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ABSTRACT
This document is intended to help users program the new mid-circuit measurement (MCM) and
classical branching capabilities of the Quantum Scientific Computing Open User Testbed
(QSCOUT). Here, we present and explain an exemplar “ping-pong teleportation” program that
makes repeated MCM and branching calls. The program is written in Jaqal, the quantum
assembly language used by QSCOUT. This document is intended to accompany a companion
Jupyter notebook Exemplar_one_bit_teleportation_pingpong.ipynb. The Jupyter code
uses the python metaprogramming utility JaqalPaq (available at gitlab.com/jaqal) to emulate
how the exemplar program would behave on the QSCOUT platform.
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1. PING-PONG TELEPORTATION

Two new features of the QSCOUT platform are the ability to perform mid-circuit measurements
(MCMs) and branching operations (conditioned on the results of MCMs). Together, these features
open up a host of new adaptive quantum algorithms ripe for testbed exploration. To showcase
these two new capabilities, we have developed the Ping-Pong Teleportation exemplar. At its
core, this exemplar leverages the idea of quantum state teleportation, depicted in Fig. 1-1.

A : |ψ⟩ • H

C : |0⟩ H •

B : |0⟩ Z X |ψ⟩

0 �� •

0 �� •

Figure 1-1.: Quantum state teleportation. Prior to Alice’s arrival with
her qubit state |ψ⟩, Bob and Charlie prepare a shared Bell state. Alice

then performs a two-bit Bell measurement of hers and Charlie’s
qubits. After a two-bit Pauli correction (sent from Alice to Bob), Bob’s

qubit now holds the state |ψ⟩.

In the standard textbook form [17] of quantum state teleportation [3], three qubits are used, as
depicted in Fig. 1-1. Notably, a two-qubit entangled state is required to move the quantum state
from one physical carrier (Alice’s) to another (Bob’s). However, if Alice and Bob can perform a
two-qubit gate directly between their qubits (such as with a controlled-NOT (CNOT) gate), then a
one-qubit state (held by Bob) suffices. Zhou et al. call this protocol one-bit teleportation [25]
when the two-qubit gate available is the CNOT gate, up to local unitary operations. (If a SWAP
gate had been used instead, no measurement or classical communication would be required at all,
obviating any notion of “teleportation,” in which quantum information is transmitted over a
combination of quantum and classical channels.) Many versions of this protocol can be
constructed; here, we focus on what Zhou et al. call Z-teleportation and X -teleportation. These
names underline the fact that one applies an adaptively chosen Z or X Pauli gate after the MCM to
complete the process. These protocols are depicted in Fig. 1-2.

Both versions of one-qubit teleportation utilize a mid-circuit measurement and a branching
correcting gate. This fact makes them excellent primitive circuits to showcase these new features
of QSCOUT.
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|ψ⟩ • H

|0⟩ Z |ψ⟩
�� •

(a) Z-teleportation.

|ψ⟩

|0⟩ H • X |ψ⟩
�� •

(b) X -teleportation.

Figure 1-2.: Pauli Z and X versions of one-qubit teleportation.

After a one-qubit teleportation from Alice, Bob has Alice’s (unknown) quantum state. This
suggests one can implement a “ping-pong” teleportation protocol, in which Bob re-teleports the
state back to Alice, and then Alice back to Bob, and so on. Importantly, it is necessary for each
new recipient to have re-prepared his or her qubit into the state |0⟩ (or some other known pure
quantum state, which can be unitarily arrived at from |0⟩) before the next step. Fortunately, the
QSCOUT implementation of MCMs enforces a re-preparation of measured qubits after each
MCM, in this case, each into the |0⟩ state. An example of the ping-pong teleportation circuit with
four Z-type teleportations is depicted in Fig. 1-3.

|ψ⟩ • H • Z • H • Z |ψ⟩

|0⟩ Z H Z H
/ �� • �� • �� • �� •

Figure 1-3.: Quantum circuit for “ping-pong” teleportation. Four
rounds of teleportation (two complete trips back and forth) are
depicted. Each qubit subjected to a mid-circuit measurement is

immediately reset to |0⟩ following the measurement.
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2. PING-PONG TELEPORTATION EXEMPLAR EXPLORATIONS

We actually construct not one, but many variations of the Ping-Pong Teleportation (PPT)
exemplar in the accompanying Jupyter notebook
Exemplar_one_bit_teleportation_pingpong.ipynb. We do this to compare and contrast
them, as a matter of curiosity. Our exemplars vary in the following five different dimensions, to
allow the accompanying explorations:
Input state. What starting qubit state should we aim to teleport? How does PPT exemplar
behavior change as a function of the input state?
Number of teleportation rounds. How many teleportation rounds should we consider? How
does PPT exemplar behavior change as a function of the number of rounds of teleportation?
Teleportation basis. Which type of one-qubit teleportation should we use for each “ping-pong
volley?” X -type or Z-type? How does PPT exemplar behavior change as a function of these
choices?
Compilation / gate synthesis. How do we compile the PPT exemplar circuit from the standard
gate basis of CNOT , Hadamard, etc. to a circuit over gates that are native to the QSCOUT
platform? How does PPT exemplar behavior change as a function of the final circuit to which it is
compiled?
Hardware noise model. Which noise model should we use to emulate the PPT exemplar? How
does the exemplar perform relative to these different models?
To assess the PPT exemplar as a function of these variables, we need a fixed method of assessment
to compare them fairly. This forces us to make two essential choices:
Success measure. How do we measure how well the PPT exemplar has succeeded, in the
presence of a hardware noise model? Choices here range from full process tomography to
state-dependent fidelity estimation of the output state.
Number of circuit samples. How many times should we re-run the full PPT exemplar circuit to
build good statistics for estimating its performance? Each instance has many stochastic
intermediate MCM outcomes, so repeated sampling will be necessary in an experimental study. In
the QSCOUT emulator, however, sampling is not necessary because all conditional probabilities
are tracked analytically.
In the following sections, we discuss the PPT exemplar variables we considered and our
assessment methodology choices in greater detail. We start with a discussion of our assessment
methodology choices, because it sets the framework for our PPT exemplar explorations.
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2.1. Assessment methodologies chosen

2.1.1. Success measure

Given a fixed PPT exemplar circuit and hardware noise model, there are a variety of methods one
could employ to assess the performance of that circuit. One could go so far as to perform full
process tomography of all of the circuit’s components, including mid-circuit measurements.
Performing process tomography on mid-circuit measurements is a challenging subject and an area
of active research [20, 14, 18]. Because our aim with the PPT exemplar is not to explore
cutting-edge tomography methods, we choose our success measurement to be more basic. We
choose it to be how well the final single-qubit state ρ of the PPT exemplar matches the single-qubit
input state |ψ⟩. This makes our success measure input-state-dependent, but it obviates the need for
process tomography to compute it.

Even having made the choice to assess in this way, there are many choices for how to compare the
agreement between the input state and the output state. Two common easy-to-compute choices are
the trace distance and state fidelity [17]. We choose to use the state fidelity measure, which, for
the states |ψ⟩ and ρ, is defined as follows:

F = ⟨ψ |ρ|ψ⟩. (2.1)

In theory, a straightforward way of estimating F is to perform a projective (von Neumann)
measurement of ρ onto |ψ⟩⟨ψ | (i.e., to measure ρ in the |ψ⟩ basis, with outcomes |ψ⟩ and |ψ⊥⟩).
By repeating this measurement many times, over many random instances of the PPT exemplar
circuit, one can construct an estimate of the average fidelity of the PPT exemplar circuit for the
input state |ψ⟩ by assigning the diagonal entries of ρ in the |ψ⟩ basis to the frequencies observed of
|ψ⟩ and |ψ⊥⟩. In practice, however, it may or may not be easy to measure in the |ψ⟩ basis. For this
reason, we will restrict our attention to PPT exemplar circuit input states corresponding to bases in
which we can measure easily in the QSCOUT platform. We describe this in greater detail in
Sec. 2.2.1.1

2.1.2. Number of circuit samples

In an experimental exploration of the PPT exemplar over its varying parameters, the quantum
circuit for each instance (i.e., choice of state to teleport, number of rounds of teleportation, etc.)
should be performed many times in order to accurately estimate the output state fidelity for that
given instance. As discussed in Sec. 2.1.1, an estimator F̂ for the fidelity F can be constructed
from frequency counts of how often the final state matches the input state, Nsucc. Expressed as a

1As a technical aside, this approach is subject to state preparation and measurement (SPAM) errors arising from
imperfect implementations of these operations. There are more sophisticated tomography protocols that obviate
these errors, but we do not consider them, for the sake of simplicity [15, 16].
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ratio over the total number of trials N , we call this the observed success probability f of the
protocol:

f =
Nsucc

N
. (2.2)

In order to determine how many circuit repetitions are necessary to achieve a desired confidence
level for our estimate of F , we note that each trial that determines success or failure of the PPT
exemplar is a Bernoulli process. In other words, it is as though each trial is equivalent to a coin
flip whose (unknown) probability of coming up heads is F , and our object is to estimate this
probability. By running many trials and counting the number of successes, it is further as though
we are drawing Nsucc from the binomial distribution B(N, F ) induced by this Bernoulli process.
By standard results in probability theory, the expected value of Nsucc is NsuccF with variance
NsuccF (1 − F ).

For the binomial distribution, it is well known that using f to estimate F is quite good, as it is the
maximum likelihood estimator for F that is uniformly unbiased with minimum variance [12].
That said, when estimating F with rare events (e.g., if f = 0 or f = 1), this estimator will lead to
the estimates that might be unrealistic (e.g., F̂ = 0 or F̂ = 1). For example, if one observes f = 1
using experimental data, it seems unwise to conclude that the PPT circuit is absolutely perfect; it
is more likely that the fidelity of the PPT circuit is just very high. If f = 1 is experimentally
observed, then alternative estimators can be used, such as the “zero-occurrence” Bayes estimator,
F̂ = (N + 1)/(N + 2) (which itself may be seen as an instance of additive smoothing [6], in which
a single “pseudo-count” is added to both the success and failure outcomes). For the purposes of
our exemplar explorations, we stick with the standard maximum likelihood estimator, Eq. (2.2),
for simplicity, understanding that our conclusions may be impaired by this choice.

Although the binomial distribution converges to the normal distribution in the limit of large N by
the central limit theorem, the distribution of its mean is surprisingly non-normal even for very
large values of N , in practice [4]. For this reason, a variety of methods for estimating confidence
intervals exist, including the Wald method [4], the Agresti-Coull method [1], the Wilson method
[24], and the Clopper-Pearson method [7]. While the Clopper-Pearson method is often favored
because it is the most conservative, it is one of the more computationally demanding to calculate
[22]. To avoid this, we favor the Wald method, whose simplicity leads to its recommendation by
many textbooks, even though it is the most biased of the aforementioned methods [2].

In the Wald method, the estimator F̂ for F is given by

f ± z
√︂
f (1 − f )

N
, (2.3)

where z is the 1 − α
2 quantile of a standard normal distribution for an α-sized confidence level [4].

(E.g., for an α = 95% confidence level, z = 1.96.) Emperically, the Wald method has been found to
be valid when the observed events are not more rare than 2% (or more common than 98%) of the
total number of trials and when the total number of trials is at least a thousand [23, 4]. Because we
expect to be in this regime experimentally, the Wald method is appropriate choice for this task.
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From Eq. (2.3), the confidence interval for the estimate of the PPT circuit fidelity shrinks as
∼ 1/

√
N for N circuit repetitions. The total number of trials one can run in a practial amount of

time therefore places limits on how small one can shrink the confidence intervals for this fidelity
estimate.

2.2. Exemplar variations considered

2.2.1. Input state

Given the discussion in Sec. 2.1.1, we wish to only teleport states that are both easy to prepare and
easy to measure projectively. Therefore, we limit our attention to input states that coincide with
the six antipodal single-qubit Pauli eigenstates. Table 2-1 enumerates these states, along with
QSCOUT gates one can use to prepare/measure them by succeeding/preceding a
preparation/measurement of them in the Z basis with these gates.

State “Prepare” gate (gate after |0⟩) “Unprepare” gate (gate before MZ)

|0⟩ I_Sx (I) I_Sx (I)

|1⟩ Px (X ) Px (X )

|+⟩ Sy (Sy) Syd (S†y )

|−⟩ Syd (S†y ) Sy (Sy)��y+〉 Sxd (S†x ) Sx (Sx)��y−〉 Sx (Sx) Sxd (S†x )

Table 2-1.: Input states considered. The six single-qubit Pauli eigenstates
we consider as input states, along with the native QSCOUT gates used to
prepare those states (the “Prepare gate” column) and the native QSCOUT
gates used to measure final states in (the “Unprepare gate” column). An
idle whose duration is that of an Sx gate is used for |0⟩ (I_Sx), so that the

overall depth of the exemplar circuit is unaffected by the input state choice.

Notice that the gates listed in the table are not the only choices possible. For example, it is well
known that a Hadamard gate will prepare a |+⟩ state from a |0⟩ state, via the relation |+⟩ = H |0⟩.
However, the Hadamard gate is not a native QSCOUT gate, so we have chosen the gate Sy instead,
because it is also true that |+⟩ = Sy |0⟩. For a full listing of the gates that are native to the
QSCOUT platform, please see the Jaqal langauge specification [11].
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2.2.2. Number of teleportation rounds

In the PPT exemplar, we consider ping-pong circuits that vary from one to five rounds. Our choice
for this range is informed from two directions. Firstly, while the fidelity of operations in the
QSCOUT platform is high, in its current status, we expect that PPT sequences much longer than
five will yield final states with very low fidelities. Secondly, our emulation of the QSCOUT
platform subjected to noise for our most demanding noise models becomes slower exponentially
with the number of intermediate MCMs, because we track all conditional probabilities
analytically. Beyond five rounds, this tracking becomes too slow to be considered a “fast
emulation,” at least in qualitative terms. We expect advances in both the QSCOUT hardware and
emulation software will extend the reasonable range beyond Nrounds = 5 in the future, but for the
purposes of this exemplar study, this range is sufficient.

Generally speaking, we expect that the output state fidelity will decay exponentially with the
number of teleportation rounds, with a scaling factor that depends on other details of the circuit
(input state, compilation, etc.). In this way, the behavior is reminiscent of the decay rates observed
in randomized benchmarking experiments [19]. However, the PPT exemplar circuit has added
complexities with its internal adaptive behaviors that prevent one from inferring gate fidelities
directly from its observed decay rate.2

2.2.3. Teleportation basis

As noted in Sec. 1, there are many versions of the one-bit teleportation circuit one can construct,
including the X and Z varieties of them. For simplicity, we will explore only two scenarios: a) All
teleportation rounds utilize Z-teleportation, as depicted in Fig. 1-2(a), and b) All teleportation
rounds utilize X -teleportation, as depicted in Fig. 1-2(b).

2.2.4. Compilation

We consider three different compilations of the PPT exemplar, which we call Maslov, by-hand,
and Superstaq. In the Maslov compilation, we replace each Hadamard and CNOT gate in the
circuits in Fig. 1-2 with the circuits described by Maslov in Ref. [13], which utilize only gates that
are available to the QSCOUT platform.

In the by-hand compliation, we further optimize the Maslov-compiled circuits by considering the
PPT exemplar globally and applying the following transformations in an ad hoc way:

a) Dropping consecutive unitary gates that are inverses of each other.

b) Greedily commuting X rotations through XX (Mølmer-Sørensen) rotations to compress
long sequences of single-qubit rotations into local (one-qubit) unitary gates.

c) Compiling all local (one-qubit) unitary gates into Z–X–Z Euler rotations, so that no
single-qubit unitary requires more than three gates to implement.

2Indeed, as we will see in Sec. 4, we are not even guaranteed to observe an exponential decay in output state fidelity.
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d) Dropping all local Z rotations that immediately follow preparations or immediately precede
measurements in the Z basis.

In the Superstaq compilation [5, 9], we instead submit the Maslov-compiled circuits into the
Superstaq compiler (version 0.3.21), which attempts to be noise- aware. Because of this, the
Superstaq-compiled circuit may appear more complex than the by-hand circuit, but it may be the
case that it performs better in a noisy environment.

The compiled circuits for single-round X and Z one-bit teleportation circuits are depicted in
Fig. 2-1 as examples. In a multi-round PPT exemplar, the by-hand and Superstaq compilations
may receive further optimizations. 6

Method One-round X-teleportation (core) One-round Z-teleportation (core)

Textbook | i • H
|0i

| i
|0i H •

Maslov | i
Sxx

Sxd

|0i Sy Px Sy Sxd Syd

| i Sy
Sxx

Sxd Syd Sy Px

|0i Sxd Syd

By-hand | i
Sxx

Sxd

|0i Sz Sx

| i Sx Sz
Sxx|0i Sxd

Superstaq | i R(⇡, 3⇡
4

)
Sxxd

R(⇡, 3⇡
4

)

|0i R(⇡, 3⇡
4

) R(�⇡
2

, ⇡
2
) Rz(⇡

4
)

| i R( 3⇡
4

, ⇡
2
) Rz( 3⇡

4
)

Sxxd
R(0, ⇡

2
) Pz

|0i R(⇡
4
, ⇡

4
) Pz R(⇡, 3⇡

4
) Pz

Table II. Circuit diagrams for various compilations of the “core” portion of the X and Z teleportation circuits. The mid-circuit
measurement and branching Pauli are omitted. In all instances, the state to be teleported is | i and starts on the top qubit.
The top row shows the standard “textbook” presentation of the circuits, while the subsequent three rows show the circuits
compiled into native QSCOUT gates using di↵erent compilation schemes. For labeling the native QSCOUT gates, we follow
the convention specified in Ref. [18]: R(', ✓) denotes a counter-clockwise rotation by ✓ around the axis in the equatorial plane of
the Bloch sphere that is an angle ' away from the x axis (measured counter-clockwise); Sx, Sy, and Sz denote counter-clockwise
rotations by ⇡/2 about the x, y, and z axes of the Bloch sphere; the versions of these with a trailing “d” denote clockwise
rotations about the same axes by ⇡/2; Px, Py, and Pz denote counter-clockwise rotations by ⇡ about the x, y, and z axes; Sxx
is the Mølmer-Sørensen gate exp(�i⇡(X ⌦ X)/4), and Sxxd is its inverse exp(i⇡(X ⌦ X)/4).

5. Hardware noise models

We consider three hardware noise models, which we call error-free, SNL-Toy2, and IonSim. In the error-free noise
model, all coherent gates, preparations, and measurements su↵er no noise. This is the hardware noise model we wish
we had!

The SNL-Toy2 noise model has a name indicating it is the second “toy” noise model we developed at Sandia National
Laboratories for the purposes of testing concepts, and therefore does not correspond to any physically motivated noise
model a✏icting QSCOUT hardware. In this model, all measurements and preparations are modeled as error-free.
Furthermore, all single-qubit Z rotations are also modeled as error-free, because they occur virtually by frame updates
in the QSCOUT hardware. All other single-qubit rotations about an arbitrarily chosen axis are modeled as acting
ideally followed by a depolarizing channel [1] with depolarizing error probability

p
(1)
✓ =

2|✓|
⇡

⇥ 10�3, (4)

where ✓ is the magnitude of the rotation, measured in radians. Furthermore, all two-qubit Mølmer-Sørensen gates
MS(', ✓) = exp(�i✓/2(cos(')X + sin(')Y )⌦2) are modeled as acting ideally followed by a two-qubit depolarizing
channel (having 15 nontrival Pauli operations) with depolarizing error probability

p
(2)
✓ =

2|✓|
⇡

⇥ 10�2, (5)

where again, ✓ is measured in radians. In all three compilations considered in Sec. II B 4, only the values of ✓ = ±⇡/2
(fully entangling gates) are used (along with ' = 0), so all two-qubit gates considered have depolarizing probability
10�2.

Finally, the IonSim noise model is based on a detailed physical modeling of QSCOUT hardware, using Sandia’s
internal software package called IonSim. The details of this model are proprietary. However, to capture its predictions
for the QSCOUT platform, we report the entanglement infidelity and half-diamond distance [23] that it predicts, along
with what the error-free and SNL-Toy2 noise models predict, for ⇡/2 rotations on one and two-qubits, in Table III.
Note that, as defined and discussed in Ref. [24] and elsewhere, the entanglement infidelity of a gate captures the gate’s
average error rate, while the half-diamond distance captures its worst-case error rate. (Both metrics are computed
with respect to all possible input states and measurements.)3

3 For a gate with purely incoherent error, its half-diamond distance and entanglement infidelity are equal, while for a gate with purely
coherent errors, its half-diamond distance is quadratically larger than its entanglement infidelity [23]. Examining both quantities can
indicate the relative strengths of incoherent and coherent error present in a gate.

Figure 2-1.: Circuit diagrams for various compilations of the “core” portion
of the X and Z teleportation circuits. The mid-circuit measurement and

branching Pauli are omitted. In all instances, the state to be teleported is
��ψ〉

and starts on the top qubit. The top row shows the standard “textbook”
presentation of the circuits, while the subsequent three rows show the
circuits compiled into native QSCOUT gates using different compilation

schemes. For labeling the native QSCOUT gates, we follow the convention
specified in Ref. [11]: R(φ, θ) denotes a counter-clockwise rotation by θ

around the axis in the equatorial plane of the Bloch sphere that is an angle φ
away from the x axis (measured counter-clockwise); Sx, Sy, and Sz denote
counter-clockwise rotations by π/2 about the x, y, and z axes of the Bloch

sphere; the versions of these with a trailing “d” denote clockwise rotations
about the same axes by π/2; Px, Py, and Pz denote counter-clockwise

rotations by π about the x, y, and z axes; Sxx is the Mølmer-Sørensen gate
exp(−iπ(X ⊗ X )/4), and Sxxd is its inverse exp(iπ(X ⊗ X )/4).

2.2.5. Hardware noise models

We consider three hardware noise models, which we call error-free, SNL-Toy2, and IonSim. In the
error-free noise model, all coherent gates, preparations, and measurements suffer no noise. This is
the hardware noise model we wish we had!

The SNL-Toy2 noise model has a name indicating it is the second “toy” noise model we developed
at Sandia National Laboratories for the purposes of testing concepts, and therefore does not
correspond to any physically motivated noise model afflicting QSCOUT hardware. In this model,
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all measurements and preparations are modeled as error-free. Furthermore, all single-qubit Z
rotations are also modeled as error-free, because they occur virtually by frame updates in the
QSCOUT hardware. All other single-qubit rotations about an arbitrarily chosen axis are modeled
as acting ideally followed by a depolarizing channel [17] with depolarizing error probability

p(1)θ =
2|θ |
π

× 10−3, (2.4)

where θ is the magnitude of the rotation, measured in radians. Furthermore, all two-qubit
Mølmer-Sørensen gates MS (φ, θ) = exp(−iθ/2(cos(φ)X + sin(φ)Y )⊗2) are modeled as acting
ideally followed by a two-qubit depolarizing channel (having 15 nontrival Pauli operations) with
depolarizing error probability

p(2)θ =
2|θ |
π

× 10−2, (2.5)

where again, θ is measured in radians. In all three compilations considered in Sec. 2.2.4, only the
values of θ = ±π/2 (fully entangling gates) are used (along with φ = 0), so all two-qubit gates
considered have depolarizing probability 10−2.

Finally, the IonSim noise model is based on a detailed physical modeling of QSCOUT hardware,
using Sandia’s internal software package called IonSim. The details of this model are proprietary.
However, to capture its predictions for the QSCOUT platform, we report the entanglement
infidelity and half-diamond distance [21] that it predicts, along with what the error-free and
SNL-Toy2 noise models predict, for π/2 rotations on one and two-qubits, in Table 2-2. Note that,
as defined and discussed in Ref. [8] and elsewhere, the entanglement infidelity of a gate captures
the gate’s average error rate, while the half-diamond distance captures its worst-case error rate.
(Both metrics are computed with respect to all possible input states and measurements.)3

3For a gate with purely incoherent error, its half-diamond distance and entanglement infidelity are equal, while for a
gate with purely coherent errors, its half-diamond distance is quadratically larger than its entanglement infidelity
[21]. Examining both quantities can indicate the relative strengths of incoherent and coherent error present in a
gate.
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Noise Gate class Entanglement Infidelity Half-Diamond Distance

Error-free
R(φ, π/2) 0 0

MS(φ,±π/2) 0 0

SNL-Toy2
R(φ, π/2) 7.5 · 10−4 7.5 · 10−4

MS(φ,±π/2) 9.375 · 10−3 9.375 · 10−3

IonSim
R(φ, π/2) 6.54 · 10−5 8.08 · 10−3

MS(φ,±π/2) 1.82 · 10−2 9.16 · 10−2

Table 2-2.: Error metrics for ±π/2 gates from the three noise models we
consider. The MS gate classs corresponds to what are labeled as Sxx and
Sxxd in the circuit diagrams of Fig. 2-1. The R gates in both those diagrams

and this table are the same. Note that the entanglement infidelity and
half-diamond distance are identical for the SNL-Toy2 noise model, because

it only contains stochastic errors. The inclusion of non-trivial coherent
errors in the IonSim error model is reflected in the discrepancy between its

entanglement infidelity and half-diamond distance.
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3. MID-CIRCUIT MEASUREMENTS AND BRANCHING IN JAQAL
AND JAQALPAQ

3.1. Realization in Jaqal

We use Jaqal (Just another quantum assembly language) [11] to specify the circuits in this
document. To handle the new MCM and branching capabilities of QSCOUT, we have added two
new Jaqal instructions, measure_reprepare amd branch, that are not in the current language
specification, but soon will be. To mitigate this, we review these new instructions here.

Mid-circuit measurements are effected by the new Jaqal gate-like instruction
measure_reprepare. This instruction acts on a variable-length list of arguments that correspond
to qubit register addresses (or their aliases). At a low level in the QSCOUT hardware, the qubits
not in those registers are shuttled away to a different location so that they are not disturbed by a
subsequent destructive measurement of the indicated qubits. Following the destructive
measurement, those qubits are re-prepared into the |0⟩ state and the other qubits are returned to
their original locations.

Branching on mid-circuit measurement outcomes is effected by the new Jaqal instruction branch,
whose syntax is reminiscent of the switch statement from the classical programming language C,
in which a variable is used to select different cases. For an m-bit mid-circuit measurement, the
branch statement considers 2m different cases, labeled by the strings representing them in binary.
In each case, subsequent Jaqal code may be executed. Jaqal’s branch statement lacks additional
sophistications that the switch statement in C has, however, such as break, default, or
fallthrough constructs [10].

While one could implement branching at a metaprogramming level above Jaqal, such as in
JaqalPaq, we have opted to include this explicit branch instruction in Jaqal because we expect
there will be use cases in which a faster turnaround on measured results is desired. A
metaprogramming implementation would be slowed down by communication latency between the
measurement outcomes and the classical computer that processes them.

To convey how these new instructions are used in practice, the code snippet below uses examples
of both.
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1 register q[5]
2 prepare_all
3 measure_reprepare q[3] q[1]
4 branch {
5 '00': {
6 // some gates if both qubits are measured to have outcome 0
7 }
8 '01': {
9 // some gates if only q[3] is measured to have outcome 0

10 }
11 '10': {
12 // some gates if only q[1] is measured to have outcome 0
13 }
14 '11': {
15 // some gates if both qubits are measured to have outcome 1
16 }
17 }
18 measure_all

Listing 3.1: A two-qubit mid-circuit measurement with a subsequent branch
statement.

The outcome is specified with the leftmost qubit in the arguments of measure_reprepare
corresponding to the leftmost binary digit (bit).

3.2. Realization in JaqalPaq

Using the JaqalPaq python package, Jaqal programs can be run directly on the QSCOUT hardware
or emulated on a classical computer. In the accompanying Jupyter notebook, JaqalPaq is used to
create and emulate Jaqal programs implementing the exemplar explorations described in Sec. 2.2.
Although measure_reprepare and branch have not been added to the Jaqal language
specification as of yet, the emulation of these instructions has already been added to JaqalPaq.

Before describing JaqalPaq’s application programming interface (API) to the new
measure_reprepare and branch instructions, let us briefly review JaqalPaq’s API for
interacting with the results of the execution of a Jaqal program generally. We describe the API as
it exists now, but we expect that it will evolve and grow as we interact with more QSCOUT users
and make changes in response to feedback from their experiences.

Consider the simple Jaqal circuit in Listing 3.2 (which does not make use of the new
instructions):
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1 from qscout.v1.std usepulses *
2 register q[2]
3 prepare_all // subcircuit 0
4 Sx q[0]
5 measure_all
6
7 prepare_all // subcircuit 1
8 Px q[0]
9 Sx q[1]

10 measure_all

Listing 3.2: Simple two-qubit circuit with multiple subcircuits

This is a complete Jaqal program that one might run on hardware or in emulation. We use the
terms “Jaqal program” and “Jaqal circuit” interchangeably. The first line controls the QSCOUT
gates that are available to the program, as well as their implementations. On hardware, this refers
to the pulse and timing information, while in the emulator, this refers to the mathematical models
of the gates, such as by coherent unitary matrices or incoherent quantum process matrices. For
example, for an emulation using the SNLToy2 noise model described in Sec. 2.2.5, one would use
qscout.v1.std.noisy instead. The next line uses the register instruction to define the
number of qubits required for the Jaqal circuit, as well as how the program will refer to them (in
this case, using the letter q). Next, two so-called “subcircuits” are defined. In a valid Jaqal
program, each prepare_all is followed by a matching measure_all; those lines and the lines
between them are called a “subcircuit”. In this Jaqal circuit, there are two subcircuits: one that
only applies a gate to qubit 0; and one that applies gates to both qubits. We will call the first one
subcircuit 0, and the second one subcircuit 1.

When a Jaqal program is executed in hardware or in emulation, the system iterates over the
subcircuits that are to be run (which are, by default, all subcircuits, in the order that they are
expressed in the Jaqal circuit). When a subcircuit is run, the qubits are initialized by the
prepare_all gate, all the Jaqal gates and mid-circuit measurements are run in the expressed
order, and then a final measurement is performed by the measure_all gate. For each subcircuit,
this process is repeated an integer num_repeats times which is by default 100, before moving on
to the next subcircuit. For example, in Listing 3.2, the gates of subcircuit 0 are run 100 times, and
then the gates of subcircuit 1 are run 100 times. The gross statistics of each subcircuit (and
concomitant 100 repetitions) are collected and reported, and can be examined. Information about
individual repetions done within a subcircuit (shot-by-shot information about, e.g., each of the 100
readouts) are not available by default.

In JaqalPaq, the run_jaqal_string command is one of the ways a Jaqal program can be
executed with fine-grained control on how it is executed, altering both the subcircuits to be run,
their order, and the number of repetitions. The results of run_jaqal_string, as well as some
aggregated statistical information, and possibly some information predicted by a noise model if
run in an emulation mode, are stored in an ExecutionResults object in JaqalPaq.

The data in an ExecutionResults object can be accessed in multiple ways. One way is through
a “circuit index view,” which indexes the run groupings of subcircuits in some way. For example,
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one can access the counts (or frequencies) of observed bit patterns organized by the time-ordering
of the subcircuit executions that generated them.

To trace through some of the ways one might want to access information from an
ExecutionResults object, let us walk through some short examples.

The first example, represented in Listing 3.3, executes the Jaqal program in Listing 3.2:

1 >>> exe_res = run_jaqal_string(jaqal_text ,
2 ... overrides=dict(__repeats__=100))
3 >>> civ = exe_res.by_time[0]
4 >>> civ.normalized_counts
5 Tree{00: 0.53, 10: 0.47}
6 >>> ci.normalized_counts.by_int_dense
7 array([0.53, 0.47, 0. , 0. ])
8 >>> civ.normalized_counts['00']
9 0.53

10 >>> civ.normalized_counts['01']
11 0.0
12 >>> civ = exe_res.by_time[1]
13 >>> civ.normalized_counts
14 Tree{10: 0.61, 11: 0.39}
15 >>> civ.simulated_probabilities
16 Tree{10: 0.5000000000000001, 11: 0.4999999999999999}

Listing 3.3: A simple JaqalPaq processing of execution results from
Listing 3.2.

In the first instruction on line 1, jaqal_text is a text string representing the Jaqal program in
Listing 3.2. The call to run_jaqal_string causes the aforementioned Jaqal program to be
executed, either on hardware or in emulation. The overrides keyword argument takes a
dictionary object whose keys are let parameters, and the values specify what those let
parameters are overridden to be (instead of what is specified in the Jaqal code). However, if a
keyword begins and ends with two underscores, it is called a double-underscore or “dunder”
keyword, and is handled directly by the hardware (or software simulator).1 The only two
keywords whose behavior we specify are those of __repeats__ (which specifies the value of
num_repeats) and __index__ (see the discussion of Listing 3.4); all others should be assumed
to have undefined behavior. The results are stored in exe_res, which is an ExecutionResults
object.

The second instruction on line 3 extracts the outputs of all of the chronologically first set of
subcircuit repetitions (indicated by the .by_time attribute with initial time index [0]). For this
program, this corresponds to the repetitions of subcircuit 0. It stores the results in a
CircuitIndexView object whose name is civ. Right now, it might seem that time ordering of

1The double-underscore naming convention, somewhat standard in python, is used to avoid clashes with other
parameters in Jaqal programs that might also be overridden in the same call. For this reason, it is discouraged to
have let parameters names that begin and end with two underscores.
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the subcircuits and the ordering of the subcircuits in the Jaqal program are necessarily the same,
but later we will describe an execution mode in which this is not the case.

As an example of accessing data from civ, we show in lines 3–9 that the .normalized_counts
attribute stores a dictionary-like representation of the gross statistics of the measurement
outcomes recorded at the measure_all stage of this subcircuit. This attribute doesn’t utilize the
time-ordering of the data in any way, and is also accessible by other kinds of circuit index views
(not presented in this example). The dictionary itself has dictionary keys that are only the
observed binary strings in the subcircuit, and for each one, the corresponding dictionary entry is
the (floating-point) ratio of the number of times that outcome was observed to the total number of
repetitions of that subcircuit, num_repeats. In this example, the second bit observed is always a
0, because no gate is ever executed on the second qubit in subcircuit 0. In line 10, we see that,
even though the outcome 01 is never observed, and is therefore not a key in the dictionary, the
CircuitIndexView object is clever enough to report the floating point number 0.0 for its
observed frequency.

In line 12, we overwrite civ with a similar circuit index view for the second subcircuit. In this
subcircuit, the first bit is always observed to have the value 1.

In line 15, we show that, because run_jaqal_string was run in emulation mode (its default
behavior) and not in hardware mode (not directly available to external users), the circuit index
view civ has information above and beyond what is experimentally accessible. For example, the
exact probabilities predicted by quantum mechanics for the given noise model (the default
error-free unitary noise model, in this case) have been computed for the observed outcomes. The
small deviation from the exact value of 0.5 is only because of numerical precision limitations in
the emulator. The observed frequencies for only num_repeats repetitions is not 0.5 for both bit
values, but if the number of repetitions was increased, both observed frequencies should converge
to 0.5.

Although this example used the unitary (noise-free) emulator, one can pass additional arguments
to the run_jaqal_string command to utilize the SNLToy2 and IonSim noise models described
in Sec. 2.2.5.

In our second example, in Listing 3.4, we show that the subcircuit executions of the same Jaqal
program in Listing 3.2 can be collated as desired. In this Listing, the __index__ override is also
used, which is an array indicating the time ordering of subcircuit executions. The [1, 1, 0]
argument indicates that the Jaqal program is to be executed so that it runs a number of repetitions
of subcircuit 1, then subcircuit 1, and then subcircuit 0 again.
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1 >>> exe_res = run_jaqal_string(
2 ... jaqal_text ,
3 ... overrides=dict(__repeats__=100, __index__=[1,1,0]))
4 >>> exe_res.by_time[0].normalized_counts
5 Tree{10: 0.53, 11: 0.47}
6 >>> exe_res.by_time[1].normalized_counts
7 Tree{10: 0.45, 11: 0.55}
8 >>> exe_res.by_time[2].normalized_counts
9 Tree{00: 0.46, 10: 0.54}

Listing 3.4: A more complex, unusually collated, JaqalPaq processing of
execution results from Listing 3.2.

Now let us see how measure_reprepare and branch instructions broaden the ways data can be
extracted from an ExecutionResults object. Consider the Jaqal program in Listing 3.5:

1 register q[2]
2 prepare_all
3 Sx q[0]
4 measure_reprepare q[0]
5 branch {
6 '0' : {}
7 '1' : {Px q[1]}
8 }
9 measure_all

Listing 3.5: Simple Jaqal program containing a one-qubit mid-circuit
measurement and subsequent classical feed-forward.

This Jaqal program contains only a single subcircuit, even though it utilizes the new instructions.
It first measures the first qubit in the register with the measure_reprepare instruction, and then
it measures both qubits with the measure_all instruction. In the absence of noise, the circuit
should have the behavior that the first bit has a 50% chance of being observed to have the value 0.
Because of the repreparation part of the instruction, the first bit is reset to |0⟩, regardless of what
was observed. No matter what value this bit is observed to have, we expect the subsequent
measurement of the two qubits will yield either 00 or 11, with the first bit the same as the
one-qubit MCM outcome. In Listing 3.6, we explore a way that this Jaqal program might be
executed in (noise-free) emulation:
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1 >>> exe_res = run_jaqal_string(jaqal_text)
2 >>> civ = exe_res.by_time[0]
3 >>> civ.normalized_counts
4 Tree{0: 0.56, 1: 0.44}
5 >>> civ.normalized_counts['0']
6 0.56
7 >>> civ.normalized_counts['0', :]
8 Tree{00: 0.56}
9 >>> civ.normalized_counts['1', :]

10 Tree{01: 0.44}
11 >>> civ.conditional_normalized_counts['0', :]
12 Tree{00: 1.0}
13 >>> civ.conditional_normalized_counts['1', :]
14 Tree{01: 1.0}
15 >>> civ.conditional_normalized_counts['1', '01']
16 1.0

Listing 3.6: A simple JaqalPaq processing of execution results from
Listing 3.5.

In line 3, we see that the first bit is has an observed frequency of 0.56, which is reasonably close to
the theoretical value of 0.5 when an infinite number of repetitions is used. To access the
conditional probability of the values that the second qubit measurement will have, conditioned on
the first qubit having the observed value 0, our API uses a Python slicing-like construction in line
5 with the instruction civ.normalized_counts['0', :]. In line 7, we see that the
normalized_counts attribute, as before, is a dictionary-like object.

As before, the keys of this dictionary are the measurement outcomes observed in the hardware (or
simulation). If the measurement is a final measurement, the leftmost bit corresponds to qubit 0; if
it is a mid-circuit measurement, the leftmost bit corresponds to the leftmost qubit passed to
measure_reprepare. In this case, since 0 was measured at the mid-circuit measurement, no
additional gates are performed in the branch statement (line 6 of Listing 3.5), and therefore we
expect the final measurement to be of two qubits in the +Z basis 100% of the time (in the ideal,
noiseless case). Again, as before, zero-count events may not be listed as dictionary keys, as seen
on line 8. Furthermore, notice that the values in this dictionary are normalized to the total number
of repetitions. The sum of all values in the dictionary is equal to the parent key at the higher level,
i.e., the real number normalized_counts[s] is always sum(normalized_counts[s,:]). For
example, consider the situation in which the mid-circuit measurement of qubit 0 is finds it in the
−Z state, which occurs 44% of the time. Consequentially, a Px gate is applied to qubit 1 (line 7 of
Listing 3.5). It follows, then, that we expect qubit 1 to be in the −Z state, and qubit 0 to be in the
+Z state, at the final measurement. If a 1 readout occurs at the mid-circuit measurement, then, we
expect to always get 01 readout at the final measurement. This is captured by
ci.normalized_counts[ '1' ,:], as on line 9, which gives information about the fraction of the
total runs: 44% of the runs have a final readout of 01 following a mid-circuit readout of 1. If,
instead, you would like to get the conditional, rather than absolute frequency, use
conditional_normalized_counts, as on lines 9 and 10.
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Figure 3-1.: Tree structure of an ExecutionResults object. Each node
represents a (possibly partial) history of measurement readouts, and is

labeled with the cumulative probability of finding that readout. Histories are
connected by individual readouts, represented by edges and labeled by the

readout. The root node has unit probability, and is connected by 0 and 1
edges, each representing one of the two possible mid-circuit measurements
of qubit 0. Those nodes are then connected by edges representing the final

measurement of both qubits.
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4. RESULTS

In the Jupyter notebook Exemplar_one_bit_teleportation_pingpong.ipynb, we used
JaqalPaq to emulate choices for each of the parameters listed below for the PPT exemplar:

• Pauli-basis input state eigenstate preparation (6 choices).
• Number of teleportation rounds (5 choices).
• Teleportation basis (2 choices).
• Compilation to QSCOUT gates (3 choices).
• Hardware noise model (2 nontrivial choices).

This yields 360 unique emulations (not counting the trivial error-free noise model variations). An
exhaustive description of these results is presented in
Exemplar_one_bit_teleportation_pingpong.ipynb. To get a flavor of what was obtained
there, we present results for some of the combinations here.

In Fig. 4-1, we depict 60 of these emulations as a collection of plots. Each plot captures the output
state fidelity as a function of the number of teleportation rounds, with plots for different
compilation methods overlayed, plots for different noise models placed one above the other, and
plots for different Z-basis input state preparations placed beside each other. All plots use the fixed
choice of using all X -basis teleportations. The only choices not listed here are those for X and Y
input state preparations, and those for Z-basis teleportations. No error bars are depicted in the
plots because the emulator computes the fidelities exactly rather than by using statistical sampling,
which would be needed in an actual experiment.

4.1. Reflections on results

First, we see that performance does not perfectly correlate to circuit depth. For example, the
shallowest compilation (by-hand) often performs the best, but that is not the case for the IonSim
noise model with a |z 0⟩ input. Similarly, the deepest compilation (Maslov) is the
worst-performing compilation in only one of the four cases considered (intriguingly, the |z 0⟩ case
again). Second, while the performances of the SNL-Toy2 cases for the two input preparations
considered (|z 0⟩ and |z 1⟩) are essentially the same (and only offset quantitatively by a small
amount, likely due to an additional Px gate at the beginning and end of the |z 1⟩ circuit, the
performances of the IonSim cases for these two input preparations differ dramatically. This is
almost certainly caused by various real-world asymmetries captured by the IonSim error model
(which includes a large quantity of coherent error, as indicated by the difference between
infidelities and diamond distances). Nevertheless, it is still striking to see how different the
predictions are when using IonSim error model to emulate the performance of two circuits that are
identical except for the input state preparations.
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(a) (b)

(c) (d)

Figure 4-1.: Output state fidelity versus number of rounds of X teleportation
of Z-basis input state preparations. All variations on options for input-state
direction, compilation method, and hardware noise model (“backend”) are

depicted.
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