating momentum, the mean momentum obeys a homogeneous Neumann
condition for the spanwise and streamwise components, and a homogeneous Dirichlet boundary condition
is specified for the vertical component. A homogeneous Neumann boundary condition is also used for z.

The single-mode RT flow evolves through several stages: first, there is an initial acceleration when
viscous effects dominate followed by the formation and growth of a “spike” of heavy fluid traveling
downwards along with “bubbles” of light fluid penetrating upwards into the heavy fluid (figure 4).
Next, a period of near constant bubble and spike velocity predicted by potential theory occurs before
a reacceleration (see, e.g., figure 6). To verify the fidelity of the new algorithm, we compare simulation
results to the theoretical result of Goncharov [11], which gives the bubble velocity, or the rate at which
the light fluid penetrates the heavy, during the potential growth phase as

vb =

√
2At

1 +At

g

Ck
(38)

where C = 1 in three-dimensional flows and 3 in two-dimensional flows and k = 2π/W is the pertur-
bation wave number. Additionally, comparisons to other results from the literature were made for the
bubble/spike trajectories.

To begin, we consider two validation cases found frequently in the literature. The first is a 2D case
with At = .5 and Re = 3000 and the second is a 3D case with At = 0.5 and Re = 1024. The evolution
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of bubble and spike locations from the current calculations are in good agreement with recent results
from Hamzehloo et al. [14], as shown in figure 5. Furthermore, contours of density for the 2D case
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Figure 4: Contours of density at several times in the two-dimensional Rayleigh-Taylor test problem (Re = 3000) with
At = 0.5.
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Figure 5: Evolution of the bubble and spike height (hb,hs) in the Rayleigh-Taylor test problem with At = 0.5 in two
dimensions (left, Re = 3000) and three dimensions (right Re = 1024). Also shown are the bubble and spike evolution from
Hamzehloo [14] in both two and three dimensions.

(figure 4) are in good qualitative agreement with previous results [14, 8]. As these previous results were
for immiscible fluids, minor discrepancies are expected.

Next, we explore the current algorithm’s stability for increasing density ratios by considering a range
of Atwood number from 0.33 to 0.925, for both two- and three-dimensional flows. The maximum Atwood
number corresponds to a density ratio of 25.67. The bubble and spike evolution vary with Atwood number
as expected (figures 6 and 7). Note that the bubble velocity during the potential growth phase, when
the velocity is approximately constant, is roughly consistent with the potential theory equation (38).
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in the two-dimensional Rayleigh-Taylor test problem (Re = 3000). Dashed horizontal lines are the velocity given by
potential theory, equation (38).
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Figure 7: Left : Evolution of the bubble and spike height (hb,hs, left) and bubble velocity (vb, right) for various Atwood
numbers in the three-dimensional Rayleigh-Taylor test problem (Re = 1024). Dashed horizontal lines are the velocity given
by potential theory, equation (38).

This consistency, along with the consistency with [14] shown in figure 5, suggests that the algorithm is
solving the variable-density equations as intended. The minor discrepancies with potential theory can be
attributed to the difference between the potential flow model and variable-density Navier-Stokes. These
results also demonstrate the algorithm’s stability over a wide range of density ratios.

5. Conclusions

A new temporal discretization technique for the low-Mach, variable-density Navier-Stokes equations
has been developed. The method is designed to preserve stability for explicit time discretizations. The

14



challenge was to treat the redundancy between the mass conservation equation, the transport equation(s)
for the scalar(s) that characterize the thermochemical state of the fluid (e.g., temperature, chemical
species, or mixture fraction) and the equation of state. This redundancy is made most apparent when
one considers the evolution equation for the density that is implied by the evolution of the thermochem-
ical state, yielding a second evolution equation for the density as in equation (13), in addition to the
mass conservation equation. Ensuring that these two equations for the density are compatible requires
that the potential defining the curl-free momentum satisfy an elliptic equation derived from the two
density equations, as in equation (11). This formulation suggests that the low-Mach variable density
Navier-Stokes equations embody two distinct elliptic effects that must be accounted for, one that en-
sures the compatibility of the redundant evolution equations for the density and one that ensures that
the divergence-free momentum is divergence free, as in the constant density incompressible equations.
The stability of the temporal discretization proposed here arises from recognizing this fact, and explicitly
solving both elliptic equations.

Generally the elliptic problems will need to be solved iteratively, especially in three dimensions. To
mitigate the cost of solving two elliptic equations, it is desirable to minimize the number of iterations
needed. To this end, the iterative algorithm for the curl-free momentum potential was integrated with
the time discretization so that a temporal extrapolation of the solution from previous time steps could
be used to define an initial guess for the iterative algorithm, with error consistent with the temporal
order of accuracy of the discretization. This has the dual benefit of producing a small initial error so
that the number of iterations required for any desired solution accuracy is reduced, and of ensuring that
no matter how many or few iterations are used, the scheme will retain its temporal order of accuracy.
The number of iterations can then be determined from stability considerations, rather than temporal
order of accuracy.

To demonstrate its utility and explore its stability, the temporal discretization was incorporated into
a pseudospectral low-Mach variable density solver and tested on a series of single-mode Rayleigh-Taylor
instability problems. It was found to yield stable solutions for density ratios up to at least 25.7 that are
both converged and consistent with available theoretical and previous computational results. This new
formulation greatly increases the density ratios that can be treated without resorting to fully coupled
implicit solvers [25, 18], which can be cost prohibitive. The algorithm may thus be useful for simulation of
low-speed turbulent combustion and low-speed turbulent mixing of fluids with different densities. Direct
simulation of turbulent combustion is the application that motivated the current developments.

In the test cases reported here, the proposed temporal discretization was applied using pseudospectal
methods in doubly periodic domains on a problem with a simple representation of the thermochemical
state in terms of a single scalar variable. These features allowed for several simplifications, and so con-
tinued development of the proposed discretization should be directed at removing these simplifications.
First, the evolution of the divergence-free momentum was formulated to solve an elliptic equation for one
of the momentum components as in [17], rather than for the pressure variable as is common in pressure
projection methods. Such pressure projection methods often incur splitting errors, and the consequences
of this error on the stability characteristics of the proposed scheme needs to be investigated. Second, the
ability to efficiently solve the Poisson equation in the pseudospectral method allowed the elliptic solve for
the curl-free momentum potential to be effectively preconditioned so that a simple iterative algorithm
could be used. More sophisticated matrix-free algorithms need to be explored for use when spectral
methods are not used. Third, it may be possible to refine the time discretization and/or the backward
difference scheme used to obtain an initial guess for the iterative solver to attain either better stability or
higher accuracy, and this would be worth pursuing. Finally, the generalization of the algorithm outlined
at the end of section 2 needs to be applied to enable the use of more complex representations of the
thermochemical state that include many scalar evolution equations and, therefore, can represent more
complex phenomena such as chemical reactions with heat release.
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A. Obtaining the BDF-like approximations

The BDF-like approximations from section 3 are generated by assuming the available time history of
z matches the progression of a variable time advanced by RK2. That is,

zn+1 = z(tn) + ∆t
dz

dt

∣∣∣∣
tn

+
1

2
∆t2

d2z

dt2

∣∣∣∣
tn

+O
(
∆t3

)

zn+1/2 = z(tn) +
1

2
∆t

dz

dt

∣∣∣∣
tn

+O
(
∆t3

)

zn = z(tn)

zn−1/2 = z(tn)− 1

2
∆t

dz

dt

∣∣∣∣
tn

+O
(
∆t3

)

zn−1 = z(tn)−∆t
dz

dt

∣∣∣∣
tn

+
1

2
∆t2

d2z

dt2

∣∣∣∣
tn

+O
(
∆t3

)

zn−3/2 = z(tn)− 3

2
∆t

dz

dt

∣∣∣∣
tn

+ ∆t2
d2z

dt2

∣∣∣∣
tn

+O
(
∆t3

)
,

(A.1)

where Taylor expansions about tn have been used.

A.1. Coefficients for fixed-point problem

We seek an approximation which is accurate up to O
(
∆t2

)
to initialize the first stage fixed-point

iteration (equation (20)). At this stage, zn, zn−1/2, zn−1, zn−3/2 are available. Let

∆t
dz

dt

n,0

= αn1 z
n + αn2 z

n−1/2 + αn3 z
n−1 + αn4 z

n−3/2 = ∆t
dz

dt

∣∣∣∣
tn

+O
(
∆t3

)
(A.2)

where the α’s are a set of weights. By matching the lower-order terms in the Taylor expansions, it follows
that

αn1 + αn2 + αn3 + αn4 = 0

−1

2
αn2 − αn3 −

3

2
αn4 = 1

1

2
αn3 + αn4 = 0 .

(A.3)

This is satisfied by a one-parameter (call it βn) family of solutions:

αn1 = 2 αn2 = −2− 1

2
βn αn3 = βn αn4 = −1

2
βn . (A.4)

For the second stage, zn+1/2, zn, zn−1/2, zn−1 are available for the approximation. Similarly, letting

∆t
dz

dt

n+1/2,0

= α
n+1/2
1 zn+1/2 + α

n+1/2
2 zn + α

n+1/2
3 zn−1/2 + α

n+1/2
4 zn−1

= ∆t
dz

dt

∣∣∣∣
tn

+
1

2
∆t2

d2z

dt2

∣∣∣∣
tn

+O
(
∆t3

) (A.5)

and matching gives

α
n+1/2
1 + α

n+1/2
2 + α

n+1/2
3 + α

n+1/2
4 = 0

1

2
α
n+1/2
1 − 1

2
α
n+1/2
3 − αn+1/2

4 = 1

1

2
α
n+1/2
4 =

1

2
.

(A.6)

This is also satisfied by a one-parameter (βn+1/2) family of solutions:

α
n+1/2
1 = 4 + βn+1/2 α

n+1/2
2 = −5− 2βn+1/2 α

n+1/2
3 = βn+1/2 α

n+1/2
4 = 1 . (A.7)
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In practice, we take βn = 0 to reduce the number of time levels involved and limit the number of potential
parasitic modes introduced by the use of these backward difference approximations. This is reflected in
the main text (see equation (21)).

B. Matrices used in linear stability analysis

The linear stability analysis of section 3.3.2 is derived in terms of two matrices A1 and A2. These
matrices are defined here.

Let S =
∑k−1
j=0 λ

j
1λ2. Then

A1 =




1 + λk1 +
1

2
∆tS −λk1 0 0

0 1 0 0
0 0 1 0
0 0 0 1


 (B.1)

A2 =




1 +
(
3 + βn+1/2

)
λk1 + ∆tS −

(
6 + 2βn+1/2

)
λk1 −

1

2
∆tS βn+1/2λk1 λk1

0 1 0 0
0 0 1 0
0 0 0 1


 . (B.2)

C. DNS algorithm

The motivating application for the development of the time discretization algorithm described in
section 3 was the direct numerical simulation (DNS) of variable density turbulence. The spatial dis-
cretization used for this application and its interaction with the temporal discretization are described
briefly here, as they were also used for the Rayleigh-Taylor test problem described in section 4.1.

The DNS algorithm described here is appropriate for simulation domains with periodic boundary
conditions in two directions and was motivated by flows in unbounded domains where the timestep
required for accuracy is similar to the timestep required for stability when using an explicit method
[23]. The computational domain is V = [0, L1] × [−L2/2, L2/2] × [0, L3]. A general flow variable f1 is
expressed as a Fourier series in x1 and x3 and expanded with B-splines in x2:

f(x1, x2, x3, t) =

N1
2 −1∑

l=−N1
2 +1

N3
2 −1∑

n=−N3
2 +1

f̂ln(x2, t)e
ik1x1eik3x3

=

N1
2 −1∑

l=−N1
2 +1

N2−1∑

j=0

N3
2 −1∑

n=−N3
2 +1

fljn(t)eik1x1Bj(x2)eik3x3

k1 =
2πl

L1
k3 =

2πn

L3

(C.1)

Note that the dependence of k1 and k3 on l and n is assumed. A maximum continuity B-spline basis
of order p [4, 5] is used for all solution variables except the x2 component of momentum m2, which is
represented with maximum continuity B-splines of order p + 1. This enables mass conservation to be
satisfied exactly as ∂m2/∂x2 can be exactly represented in the function space used to represent other
components of the state (see Appendix C.2). With this solution representation, a Fourier-Galerkin/B-
spline-collocation method with approximate Galerkin quadrature is used to obtain the spatially discrete
equations.

1We drop the ·̃ notation previously used to distinguish spatially-discrete variables to simplify notation.
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C.1. The divergence-free momentum

The 2-component of the curl and double curl of the momentum equations (8) are

∂Ω2

∂t
=

∂2

∂x3∂xj
(C1j + τ1j)−

∂2

∂x1∂xj
(C3j + τ3j) (C.2)

∂φ2

∂t
=

∂3

∂xl∂xl∂xj
(C2j + τ2j)−

∂3

∂x2∂xl∂xj
(Clj + τlj) , (C.3)

Ω2 =
∂md

1

∂x3
− ∂md

3

∂x1
φ2 = ∆md

2

with Cij ≡ −ρuiuj and τij is the viscous stress. Since equations (C.2) and (C.3) were obtained by
applying the curl operators to the momentum equations, they leave md averaged in x1 and x3 undeter-
mined. Averaging the momentum equations over these directions and denoting such planar averages as
· p gives:

∂mp
1

∂t
=

∂

∂x2

(
C
p

12 + τ p12

)

∂mp
3

∂t
=

∂

∂x2

(
C
p

23 + τ p23

) (C.4)

where mp
1 = md

p

1 , mp
3 = md

p

3 , and md
p

2 = 0. The fact that ∂τ pij/∂xj simplifies to ∂τ pi2/∂x2 has also
been used.

Equations (C.2) to (C.4) govern the evolution of the divergence-free momentum. The main advantages
of recasting the momentum equations in this way is that the pressure is eliminated and the divergence-
free condition can be imposed exactly. For the modes with one or more non-zero wavenumbers, md

2 is
obtained in Fourier space from the Poisson problem

φ̂2 = −k2m̂d
2 +

∂2m̂d
2

∂x2
2

(C.5)

where k2 = k2
1 + k2

3 and we have suppressed the l and n indices for compactness. Then the x1 and x3

components are reconstructed by invoking the divergence-free condition and the definition of Ω2:

m̂d
1 =

1

k2

(
ik1

∂m̂d
2

∂x2
− ik3Ω̂2

)

m̂d
3 =

1

k2

(
ik3

∂m̂d
2

∂x2
+ ik1Ω̂2

)
.

(C.6)

Since the numerical representation of the x2 dependence of m̂d
1, m̂d

3 and Ω̂2 can exactly represent the x2

derivative of m̂d
2, this procedure will produce md that is exactly divergence free.

C.2. The curl-free momentum and discrete conservation of mass

The mass conservation equation only involves the curl-free momentum in the x2 direction (mc
2) and

in the direction of the wavevector (k1m
c
1 +k3m

c
3 = k ·mc). Mass conservation and the curl-free condition

can thus be written in Fourier space as:

d̂f

dz

∂z

∂t
=
∂ρ̂

∂t
= −ikm̂c

‖ −
∂m̂c

2

∂x2
mass conservation (C.7)

∂m̂c
‖

∂x2
− ikm̂c

2 = 0 curl-free (C.8)

where mc
‖ ≡ k ·m/k . A second curl-free constraint, k3m̂c

1 − k1m̂c
3 = 0, along with the definition of m̂c

‖
allows m̂c

1 and m̂c
3 to be determined from m̂c

‖ as

m̂c
1 =

k1

k
m̂c
‖ m̂c

3 =
k3

k
m̂c
‖ . (C.9)
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As ∂m̂c
2/∂x2 is exactly represented in the function space used to represent m̂c

‖, ρ̂, etc., if we require that

(equation (C.7)) be satisfied without discretization error, mass conservation will be satisfied exactly.

Therefore, we choose to enforce the boundary conditions on m̂c
2 (see Appendix C.4) in lieu of satisfying

equation (C.8) at the boundary when solving the coupled equations (C.7-C.8), which allows us to satisfy
mass conservation at all collocation points. Hence, discretization error is isolated to equation (C.8) and
mass conservation is achieved. Also, analogous to Appendix C.1, the planar averages of mc must be
determined as a special case, that is

∂mc p
2

∂x2
= −∂ρ

p

∂t
mc p

1 = mc p
3 = 0 . (C.10)

C.3. Time advance

This section details the time advance of the evolution equations with the temporal scheme established
in section 3. The final DNS equations are

− df
dz

∂z

∂t
=
∂mc

j

∂xj

∂Ω2

∂t
=

∂2

∂x3∂xj
(C1j + τ1j)−

∂2

∂x1∂xj
(C3j + τ3j) = RHSΩ2

∂φ2

∂t
=

∂3

∂xl∂xl∂xj
(C2j + τ2j)−

∂3

∂x2∂xl∂xj
(Clj + τlj) = RHSφ2

∂mp
1

∂t
=

∂

∂x2

(
C
p

12 + τ p12

)
= RHSmp

1

∂mp
3

∂t
=

∂

∂x2

(
C
p

23 + τ p23

)
= RHSmp

3

∂z

∂t
= L(z)

∂z

∂t
+Rz(z)

ρ = f(z) .

(C.11)

The time advance of the state S = (φ2,Ω2, z,m
p
1 ,m

p
3 ) over the course of one substep s→ s+ 1/2 is

outlined in Algorithm 2, which is an extension of Algorithm 1 to the spatially discrete problem defined
by system (C.11). It is assumed

RHSs−1/2
Ω2

, RHSs−1/2
φ2

, RHSs−1/2

mp
1

, RHSs−1/2

mp
3

,
∂z

∂t

s−1/2,kf

are stored from the previous stage as well as the time history of z: (zs, zs−1/2, zs−1, zs−3/2) required for
initializing the fixed-point problems.

Algorithm 2 Time advancement of system (C.11)

1: Finalize md,s by solving equation (C.5) and applying equation (C.6).

2: Evaluate Rsz, generate BDF-like approximation of
∂z

∂t

s,0

.

3: Obtain
∂z

∂t

s,kf

as in section 3.2 then solve for mc with equations (C.7) to (C.10).

4: Update thermodynamic and transport properties (ρs, µs, Dsz) which are known in terms of zs.

5: Evaluate RHSsΩ2
, RHSsφ2

, RHSsmp
1
, RHSsmp

3
.

6: Time advance the state Ss → Ss+1/2 with RK2. zs → zs+1 uses
∂z

∂t

s,kf

and
∂z

∂t

s−1/2,kf

, all other

variables are advanced with the appropriate RHSs and RHSs−1/2.
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C.4. Boundary conditions

Unbounded domains, often truncated for computational purposes, are commonly encountered in the
simulation of turbulent flows, and that is the case in the x2 direction here, in which the domain is
formally infinite. In directions in which the turbulence is statistically homogeneous (x1 and x3), periodic
boundary conditions are employed consistent with the use of Fourier expansions. In the x2 direction,
the momentum boundary condition is an extension of the potential-matching condition of Corral and
Jiménez originally developed for incompressible flows [7]. This is based on the assumption that the
vorticity decays rapidly as x2 → ±∞, so that at the boundary of a truncated computational domain the
potential part of the velocity is consistent with a decaying irrotational solution in the exterior. In the
variable-density case this means that, for L2 sufficiently large, ρ→ ρ∞, ∇×m→ 0, and ∇ ·m→ 0.

Consider a potential-only momentum field for x2 > L2/2, so that m = ∇ψ. Then ψ obeys ∆ψ = 0

and the Fourier coefficients of ψ satisfy ψ̂ ∼ e−kx2 , except when k = 0. Evaluating at the boundary
of the computational domain x2 = L2/2, yields the potential-matching boundary conditions for the top
boundary, and a similar analysis yields analogous conditions for the bottom boundary. They are:

m̂2|±L2
2

= ∓1

k

∂m̂2

∂x2

∣∣∣∣
±L2

2

m̂1|±L2
2

= ∓ ik1

k
m̂2|±L2

2

m̂3|±L2
2

= ∓ ik3

k
m̂2|±L2

2

(C.12)

Clearly, both the divergence-free and curl-free components of m can satisfy these potential-matching
condition individually, ensuring that m does as well.

Recall that ∆md
2 = φ2, so equation (C.3) is fourth order in md

2. Two additional boundary conditions
on md

2 are therefore needed. From the potential-matching condition, it follows that

k2 m̂d
2

∣∣∣
±L2

2

− ∂2m̂d
2

∂x2
2

∣∣∣∣∣
±L2

2

= φ̂2

∣∣∣
±L2

2

= 0, (C.13)

A homogeneous Dirichlet boundary condition is thus applied to φ2. Then, when md
2 is reconstructed

from φ2 via the Poisson equation equation (C.5), only the Robin conditions of equation (C.12) are
explicitly enforced. A homogeneous Dirichlet condition is enforced on Ω2 which is consistent with curl-
free momentum at the boundary. When solving equations (C.7) and (C.8) for mc

2 and mc
‖, the Robin

conditions from equation (C.12) are imposed on m̂c
2.

Averaging the mass conservation equation over x1 and x3 yields a homogeneous Neumann condition
on mp

2 at the boundary, since the flow is essentially constant density there. This means there is one
remaining degree of freedom when determining mp

2 which is used to enforce a symmetry condition or set
the value at a location in the domain, for example. For the Rayleigh-Taylor problem, simulations are
stopped well before the front nears the boundary so a homogeneous Dirichlet condition is used at the
top of the domain as the fluid remains at rest.

Homogeneous Neumann conditions are imposed on the streamwise and spanwise plane-averaged mo-
mentum as well as the plane-averaged and fluctuating components of the transported scalar, z.

D. Convergence and simulation specifics for Rayleigh-Taylor problem

To determine the spatial resolution used for the single-mode Rayleigh-Taylor cases detailed in sec-
tion 4, the 2D problem with At = 0.5 and Re = 3000 was simulated with three different meshes:
N1×N2 = 64× 256, 128× 512, and 256× 1024. Note that the Atwood number is low enough to use the
smaller computational domain in the vertical direction (x2 ∈ [2W, 2W ]). The timestep details are given
in table D.1. Comparisons of the bubble and spike locations over time (figure D.8) as well as contours
of the interface for later times (figure D.9, z = 0.5) show no discernible differences in the solutions
with changing resolution. The maximum variation of the bubble height hb/W amongst the different
resolutions, for example, is ∼ 0.002 at t

√
At/

√
W/g = 3 when the height itself is ∼ 0.8. A Richardson

extrapolation procedure using the three solutions suggests an absolute error of O(10−4), corresponding
to relative errors of O(10−2)%, in the bubble height for late times on the second grid. As simulations for
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higher Atwood numbers were desired, the resolution suggested by the second grid was selected for the
cases shown in this work. Subsequently, a similar Richardson extrapolation of the time discretization
was performed with three different timesteps: ∆t

√
At/

√
W/g = 2.5×10−4, 1.25×10−4, and 6.25×10−5.

This indicated the scheme is second order as expected and that for the timestep specified in table D.1
(∆t
√
At/

√
W/g = 2.5 × 10−4) the late time errors in bubble height are O(10−7), corresponding to

relative errors of O(10−5)%.
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Figure D.8: Evolution of the bubble and spike height (hb,hs) in the Rayleigh-Taylor test problem with At = 0.5 in two
dimensions using three different resolutions.
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Figure D.9: Location and shape of the fluid interface (the z = .5 contour) in the Rayleigh-Taylor test problem in two
dimensions with At = 0.5 at late times. Results for three different resolutions are shown.

For the cases presented in the text and this appendix, the computational domain, grid spacing, and
timestep employed are listed in table D.1. The domains are defined as follows:

V2D,1
RT = [0,W ]× [−2W, 2W ] , 128× 512 mesh;
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Table D.1: Domain and timestep specification for Rayleigh-Taylor cases presented in section 4.

At Dimension Re Domain ∆t
√
At/

√
W/g

.33 2 3000 V2D,1
RT 2.5× 10−4

.5 2 3000 V2D,1
RT 2.5× 10−4

.67 2 3000 V2D,1
RT 2.5× 10−4

.8 2 3000 V2D,1
RT 2.5× 10−4

.925 2 3000 V2D,2
RT 1.25× 10−4

At Dimension Re Domain ∆t
√
At/

√
W/g

.33 3 1024 V3D,1
RT 2.5× 10−4

.5 3 1024 V3D,1
RT 2.5× 10−4

.67 3 1024 V3D,2
RT 1.25× 10−4

.8 3 1024 V3D,2
RT 6.25× 10−5

.925 3 1024 V2D,2
RT 3.125× 10−5

V2D,2
RT = [0,W ]× [−3.5W, 3.5W ] , 128× 1024 mesh;

V3D,1
RT = [0,W ]× [−2W, 2W ]× [0,W ] , 128× 512× 128 mesh;

V3D,2
RT = [0,W ]× [−3.5W, 3.5W ]× [0,W ] , 128× 1024× 128 mesh .
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