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Abstract

The problem of combining multi-source information in applications
related to automatic target recognition (ATR) is addressed. A
mathematical approach is proposed for fusing the (possibly dependent)
outputs of multiple ATR systems or algorithms. The method is derived
from statistical principles, and the fused decision takes the form of an
hypothesis test. The distribution of the test statistic is approximated as
gamma, with parameters estimated from available training data. In a brief
simulation study, the proposed method outperforms several alternative
fusion techniques.




This work performed under sponsorship of the Air Force

Aeronautical Systems Center and Rome Laboratory.



Contents

1 — Introduction and Background ......eieiiiieciissssnncnsnncnsescsssesncessessssesesanssenes 6
" 2 — The Mathematics of Probabilistic Fusion 7
2.1 - Deriving the Test STAtISHIC ..ccoveeeuiiririeereetee ettt ee et e s e e et e ssaeaneas 7
2.2 - Approximating the Distribution of Sy......cooooiiiiiie, 9
2.3 - Assessing the Gamma ApPPIOXIMALION....oueeueerueereerterieerireteenaeseererraeesreesnsesseeessessenssaessens 10
2.3.1 - The Morganstern Model ..ottt e e s s 10
2.3.2 - The Multivariate Normal Model.......ccocoormiiimiiiiiiiiii et 12
3 — Some Comparative Results .14
3.1 - Alternative Approaches t0 ATR FUSION......cooiiiiiieiiieececetee e 14
3.2 - SIMUIAION STUAIES.......eciieeieteeiier ettt teereeeee ettt e e e e ens et e et enee s eanesaanes 15
4 — Discussion and Conclusions 17
5 — References . 19

List of Tables
Table 1 - Gamma approximation to the Morganstern model...............ccoceieiiiiniiiiieceeeee 20
Table 2 - Gamma approximation to the multivariate normal model .....c..cccooiiiiiininicinnnienn. 21
Table 3 - Simulation StUdY PArAMELETS ........cecieeeiiieeiieeceeere et eesareetee e et e e s sas s neennennes 22

List of Figures

Figure 1 - Gamma approximation to the Morganstern model .............ccccoioieviieiiiiieiiieeee 23
Figure 2 - Gamma approximation to the normal model .........cccoeviriiriiicennieieriecceeeeeee 24
Figure 3 - Acceptance regions for PD=0.95 . ...t 25
Figure 4 - Sample of bivariate SCAttErPIOtS ....c.cccerueriereeirrteiieieieeeereeee e stese et s et e see s 26
Figure 5 - ROC curves for StUAY I-a ...coceuirieieniiieniinie ettt te et e sae e 27
Figure 6 - ROC curves for Study I-D .....cooouiiiirceeie ettt s 28
Figure 7 - ROC curves for Study [I-a .....ccoovieeinieiiiieieceeccererreteeeecetrs e 29
Figure 8 - ROC curves for study II-D.......ccoooviiiiiiiiieeeeeecee e 30
Figure 9 - ROC curves for study III-a..........coccoiiriiiniirieccete ettt 31
Figure 10 - ROC curves for study TH-b c..cc.omiiiiii ettt 32




1 - INTRODUCTION AND BACKGROUND

In recent years, researchers in the Automatic Target Recognition (ATR) community have
been interested in developing techniques for pulling together information from different sources
to improve the performance of ATR systems in locating and identifying targets of interest. The
process by which information is combined is frequently referred to as "data fusion". Fusion can
take place at various stages of the processing sequence, and the data to be fused may lie

anywhere in the range from raw to highly processed.

Different approaches to fusion are appropriate at different stages of the processing
sequence. If raw imagery from multiple sensors is to be combined before input to an ATR
system, accurate modeling of some complex spatial and temporal relationships between and
within images may be required. By contrast, when the data to be merged are highly processed
(e.g., ATR outputs), the modeling task is often relatively simple. and can yield fusion metrics

that are powerful and straightforward to interpret.

The term "ATR fusion" will be used to refer to the merging of different ATR outputs.
ATR fusion techniques can be applied to results arising from any of the following: 1) muitiple
sensors, 2) multiple images taken with a single sensor, and 3) multiple ATR algorithms applied
to a single image. The most elementary approach to ATR fusion uses voting metrics, in which
each ATR output is converted to a binary "yes/no" format and final classifications are based on
decision rules like "majority wins". In many applications, more sophisticated and effective

metrics can be developed.

In this report, a new technique for ATR fusion is introduced. The method is derived from
statistical principles in section 2.1. The decision rule takes the form of an hypothesis test, and an
approximation to the distribution of the test statistic is discussed in sections 2.2 and 2.3. The
power of the method is illustrated in section 3, in which the performances of the proposed metric
and other common fusion techniques are compared over a series of simulated data sets. Practical

implementation issues and possible extensions of the work are outlined in Section 4.



2 - THE MATHEMATICS OF PROBABILISTIC FUSION

2.1 - Deriving the Test Statistic

The probabilistic fusion metric is derived in the context of a target identification problem:
the ATR system is asked to determine whether or not a specific target (vehicle type and
orientation) is present at a particular location. This system may apply multiple identification
algorithms to the same image, or it may apply a single algorithm to multiple images. In either
case, several different ATR outputs are generated, which must be combined in the final decision.
Each output is assumed to be one-dimensional, and typically represents a match score like a sum
of mean-squared errors, a correlation coefficient, or some more sophisticated measure of the

similarity between the input image and the target model.

Let N represent the number of available scores. Denote by Z; the random variable
representing the ith score, and let z; be a value assumed by Z;. The N random variables {Z,, ...,
Zy} need not be mutually independent. Without loss of generality, assume for each i that a small
value of Z; represents a good match with the target model, while a large value represents é poor
match. Because the N scores may differ in terms of magnitude, range and interpretation, the first
step in the fusion process is to transform them into a new domain in which they may be

combined in a straightforward manner.

Consider the it% match score, and let F; be the probability distribution function of the

random variable Z; for targets, such that:
F,.(z,.)= Prob (Zi < z,.) ¢))

That is, F; (z; ) represents the probability that the i## ATR score would take on a value of z; or

smaller for a target vehicle.




The function F; may be known parametrically from theoretical considerations (e.g., the
Central Limit Theorem), or it may be estimated empirically from available training data. It is
assumed that F; is continuous (or well approximated by a continuous function) for all i It
follows from the definition of the probability distribution function that the random variable F;(Z)
has a distribution that is uniform on the interval [0, 1] [Silvey, 1975] for target vehicles. Because
a large Z; represents a poor match with the target model, it is expected that non-targets will take

on values of F;(Z;) that are close to unity.

Now define the mapping:

Y,=Y,(Z,)

=~ log (1= F,(2,) ®
Because the function F; is bounded between 0 and 1, the random variable Y; is non-negative. Its
value approaches infinity as the value of F;(Z;) approaches unity. For targets, the quantity 1 —
Fy(Z;) has a uniform distribution on [0, 1]. It follows that the distribution of ¥; for targets is the
standard exponential [Johnson and Kotz, 1970]. It is expected that ¥; will be large for non-

targets.

The classification decision takes the form of a one-sided statistical test, in which the null
hypothesis is that each of the {Y}, ..., Yy} has the standard (unit mean) exponential distribution,
with a specified multivariate correlation structure. The alternative hypothesis is that at least one

of the ¥;'s has a mean exceeding unity. Phrased another way, the null hypothesis is that the
unknown is the target, and the alternative is that it is not.

The proposed test statistic combines the N transformed scores in a straightforward

manner. Define the fused measure:

S, =37, 3)




Because each Y; is expected to be large for non-targets, it is sensible to make target identification
decisions by setting a threshold on the value of Sz Images with a fused score at or below the
chosen threshold are classified as targets, while those with scores above the threshold are
classified as non-targets. The use of (3) dates to the work of R. A. Fisher [Fisher, 1932; van
Zwet and Oosterhoff, 1967] in combining evidence from multiple independent statistical tests.
For the present application, the requirement of independence is relaxed. In order to choose an
appropriate threshold for the test statistic S; an approximation to its distribution is required. In

the next subsection, one is proposed.

2.2 - Approximating the Distribution of S;

If the ¥;'S are mutually independent, then the distribution of the sum Sy is gamma, with

shape parameter r = N and scale parameter A = 1 [Johnson and Kotz, 1970]. More generally, let

p; represent the estimated correlation between Y; and ¥}, and define the scalar:

i=1

The distribution of Sy is approximated as a gamma, with parameters:

n N2
TS NiC (52)

estimated by the method of moments. A decision on the consistency of the test data with the

designated target vehicle can be made based on the gamma distribution function evaluated at Sy
Let G(s;7, y) ) represent the probability that a gamma random variable with parameters 7 and

A will be less than or equal to the value s. Then a threshold, Sf*, is selected to correspond to the

desired probability of detection (PD), such that:




G(s ;7. 4)=PD . 6

If the fused measure (3) takes on a value less than or equal to Sf*, the null hypothesis (presence of

the target) is accepted. Otherwise, the test image is classified as non-target.

Note that the gamma model for the distribution of Sy is exact only when the ¥;'s are
mutually independent. The degree to which this approximation is reasonable for other situations
must be considered. Because there is no unique multivariate uniform distribution [Barnett,
1980], a general answer is not possible. However, two specific cases that have been studied are

discussed in the next section.

2.3 - Assessing the Gamma Approximation

The applicability of the gamma approximation to the distribution of the fused measure Sy
(3) is now examined. Because the true distribution depends on the underlying models from
which the exponential variates ¥; (Equation 2) are derived, the goodness of the approximation
varies with the models. In the case where the ¥;S are mutually independent, the gamma
approximation is exact [Johnson and Kotz, 1970]. In the case of dependent exponentials, two
specific models have been studied, with excellent agreement found between the exact

distributions and the gamma approximations in each case.

2.3.1 - The Morganstern Model

One case in which the exact distribution of a sum of dependent exponentials can be
solved analytically is the Morganstern model. Although this model is limited to the bivariate
case, it can still be useful in testing the accuracy of the gamma approximation. In the
Morganstern-type bivariate uniform distribution with parameter y [Barnett, 1980], the random

variables U; and U, have a joint density given by:

10




f(u15”23W)= 1-—(//(1—2141)(1—2112), (7

for 0 < u,u, <1 and |y| < 1. Here, both U; and U, have marginal distributions that are

uniform on [0, 1]. Making the change of variables:
I =- log(Ul) T,=- lOg(Uz) J (8

each T; has a marginal distribution that is standard exponential, and the joint density is given by:

gt tyw) = e —we™ ™ £ e 4 Qe —dye )
Now, let W = T; + T». The exact density of this sum is given by:
h(w; w)= we™ —ywe " +4ye™" —dye™” — dywe™” | (10)
with corresponding distribution function:
Hww) =1 - e +3y —pw+w) + ¢ (B +2uw) . (11)

To determine the goodness of the approximation in the Morganstern case, the gamma
distribution function is compared to the exact distribution function (11). From (9), it can be

shown that:
corr \T}, Tz) =—ZW . (12)

It follows from equations (5) that the method of moments estimates for the gamma parameters

are given by:




F, o= (13a)

R — " (13b)

The distributions G(w; }:,,, ) and H(w; ) are compared in Figure 1 and Table 1, for several

). V/,
different values of the parameter . Agreement is excellent: the differences between the exact -
and approximate detection probabilities for various thresholds are small enough to be of little

practical significance.

2.3.2 - The Multivariate Normal Model

A second type of multivariate exponential is obtained by sampling from the M-
dimensional normal distribution [Anderson, 1984]. The bivariate case is discussed in Barnett
(1980), but a more general multivariate extension is possible. Under the normal model, the exact
distribution function of the sum of standard exponentials cannot be derived analytically, due to
the form of the normal density function. However, empirical estimates obtained via simulation

can be compared to the gamma approximations.

Let the vector {V;, ..., Vi) represent a single realization from the multivariate normal,

with mean vector 0 and covariance matrix:
T = [o,], ij=1,..,.M, (14)

where oy is equal to unity for all i. Each of the V; has a marginal distribution that is standard

normal. Make the change of variables:

T, = -log(1- @(,)), (15)

12




where @ represents the standard normal distribution function. Then each 7 is distributed as

standard exponential. The T;'S are correlated unless the matrix T is equal to the identity.
However, the correlations between the exponentials cannot be solved analytically and must be

computed numerically or estimated via simulation. Likewise, the distribution of the sum:

W=>T ' (16)

is obtained via simulation or numerical methods.

To test the adequacy of the gamma approximation for the distribution of # in the

multivariate normal model, the following approach was taken.

1. Begin with an initial "training" sample, used only to estimate the gamma parameters:
sample 200 realizations from an AM-dimensional normal distribution, with mean
vector 0, and covariance matrix Z. Convert each element to the exponential form
(15). Now compute the sample covariance matrix of the exponential random
variables, and insert the off-diagonal elements into equation (4). The method of

moments estimates for the gamma parameters are found as in (5).

2. Discard the initial sample, and generate a new collection of 10,000 M-dimensional
normal random variables, with mean vector 0 and covariance matrix £. Convert each
element to the exponential form (15), and sum the M dimensions for each realization.
This provides a sample of 10,000 sums of dependent exponentials. The empirical
distribution of these sums is compared to the approximate distribution computed in

the previous step.
Results for several different dimensions and covariance matrices are shown in Figure 2

and Table 2. In each case, the gamma approximation closely matches the empirical distribution

obtained via simulation.

13




The results obtained for multivariate exponentials arising from the Morganstern and
normal models do not establish the accuracy of the gamma approximation to the distribution of Sy
for all possible models. However, they do suggest that the two-parameter gamma family
represents a reasonable and flexible choice in the general case. Detection probabilities obtained
with decision thresholds based on the gamma approximation are unlikely to differ greatly from

those that would be obtained with exact thresholds.

3 — SOME COMPARATIVE RESULTS

3.1 - Alternative Approaches to ATR Fusion

There are many feasible alternatives to the fusion metric proposed in Section 2. A brief
discussion of some of the more common approaches follows. Note that each of the metrics
discussed below operates on the raw Z scores, and thus implicitly assumes that the scores are
measured on the same scale, or have been normalized. For many fusion applications (e.g., the
same ATR algorithm applied to multiple images) this is a reasonable assumption. As before, a
small value of Z represents a close match with the target, while a large value represents a poor

match.

The first candidate metric takes the smallest of the N scores recorded for a particular

location, and uses this as a fused measure:

S =min{Z,,...,Z, }. (17)
Another option uses the largest score:
S,. =max{Z,...,Zy }. (18)

The mean of the N scores may also be a reasonable choice:

14



1 N
mean = _N— ZZ (19)

i=1

Of these, S, seems to be the least promising, since one small Z-value can give a low
fused score to a non-target. If each Z; represents a different ATR algorithm, the inclusion of a
single algorithm lacking in power (the ability to reject non-targets) can significantly degrade
system performance. Such a low-power algorithm would have a somewhat lesser impact on

Spean, and very little impact on S,

Figure 3 shows the bivariate acceptance regions (at PD = 0.95) for the each of the fused
measures discussed above, for independent standard normal target scores. The region for Syis in
some ways a compromise between that of S, and Speqn. It omits the extensions along the axes
seen for Sy... and also cuts out the upper right-hand corner (where neither score represents a
particularly strong match) of the S, region. Note that if Sy.., Were computed in the ¥ domain

rather than the Z domain, it would be equivalent to S

Follmann [1996] discusses several other fusion measures, but these are applicable only in
the multivariate normal case. Further, the shapes of the acceptance regions for these tests with
dependent scores make them undesirable for our application: in some instances, increasing a

single Z score (indicating poorer fit) can change a decision from "non-target" to "target".

3.2 - Simulation Studies

To test the power of the proposed fusion metric, and to compare its performance with the
alternative approaches discussed above, a series of simulation studies were conducted. In each
of these studies, ATR scores were generated to represent "targets" and "non-targets”. The
number, N, of scores per test varied. For targets, the scores were all distributed as standard
normal (u=0, o=1), with non-zero correlations in some cases. For non-targets, the test scores
were also normally distributed, with positive means. The parameters used for each study are

listed in Table 3, and bivariate samples of target and non-target scores are plotted in Figure 4.

15



The studies were conducted as follows:

1. Generate 10,000 sets of "target" Z-scores and 10,000 sets of "non-target" Z-scores.

2. From each set of raw scores, compute the metrics Spin, Smax, and Spean-

3. Convert the raw scores according to (2), using the standard normal distribution
function. Evaluate the fused metric Sy for each set of scores.

4. Compute the receiver-operator characteristic (ROC) curve [Poor, 1988] for each

metric. Record the false alarm rate at selected values of PD.

Results for simulation studies I-a and I-b are shown in Figures 5 and 6. These studies
used two scores, one which is a poor discriminator of non-targets (u=5, 6=3) and one which is
fair (u=4, =2). In both the correlated and uncorrelated cases, the metrics Sz, Spax, and Syear €ach
significantly improve on the performance seen with either of the individual scores. Of these
three, Syean 1S not as powerful as the others, and S, is particularly effective in the correlated
case, due to the increased percentage of targets falling into the upper right-hand corner of the

acceptance region (see Figure 4).

In simulation studies II-a and II-b, two fairly good discriminators, with power for
different ranges of PD, are combined. Results are summarized in Figures 7 and 8. In both the
correlated and uncorrelated cases, S;, Spmax, and Speqr perform about equally well, while S,

represents little improvement over the best of the individual scores for a given PD.

Figures 9 and 10 summarize the results of simulation studies III-a and III-b, in which four
ATR scores are fused. Because none of the four gives particularly large values for non-targets
(u=2, o=1), the performance of S, is not competitive with that of Sror Sye... Note the strong
effect that correlation has on each of the fused metrics: discrimination is decidedly superior when
the individual scores are independent. This is not surprising, because the additional information
provided by each score is greatest when the scores are minimally correlated. The results
demonstrate that with as many as four independent scores available for fusion, excellent

performance can be achieved.
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In each of these simulations, the fusion metric Sy performs about as well as the best of the
other metrics. In studies I-a and I-b, S,ear 1S not competitive, while S, performs relatively

poorly in studies III-a and III-b. The metric S, is uniformly less powerful than the others.

4 — DISCUSSION AND CONCLUSIONS

The simulation results demonstrate that Sy can be a powerful metric for ATR fusion.
However, the approach has some limitations which merit consideration. First, the method
requires the user to completely specify (either parametrically or empirically) the marginal
distributions of each of the individual scores, for target vehicles. These distributions must be
continuous, or nearly so. In addition, the pairwise correlations between the exponential Y-scores

(Equation 2) for targets are needed to set a rejection threshold on the fused score.

If ample training data are available, these requirements may not represent a major
challenge. = However, modeling errors can have significant implications for classifier
performance. For example, if the training data are less variable than the test data (as is likely in
many practical applications), one might experience an upward shift in the mean Z-scores for
targets in the test set. With the transformation to exponential space, the impact of such a shift
can be substantial. In practice, one can correct for this problem by specifying anticipated shifts
for each Z-score, and subtracting these values from the raw scores before transformation to the
exponential. While this approach is theoretically appealing, it is not a trivial problem to

anticipate the effect of future test conditions.

A related issue is that of robustness. With the metric S5, an extreme Z-value for just one
of the individual scores can cause the rejection of a legitimate target, due to the nature of the
nonlinear transformation from Z-space to Y-space. Metrics based on mean (or median) Z-scores
may be more robust when all raw scores are reported in the same scale, but are not an option in

other situations.

The robustness of the probabilistic fusion approach can potentially be improved by the

use of a weighted sum of the ¥;’S in place of the unweighted sum (3). Relatively low weights

17




would be assigned to the scores thought to be non-robust, with higher weights assigned to the
robust scores. Measures of robustness may be inferred from auxiliary information like sensor
capability, image quality, or statistical considerations. The distribution of any weighted sum can
be modeled as gamma, with simple adjustments to the moment estimates of equation (5). This
procedure would have the effect of stretching the acceptance region (Figure 3) along the axes of

the down-weighted Z-scores.

Finally, it should be noted that the fusion metric is used to test a single null hypothesis: a
particular target type at a specific location and orientation. In practical applications, several
different target hypotheses may be in competition. When this is the case, separate tests are
conducted for each hypothesis. If multiple target hypotheses are accepted at the chosen
significance level, the one with fused score giving the largest p-value (computed from the

appropriate Gamma distribution function) is selected.

The ATR fusion metric Sy has been developed in this report, using straightforward
probabilistic reasoning. Simulation results demonstrate the power of the technique. However,
the user needs to be cognizant of its significant modeling requirements, and of its potential

difficulties with robustness. Practical suggestions have been made for resolving these issues.
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Table 1 - Gamma approximation to the Morganstern model. The exact and approximate distribution
functions are compared. For each value of the parameter ¥, gamma quantiles were computed for
probability of detection equal to 90%, 95%, 99%, and 99.9%. The exact distribution function (Equation
11) was evaluated at each of these quantile values, with results as shown in the body of the table. Even in
the worst case, for = -1, good agreement is observed. The exact and approximate density functions for
each value of y are shown in Figure 1.

Estimated PD Exact PD (Morganstern Model)

(Gamma Model) | y=-1.0 = -0.5 =025 =10
900 .894 .897 901 902
950 950 950 950 950
990 992 991 .990 989
.999 .999 999 999 .999
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Table 2 - Gamma approximation to the multivariate normal model. The empirical and approximate
distribution functions are compared. In each set of simulations, all off-diagonal elements of the normal
covariance matrix were set equal to R. For each pair of R and M (the dimension of the multivariate
normal variates), an initial sample of size 200 was generated for use in estimating the gamma parameters.

- Comparisons were then made between the gamma approximations and the empirical distributions
observed for independent samples of size 10,000. Results are shown for the probability of detection set at
90%, 95%, 99%, and 99.9%. The observed agreement is strong. Histograms of the empirical distribution
functions, along with the corresponding gamma approximations, are shown in Figure 2.

Estimated PD Empirical PD (Normal Model)
(Gamma Model) M=2, R=-25 M=2,R=75 M=5 R=25  M=5 R=75

900 901 902 .899 902
950 .949 951 949 951
990 989 991 991 992
999 .999 .999 999 .999
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Table 3 - Simulation study parameters. The first four studies used two dimensions each, while the final
two studies used four. In each study, every dimension was standard normal (i = 0, o = 1) for targets,
while non-target scores were also normally distributed, with means and standard deviations (L., and Guen,
respectively) as specified on the table. A simple dependence model was used, in which the correlation
matrices for targets and non-targets both had off-diagonal elements all equal to p.

MODEL | PARAMETERS

I-a toon = {4, 5} Gron= {2, 3} p=0.0
I-b Woon = {4, 5} Gpon= {2, 3} p=05
Il-a Loon = {3, 5} Gron={1,2} p=0.0
II-b Hoon = {3, 5} Gpon= {1, 2} p=05
Il-a ion= 122,22} Gun={L L 1,1}  p=00
II-b Hon = {2, 2, 2,2} Gron={1,1,1,1}  p=0.5
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Figure 1 - Gamma approximation to the Morganstern model. The graphics compare the exact and
approximate densities of a sum of dependent exponential random variates from the Morganstern-type
bivariate uniform model. Results are shown for four different values of the parameter i, and the gamma
approximation is excellent in all cases.
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Figure 2 - Gamma approximation to the normal model. The histograms show empirical densities of
sums of exponentials obtained from the multivariate normal model, while the lines represent the densities
of the method-of-moments gamma approximations. Results are shown in two- and five-dimensional
cases, with different levels of pairwise correlation between the underlying normal random variates.
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Figure 3 - Acceptance regions for PD=0.95. The shapes of the regions are shown for four different
fusion metrics. These regions all correspond to the case where two independent standard normal Z-values
are available.
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Figure 4 - Sample of bivariate scatterplots. The distributions of target and non-target Z-scores are
plotted for each of the six simulation studies. For studies III-a and III-b, only the first two of four
dimensions are shown. These samples represent a small subset of the 10,000 target and non-target scores
generated in each simulation study.
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Observed PD
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False Alarm Rate

Figure 5 - ROC curves for study I-a. Two independent but fairly weak discriminators are fused. Each
of the metrics S; Spa, and S,... represents a substantial improvement over the Z-scores taken
individually. False alarm rates are expressed in percentages of 10,000 simulated non-targets.
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Figure 6 - ROC curves for study I-b. Two dependent and fairly weak discriminators are fused. While
S5 Smax» and Sy continue to outperform the individual scores, the magnitude of the improvement
decreases from that seen in the independence case (Figure 5). False alarm rates are expressed in
percentages of 10,000 simulated non-targets.
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Figure 7 - ROC curves for study II-a. Here, two independent and moderately powerful discriminators
are fused. The measures S5 Spax, and Syeq all perform about equally, effectively discriminating between
targets and non-targets. False alarm rates are expressed in percentages of 10,000 simulated non-targets.
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Figure 8 - ROC curves for study II-b. With correlated Z-scores, the effectiveness of the fusion metrics
is reduced from the independence case (Figure 7). Sz Spar, and Syea, perform about equally, while S,
represents little improvement over the best of the individual scores. False alarm rates are expressed in
percentages of 10,000 simulated non-targets.
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Figure 9 - ROC curves for study III-a. Four independent but fairly weak discriminants are fused. The

measures Sy and Speq, perform well, while S, and S, are less effective. False alarm rates are expressed
in percentages of 10,000 simulated non-targets.
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Figure 10 - ROC curves for study ITI-b. Here, four weak and correlated discriminants are fused. While
the fused metrics still outperform the raw scores, the ROC curves show that the magnitude of the

improvement is greatly reduced from that observed in the independence case (Figure 9). False alarm rates
are expressed in percentages of 10,000 simulated non-targets.
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