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SUMMARY

This thesis extends Monte Carlo Tree Search which is predominantly used for 1 v 1 games to

a multi-agent adversarial environment. To do so, we introduce two frameworks: Grouped Action

Multi-AgentMonte Carlo Tree Search and Split ActionMulti-AgentMonte Carlo Tree Search. The

former considers each layer in the tree as a team of players while the latter considers each layer

in the tree as an individual player. Both frameworks incorporate intelligent teaming, allowing a

team of agents to overcome environment complexity. Though, there are pros and cons to each

framework. Due to a low branching factor which results in earlier exploitation, our Split Action

Multi-Agent Monte Carlo Tree Search is determined to be the superior framework for use in an

adversarial environment.

Initially, this framework struggles with large amounts of players or low timeouts. If it does not

achieve a minimum tree height, default actions are returned for a subset of the agents. Therefore,

this thesis introduces Root Parallelization with Varying Agent Ordering, overcoming this frame-

work’s scalability issues. This method utilizes multiple root trees with differing agent orderings to

increase the number of simulations run within a set timeout and provide each agent with an action

for execution. This leads to large increases in win percentage for all scenarios.

All of the above experiments utilize a default action set. For our final set of experiments,

we insert a proportional controller that exhibits offensive strategy. This proportional controller

enables an agent to effectively track an adversary. This combo action set leads to increases in win

percentage for all scenarios. To improve the results further, we delete some overlapping actions

from the combo action set to create our compact action set. The compact action set has a lower

branching factor, allowing us to get deeper into the tree. This increases the winning percentages

even further.

Ultimately, we are able to increase the winning percentages from 25% to near 100%by utilizing

our frameworks and associated methods.
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CHAPTER 1

INTRODUCTION

Artificial intelligence (AI) is commonly used as the backbone for real-time decision making in

dynamic environments. Here, the surroundings are constantly changing, making it essential to de-

tect and react to incoming observations quickly. Board games, autonomous driving, and warehouse

logistics are just a few examples of where AI decision making is used today. In these environments,

mistakes vary in severity with the most severe outcome occurring in autonomous driving. A mis-

take in this setting can lead to a loss of life. Similarly, AI decision making can be used in adversarial

environments, such as aerial combat. In adversarial environments, adversaries oppose the agents

in their pursuit of a specific objective. This poses a difficult problem where agents need to consider

all sorts of external factors in the decision making process.

There are several techniques used to solve these adversarial environments. The most common

technique is deep reinforcement learning (Deep RL). Deep RL makes use of deep neural networks

where the input is the important environment states. Based on these states, the deep neural network

will predict actions for the agents that maximize the discounted sum of future rewards. Adversarial

environments are innately continuous. To handle an environment with continuous state and action

spaces, policy-based Deep RL algorithms have been used [1, 2, 3].

Recently, these algorithms have been applied to complex aerial combat situations [4, 5, 6].

They have also been extended to the multi-agent setting. For example, multi-agent reinforcement

learning (MARL) helped AlphaStar reach the level of Grandmaster in StarCraft II [7]. Similar to

the environment depicted in this thesis, MARL has been used to tackle multi-agent aerial combat

challenges [8]. One limitation is that these algorithms require an extensive training process, and

if any environment conditions change, such as varying the parameters of the players, we need to

re-train the model from scratch. This limits its usability in situations where we do not know the

number, capabilities, or strategies of our adversaries.

A game tree search algorithm known as Monte Carlo Tree Search (MCTS) [9, 10] does not
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have this limitation. MCTS does not have a training step. Instead, it investigates a set of actions

from different game states, evaluating their outcomes through random simulations. To aid in the

efficiency of this search, MCTS spendsmore time simulating and evaluating actions that led to good

performance in prior simulations. This asymmetric tree-building [11] is due to MCTS’ selection

criteria known as the upper confidence bounds applied to trees (UCT)which exhibits a phenomenon

known as the exploration vs. exploitation trade-off. Another benefit of MCTS is its anytime [12]

nature. MCTS can be stopped at anytime, and a decision will still be provided for execution. This

allows MCTS to be used in real-time settings, making it better suited than other game tree search

algorithms like minimax [13].

Parallelization is a common technique used to improve the performance of vanilla MCTS. The

effectiveness of MCTS is often limited by the number of simulations that can be performed within

a specified timeout. Multi-threading and multi-processing have been shown to boost the number

of simulations, leading to improvements in overall performance. The three primary types of paral-

lelization that have been explored are leaf parallelization, root parallelization, and tree paralleliza-

tion. This thesis focuses on root parallelization due to it achieving the highest performance for the

program MANGO [14]. Root parallelization has multiple root trees running simultaneously, and

their results are combined via an aggregation function. Recently, these parallelization techniques

have been extended to the continuous domain. For example, both root and leaf parallelization have

been used for decentralized multi-agent cooperative environments, such as trajectory planning for

autonomous vehicles [15, 16]. As will be shown at the end of this section, our work builds on

these papers, introducing a novel root parallelization technique for solving complex multi-agent

adversarial environments.

The popularity of MCTS can be traced to its use in the game of Go. Google DeepMind com-

bined MCTS with deep neural networks to defeat a professional Go player for the first time [17,

18, 19]. MCTS has also been applied to a wide variety of other games, such as poker [20], Pac-

Man [21], StarCraft [22], and Hearthstone [23]. As stated previously, adversarial environments

are innately continuous whereas board games like Go have discrete state and action spaces. More

2



recently, MCTS was applied to a single-agent adversarial environment with continuous state and

action spaces [24] using the Maneuver Automaton (MA) [25, 26]. Our approach implements this

prior work’s planar 2D adversarial environment for testing in the multi-agent domain, incorporating

exact environment dynamics and a similar reward function.

Another notable difference is our use of forward-simulated actions instead of motion primi-

tives. Our approach utilizes a similar set of actions to [27, 28] which can be represented as main-

taining constant control inputs of rudder deflection and throttle for a set amount of time. In terms

of novel contributions, this thesis proposes three key advancements. The first contribution is two

multi-agent MCTS frameworks known as Grouped Action Multi-Agent Monte Carlo Tree Search

(GAMA-MCTS) and Split Action Multi-Agent Monte Carlo Tree Search (SAMA-MCTS) which

incorporate inherent strategy and coordination for planning inmulti-agent adversarial environments

with continuous state and action spaces. The second contribution is a root parallelization method

known as Root Parallelization with Varying Agent Ordering (RP-VAO) which overcomes scal-

ability issues found in our SAMA-MCTS framework that arise when increasing the number of

players. As the number of players increases in SAMA-MCTS, more simulations are required to

achieve consistent results. This is not possible in real-time settings. By varying the ordering of the

agents over multiple trees, these challenges are mitigated. The third contribution is the insertion of

closed-loop or feedback actions into our default action set. In doing so, we are introducing a level

of adaptability, responsiveness, and strategy into the decision making process.

We demonstrate the improvements caused by our frameworks and associated methods by run-

ning numerous tests where a team of agents utilizing MCTS engage a team of higher-performing

baseline adversaries.

3



CHAPTER 2

MULTI-AGENT MONTE CARLO TREE SEARCH FRAMEWORKS

Our frameworks extend MCTS to solve a multi-agent adversarial environment with continuous

state (S) and action spaces. The continuous action space is discretized using planar 2D forward-

simulated actions from [27, 28] to create what we refer to as our default action set. This default

action set is compatible with our frameworks. The actions are made up of 2 control inputs, rudder

deflection (RD) and throttle (T ), which are held constant for a set action duration (t). There are 3

possible values for RD and 3 possible values for T . Therefore, there are exactly 9 actions defined

by RD × T within the new discrete action space (DA). The possible values of RD are turn left,

go straight, and turn right, and the possible values of T are no throttle, medium throttle, and high

throttle. By concatenating actions together from this simple DA, we are able to perform strategic

and complex maneuvers.

Within our 2D planar multi-agent adversarial environment, x⃗i denotes the current state of the

ith player where x⃗i ∈ S. In our set-up, A⃗ = (x⃗1, x⃗2, ..., x⃗m) represents the states of all m

agents, and B⃗ = (x⃗m+1, x⃗m+2, ..., x⃗m+n) represents the states of all n adversaries. Furthermore,

πi denotes the current action being executed by the ith player where πi ∈ DA. Collectively,

Π = (π1, π2, ..., πm+n) represents the set of current actions being executed by all players. Each

node of the tree is defined as node = (A⃗, B⃗,Π, f, d, p, averageReward, visitCount), where f

is the framework type, d is the current game depth, and p is either the team or player that node

will expand all possible actions for at d. The possible values of p are dependent on f and will be

described further in the following two sections.

In adversarial environments, the engagement time can be large, meaning that the game will not

terminate in the near future. MCTS frequently needs to return an action once a certain timeout is

reached. For real-time decision making, this timeout is very small. If MCTS has to search to the

end of these games to discover an outcome, an outcome might never be found. This would lead to

an executed action that is random. Therefore, our frameworks make use of a look-ahead time (l)
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which represents how many seconds into the future to simulate before trying a new combination

of actions. To evaluate each combination of actions, we introduce an intermediary reward function

that is computed after all players take a simulated action. Therefore, with t = 1 s and l = 4 s,

the intermediary rewards will be computed l
t
= 4 times. We aggregate the intermediary rewards

together once l is reached and use this value to update the average reward values for all nodes along

the path from the selected node back up to the tree’s root node. We then use UCT [9] to select a

new starting node.

The intermediary reward function is shown in Equation 2.1. It is split into a discrete damage

reward weighted by w and a position shaping reward [24] weighted by 1 − w. The value D in

the discrete damage reward is either a 0 or 1, representing if a player on the opposing team is in

the current player’s cone of fire as shown in Figure 2.1. We include this reward type to emphasize

players taking actions to damage and eventually eliminate players on the opposing team. On the

other hand, the position shaping reward provides an overall score of how advantageous the agents’

positions are compared to the adversaries as shown in Figure 2.2. θ represents the angle from the

current player’s nose to the opposing player in question. This reward is scaled by the euclidean

distance, e, multiplied by a constant c. The most advantageous position for a player is one where it

is directly behind and facing its opponent while the opponent faces directly away. For our games,

we scale the discrete damage reward and position shaping reward to be −m ≤ Rint ≤ m before

combining them. Therefore, the user only needs to tune w. Optionally, these actions of duration t

can be broken down further into multiple steps of length ∆t, leading to greater precision but with

more computational cost. These intermediary rewards can then be combined via the trapezoidal

rule as shown in Equation 2.2. Finally, we take the sum to get a singular reward value for the

trajectory through Equation 2.3. The values of t (action duration), l (look-ahead time), w (reward

type weighting), and c (position shaping reward constant) along with the size of the cone of fire are

up to the user’s discretion. For our results, we used t = 1 s, l = 4 s, w = 0.5, c = 0.1, and a cone

5



of fire that is 5 m long with an angle value of 30◦.

Rint(A⃗, B⃗, d) = w ∗ (
m∑
a=1

Da −
m+n∑
b=m+1

Db) + (1− w) ∗
m∑
a=1

m+n∑
b=m+1

0.5 ∗ (cos θa − cos θb)
1 + ce

(2.1)

Rtrap(A⃗, B⃗, d) = trapz(Rint(A⃗, B⃗),∆t) (2.2)

Rtotal(A⃗, B⃗) =
l∑

d=1

Rtrap(A⃗, B⃗, d) (2.3)

Figure 2.1: Adversary in agent’s cone of fire
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Figure 2.2: Important parameters for position shaping reward

The above reward calculation determines rewards for agents and will help us exploit actions for

them that are deemed favorable by prior simulations. In MCTS, we also need to choose actions for

adversaries. To build an effective tree, we need to exploit their best actions as well. This creates a

realistic setting where the agents are seeing the most challenging version of the adversaries. To do

this, we negate the stored rewards when it is an adversary’s turn to choose an action. Therefore, the

actions that are weighted more heavily by UCT are those that led to the worst agent reward which

in turn are the best actions for the adversaries.

One complexity of multi-agent adversarial environments is that players on either team can be

eliminated. To best utilize computational resources, it is crucial to only consider active players

when running MCTS. Therefore, after executing an action, we update A⃗ and B⃗ to only include the

states of the active agents and adversaries, respectively. Then, MCTS can be used to determine

new actions for execution, and this process can be repeated.

Our frameworks make use of the following helper procedures shown in Algorithm 1 and de-

scribed below which include slight variations to those found in Vanilla MCTS:
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• Selection: This procedure starts at the tree’s root node and utilizes UCT to traverse the tree.

In our frameworks, traversing the tree involves iterating through all possible values for p at

d = 1, incrementing d, and repeating the process until a leaf node is reached. Therefore,

each subsequent value of p can be considered its own layer within the tree. Upon reaching a

leaf node, this procedure calls Expansion.

• Expansion: This procedure expands the tree to include all possible actions for the leaf node’s

child or p + 1. As stated above, a new layer in the tree has been created. If p + 1 does not

exist, d is incremented and p is set back to 1, meaning a new depth has been reached. This

procedure calls Simulation from each of the newly added nodes which represents the set of

all possible actions. This set of all possible actions is dependent on f .

• Simulation: This procedure forward-simulates out the rest of the engagement until reaching

l. To do so, it uses the information stored in the node which called Simulation. This node

has an associated depth value, d, and a set of actions being currently executed by all the

players, Π. Before simulating out a set of actions, we must verify that Π does not contain

any empty values. If πp is empty for any value p, we provide a random action from p’s action

set. Additionally, for all future values of d until reaching l, we provide random actions for all

p. Therefore, our rollout policy is entirely random. After each set of simulations, the reward

is calculated using Equations 2.1 and 2.2. Upon reaching l, this reward is aggregated using

Equation 2.3 and is passed to Backpropagation.

• Backpropagation: This procedure uses the reward found in Simulation to update the average

reward values for all nodes along the path from the newly added node created in Expansion

up to the tree’s root node. At the conclusion of this procedure, we check to see if the timeout

to return an action has been reached. If it has not, Selection resumes.

8



Algorithm 1Multi-Agent Monte Carlo Tree Search Frameworks

1: procedureMCTS(A⃗, B⃗, f, l, timeout)
2: Input: Initial states (A⃗, B⃗), framework type f , look-ahead time l, timeout
3: root← (A⃗, B⃗,Π = Empty, f, d = 0, p = 1, averageReward = 0, visitCount = 0)
4: while timeout not exceeded do
5: Selection(root, l)
6: end while
7: return Π∗ = (π∗

1, π
∗
2, ..., π

∗
m) ▷ Dependent on f

8: end procedure
9: procedure Selection(node, l)
10: while node is not a leaf node do
11: node← UCT(node)
12: end while
13: Expansion(node, l)
14: end procedure
15: procedure Expansion(node, l)
16: if node.d+ 1 ≤ l then
17: for all possible actions of node’s child do ▷ Dependent on f
18: child← InitializeChild(node)
19: Simulation(child, l)
20: end for
21: end if
22: end procedure
23: procedure Simulation(node, l)
24: start← node
25: reward← 0
26: while node.d ≤ l do
27: if any node.Π is Empty then
28: node.Π← RandomActions(node)
29: end if
30: reward← reward + ForwardSimulate(node)
31: node.d← node.d+ 1
32: end while
33: return Backpropagation(start, reward)
34: end procedure
35: procedure Backpropagation(node, reward)
36: while node is not root do
37: node.averageReward← UpdateAverage(node.averageReward, reward)
38: node.visitCount← node.visitCount + 1
39: node← GetParent(node)
40: end while
41: end procedure

9



A simple example depicting these steps for a 1 v 1 adversarial environment is shown in Figure

2.3. The true layer width is omitted to save space.

Figure 2.3: MCTS steps for a 1 v 1 adversarial environment with simplified layer width

2.1 GROUPED ACTION MULTI-AGENT MONTE CARLO TREE SEARCH

In the above section, it was stated that the possible values of p and their associated actions were

dependent on f . Our first framework is known as Grouped Action Multi-Agent Monte Carlo Tree

Search (GAMA-MCTS). This framework considers each node in a specific layer of the tree as a

team of players, either agents or adversaries. GAMA-MCTS is comparable to vanilla MCTS.

The possible values of p are 1 and 2. To search t into the tree, we would need to look 2 layers

deep. If p = 1, the possible actions come from the permutations of each agent’s DA or DA1 ×

DA2 × ... ×DAm. On the other hand, if p = 2, the possible actions come from the permutations

of each adversary’sDA orDAm+1×DAm+2× ...×DAm+n. As a result, the branching factor for

the agents is 9m and the branching factor for the adversaries is 9n. In other words, the branching

factor of the tree is exponential with respect to the number of agents or adversaries. This framework

is limited in that it requires the duration of all πi be the same value t. In addition, it requires that

each combination of agents’ or adversaries’ actions be tried before exploiting for promising actions

since they are considered as one. Though, when it comes time to determine actions for execution,

the quality of all selected agents’ actions will be equivalent.

The process to determine actions for execution is shown in Equation 2.4 where root is the tree’s
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root node. Since all the agents’ actions are combined, we only need to look at the first layer of the

tree to determine the predicted optimal actions. A simple example of this framework’s tree being

built for a multi-agent adversarial environment with 2 agents and 1 adversary is shown in Figure

2.4. The true layer width is omitted to save space.

Π∗ = argmax
child∈GetChild(root)

child.averageReward (2.4)

Figure 2.4: GAMA-MCTS framework’s tree for a 2 v 1 adversarial environment with simplified
layer width

2.2 SPLIT ACTION MULTI-AGENT MONTE CARLO TREE SEARCH

Our second framework is known as Split ActionMulti-AgentMonte Carlo Tree Search (SAMA-

MCTS). As the name suggests, this framework splits up the teams and considers each node in a

specific layer of the tree as an individual player. Therefore, the possible values of p are 1, 2, ...,m+
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n. To search t into the tree, we would need to look len(p) layers deep. For each pi, the possible

actions are DAi. Therefore, the branching factor for the agents and adversaries is just 9. This

framework does not require the duration of all πi be the same value t. In addition, it can start

exploiting for promising actions after trying all of just one of the agents’ or adversaries’ actions.

The only downside is that when it comes time to determine actions for execution, the agents closer

to the root of the tree will have higher quality actions due to them being tried more.

A greedy approach is used to determine actions for execution for all m agents by computing

Equation 2.4 on the top m layers of the tree. Since this framework relies on m layers of the tree

existing, it may not be able to predict an optimal action for each agent if the height of the search tree

is less than m. Assuming that the height of the tree is h, where h < m, the first h agents’ actions

are determined, and the last m − h agents’ actions are set to a default action where πh+1→m =

(go straight, no throttle). A simple example of this framework’s tree being built for a multi-agent

adversarial environment with 2 agents and 1 adversary is shown in Figure 2.5. The true layer width

is omitted to save space.

Figure 2.5: SAMA-MCTS framework’s tree for a 2 v 1 adversarial environment with simplified
layer width
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CHAPTER 3

ROOT PARALLELIZATIONWITH VARYING AGENT ORDERING

As stated previously, SAMA-MCTS displays some important advantages over GAMA-MCTS.

In particular, SAMA-MCTS allows for variable-duration actions and earlier exploitation. By sep-

arating out the players into individual layers and keeping track of their assigned team via a flag,

the branching factor can be kept constant. There are some downsides, though: agents closer to the

root of the tree will have higher quality actions and the tree must be searched to a height of at least

m. If the height of the tree is less than m due to factors such as a short timeout, a default action

will be chosen for agents between the tree height andm within the agent ordering. This limits the

capability of SAMA-MCTS at low timeouts.

One way to increase the the performance of MCTS is to increase the total number of Simulation

procedures run over the same timeout. With this, a larger amount of the action space can be explored

from initial states A⃗ and B⃗. The importance of a higher simulation count only grows when adding

more players to the game. As the number of agents or adversaries increases, the height required to

get to the same point in the tree increases linearly. For example, to fully search s timesteps into the

tree, the tree must have a height ofm ∗ s+ n ∗ s.

To achieve a greater amount of simulations, MCTS root parallelization techniques have been

used. If N parallel root trees are placed on separate processors and result in similar amounts of

simulations, thenMCTS should be able to completeN times the number of simulations as compared

to the non-parallelization set-up. This is a great way to increase the simulation count, but if all the

trees are set-up identically, the downside of needing to search to a height of at leastm still remains.

When utilizing the vanilla MCTS root parallelization technique with short timeouts, there would

be N parallel root trees, each with heights less than m. The information gain by leveraging root

parallelization would be limited. To address this issue, we propose our own novel technique known

as Root Parallelization with Varying Agent Ordering (RP-VAO).

RP-VAO ensures that our SAMA-MCTS framework never results in any default actions. To do
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so, it varies the ordering of the agents between parallel root trees, leading to less overlap and more

information gain. There are two main requirements for the parallel root trees: each agent must be

ordered first in at least one of the parallel root trees and all the agents must be ordered before all

the adversaries. The former imposes that N ≥ m. The latter biases our search in the direction

of the agents which is whom we are determining predicted optimal actions for. If N = m, each

parallel root tree can be considered the decision-maker for one of the agents. We can look at the

first layer of each tree to determine the predicted optimal action for each agent. If N > m, there

are trees with overlap in the first layer. We combine these overlapping trees when it comes time to

determine an action for execution by using an aggregation function. We examined two aggregation

functions: best average reward and majority voting. Best average reward takes the average of the

rewards from each tree by agent action and selects the maximum for execution. Majority voting

determines an action from each tree and assigns it as a vote. In majority voting, the one with the

most votes is selected for execution.

Outside of the twomain requirements listed above, the remainder of the ordering can be random.

For our results, we used the best average reward aggregation function. The computer used for

running our experiments was limited to 12 processors. Due to this limitation, there was not much

value in the majority voting approach when dealing with a large number of agents. For example, in

the case of a 6 v 3 experiment, each agent would have only 2 votes to be used to determine an action

for execution. An example of the RP-VAO method for a multi-agent adversarial environment with

2 agents and 1 adversary utilizing 2 processors is shown in Figure 3.1.

Figure 3.1: RP-VAO method for a 2 v 1 adversarial environment utilizing 2 processors
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CHAPTER 4

IMPROVED ACTION SETS

So far, we have discussed ways to improve MCTS by modifying the framework, increasing the

number of simulations, and getting “deeper” into the tree by varying the agent ordering. Another

way to improve MCTS is to improve the tree’s options. In our case, this involves improving on

the default action set. To do this, we include closed-loop actions. Closed-loop actions incorpo-

rate feedback to make corrections and reduce the error between a reference input and our output.

Closed-loop actions are well-alignedwith our existing action set because our existing (“open-loop”)

actions already use discrete time forward predictions. Therefore, closed-loop actions can be pre-

dicted in an identical manner to “open-loop” ones.

In the planar 2D multi-agent adversarial environment, the reference input is a target distance

and target heading from the current player to an opposing player. Since we are working with multi-

agent adversarial environments, we need a way to determine which opposing player to determine

the reference input from. We double the size of the cone of fire and use a greedy approach, selecting

the closest opposing player in this expanded region. If there is no opposing player in this expanded

region, the closest opposing player overall is selected.

The closed-loop action that we have added into the action set is a proportional controller that

points the nose of the current player in the direction of the selected opposing player while attempt-

ing to maintain a specified separation distance. We only add this closed-loop action into the agents’

action set. As will be discussed in the Experiments section of this thesis, the adversaries leverage

baseline policies that are identical to this proportional controller. If we added this proportional

controller into the adversaries’ action set, we would have full knowledge of our adversaries’ capa-

bilities while solvingMCTS. This wouldmean that the agents would be able to predict the adversary

perfectly. We view the inclusion of this action as something that would limit the broader impact of

this work. Therefore, we have excluded it. The adversaries can only pull from the default action

set while building the MCTS tree. The agents believe that this is the full extent of the adversaries’
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capabilities, allowing for a fair comparison to other experiments.

Further details of the proportional controller are shown in Equations 4.1 and 4.2 where θa and e

are taken from Figure 2.2. For our results, θa,target = 0◦ and etarget = 1 m. This is an advantageous

position that places the adversary in the middle of the current agent’s cone of fire. The gains used

for our proportional controller are kRD = 1 and kT = 1. Also, the value of RD is clipped to be

between turn left and turn right, and the value of T is clipped to be between no throttle and high

throttle.

RD = kRD(θa − θa,target) (4.1)

T = kT (e− etarget) (4.2)

This proportional controller is included as a possible action for the agents in both the Expansion

and Simulation procedures. There are now 10 actions in an agent’sDA. It is possible to include this

closed-loop action because each node contains the current states, A⃗ and B⃗. Our action set now has

an action that exhibits offensive strategy. In addition, we are introducing an action that is adaptable

and responsive.

Now that we have added an extra action into the action set, there are more possible actions to

consider during each Expansion procedure. Therefore, to get to a similar height in the tree, more

simulations are required. Since the agents are lower-performing than the adversaries in our multi-

agent adversarial environment, the actions in the agent’s DA that contain RD = go straight will

only be used in offensive situations. For a separate experiment, we decided to replace (go straight,

no throttle), (go straight, medium throttle), and (go straight, high throttle) with our proportional

controller. Therefore, there are now 7 actions in an agent’s DA. The proportional controller in-

troduces an offensive strategy, and the remaining 6 actions incorporate turns that provide agents

with the ability to maneuver out of an adversary’s cone of fire. These experiments will allow us to

determine how quality and size of an action set affect MCTS performance.
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CHAPTER 5

EXPERIMENTS

The frameworks and associated methods presented in the preceding chapters are tested in multi-

agent adversarial environments where the team of agents has an advantage in number of players

but a disadvantage in player performance. Therefore, the team of agents must effectively select

strategic, coordinated actions through teaming to overcome a performance gap. This is done in-

nately through MCTS. Our environments extend the single-agent, planar 2D adversarial environ-

ment found in [24] to the multi-agent domain. This prior work looked at the 1 v 1 scenario where

both teams had equivalent player performance. Instead, we look at the 2 v 1, 4 v 2, and 6 v 3

scenarios. In each of these scenarios, the agents have a 2 to 1 player advantage, but the players

are individually inferior (modeled using added mass). By running these scenarios, we are able

to explore the importance of teaming through MCTS and how it can help overcome environment

complexity. In addition, we are able to explore ways to overcome MCTS scalability issues that

occur when increasing the number of players.

In our scenarios, each player starts with a health score of 200. The team of agents and team

of adversaries engage until all the players on one team are eliminated. Eliminations occur when

a player reaches a health score of 0. To determine if a player’s health score should change, we

utilize a variation of the discrete damage reward found in Equation 2.1. A player does a damage

of 1 to an opposing player that is in its cone of fire. To make this environment more practical, we

impose a limitation where each player can only damage one player on the opposing team during

each timestep. This is done by utilizing a greedy approach: if multiple players from the opposing

team are in a player’s cone of fire, only the opposing player that is closest loses health. A player’s

loss in health is equivalent to its damage taken.
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5.1 DYNAMICS

We utilize exact environment dynamics to those used in [24]. Similar to this prior work, our

agent states, A⃗, and adversary states, B⃗, are split into position, yaw angle, linear velocity, and yaw

rate. Therefore, we are able to use identical equations for lateral force, drag force, moment, and

thrust. Equations 5.1, 5.2, 5.3, 5.4, and 5.5 are pulled directly from this prior work and placed here

for convenience. S is the side slip angle and ψ̇ is the yaw rate. RD and T are our control inputs.

C and M are constants that describe how the forces and moments vary based on the previously

defined variables. Similar to this prior work, our players are considered simple rigid bodies with

constant cross-sectional area (A), moment of inertia, and fluid density (ρ).

CL = CLSS (5.1)

Lateral Force = ρV 2ACL (5.2)

Drag Force = ρV 2A(CD0 + C2
L) (5.3)

Moment = ρV 2A(CMS
S + CMRD

RD − CMψ̇
ψ̇)−Mψ̇ψ̇ (5.4)

Thrust = ThrustmaxT (5.5)

Where this thesis differs from this prior work is in player performance. Our team of agents

are lower-performing than the team of adversaries. To accomplish this, we vary the mass of the

players. Specifically, an individual agent has a mass of 1 kg while an individual adversary has a

mass of 0.2857 kg. We assume that the difference in loading occurs at the center of mass, leading to

equivalent moment of inertia for the agents and adversaries. All other parameters are kept constant

between the agents and adversaries as well. They are pulled directly from the prior work.

It was found that an individual agent had a maximum velocity of 2 m/s, a maximum turn rate

of 0.5 rad/s, and a minimum turn radius of 1.97 m. In comparison, an individual adversary had

a maximum velocity of 2 m/s, a maximum turn rate of 1.21875 rad/s, and a minimum turn radius

of 0.985 m. The adversaries have much higher maneuverability. When comparing, an individual
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adversary has half the minimum turn radius, meaning it has 2x the performance. Therefore, an

advantage in numbers is not guaranteed to provide a victory.

5.2 TESTING SUITES

We set up 3 different testing suites known as clock trials. Each set of clock trials represents

one of the 2 v 1, 4 v 2, or 6 v 3 scenarios discussed earlier. These clock trials test different starting

locations for the team of adversaries. In doing so, we are able to test positions that are advanta-

geous, neutral, and disadvantageous for the team of agents. Our clock trials include 16 different

combinations of starting locations. We run 10 trials per combination. MCTS does not return the

same actions for execution during each run due to randomness in the rollout policy, exploration vs.

exploitation characteristics, and a short timeout. Therefore, running multiple trials per combination

is essential to showing the true effects of our frameworks and associated methods.

Figures 5.1, 5.2, and 5.3 shows the set-ups for our 2 v 1, 4 v 2, and 6 v 3 clock trials, respectively.

Each set of adversary or red positions represents a different starting location. Each team starts in a

common flying formation based on the number of players. For example, when there are 4 players,

the team starts in the finger-four formation as shown by each set of agent or blue positions in the 4

v 2 clock trials.
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Figure 5.1: 2 v 1 clock trials

Figure 5.2: 4 v 2 clock trials
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Figure 5.3: 6 v 3 clock trials

From each starting location combination, we let the team of agents running our MCTS frame-

works and associated methods engage the team of higher-performing adversaries running a baseline

policy. This baseline policy is identical to the proportional controller displayed in Equations 4.1

and 4.2. The only difference is the replacement of θa with θb. The adversaries do not demonstrate

means of intelligence and are not meant to be incredibly challenging. Instead, they provide us with

a benchmark for comparison between experiments.

The engagement ends when one full team is eliminated. If all the adversaries are eliminated,

we consider this a win for our MCTS frameworks and associated methods. On the other hand, if

all the agents are eliminated, we consider this a loss as the agents were not able to overcome the

higher-performing baseline adversaries via teaming. We track this metric for each of the 16 different

starting combinations within the clock trial. We take the average of the win percentages for each

clock trial starting combination to get an overall win percentage score for the set-up. This value is

used for comparison. In addition, we track the average number of simulations for each set-up. With
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more simulations, MCTS should perform better since the basis of the decision making process is

the outcome of these simulations. Therefore, this is an important metric to track. When all other

factors are considered equal, actions determined fromMCTS with a larger simulation count should

be of higher quality.

The results of MCTS are highly dependent on the code’s runtime and computer architecture.

Our frameworks and associated methods are built with Python and run on an Intel i7-12700 pro-

cessor using one thread. To improve the results, the code can be further optimized or more compu-

tational power can be utilized. This would shift our win percentages and simulation counts up but

would not change the overall takeaways of the thesis.
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CHAPTER 6

RESULTS AND DISCUSSION

6.1 BASELINE

To stress the difficulty of our problem, we started by running a 2 v 1 clock trial where both

the agents and the higher-performing adversaries follow the baseline policy. In this scenario, the

agents have a player advantage, but the players are individually inferior. Since we were utilizing the

baseline policy instead of MCTS, there was no teaming component. The average win percentage

over the 16 different starting combinations (10 trials each for a total of 160 trials) was a mere 25%.

This means that the advantage in numbers generally did not lead to victories. These results illustrate

that the need for intelligent teaming strategies.

These results act as a benchmark for future experiments. We expected that by allowing our

agents to exhibit intelligence through teaming via MCTS, average win percentage would increase.

6.2 FRAMEWORK COMPARISON

After running the baseline experiment, we shifted our focus to testing both of our multi-agent

MCTS frameworks. We ran multiple tests to determine which framework performed best under

different conditions. We started with running GAMA-MCTS for the 2 v 1, 4 v 2, and 6 v 3 clock

trials with a 5 s timeout. We then performed the same tests for SAMA-MCTS. We kept track of

three metrics for comparison: win percentage, average simulations, and average time to solve. As

stated previously, we wanted to maximize win percentage and average simulations. Average time

to solve is the average runtime of MCTS for determining an action for execution. The closer the

average time to solve to the timeout, the better. If the average time to solve is much larger than

the timeout, there is overhead caused by our framework set-up, and we are not adhering to the

algorithm requirements.

Tables 6.1 and 6.2 display these results. For our results at 5 s timeout, we used multi-processing

and ran all four clocks in unison. This helped limit the overall testing suite runtime. Increasing the
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number of processes has an adverse effect on the average simulations value due to increased CPU

utilization. These results are further summarized in Figures 6.1, 6.2, and 6.3.

Table 6.1: GAMA-MCTS results for a 5 s timeout, running each clock in unison

Clock Trial Win Percentage Average Simulations Average Time to Solve

2 v 1 86.25% 990.88 5.0028 s

4 v 2 69.38% 553.62 5.0098 s

6 v 3 55.62% 287.31 5.056 s

Table 6.2: SAMA-MCTS results for a 5 s timeout, running each clock in unison

Clock Trial Win Percentage Average Simulations Average Time to Solve

2 v 1 89.38% 1002.31 5.0026 s

4 v 2 82.5% 556.81 5.0057 s

6 v 3 56.25% 459.06 5.0069 s

Figure 6.1: Framework win percentage comparison for a 5 s timeout, running each clock in unison
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Figure 6.2: Framework average simulations comparison for a 5 s timeout, running each clock in
unison

Figure 6.3: Framework average time to solve comparison for a 5 s timeout, running each clock in
unison
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We then ran these same tests for a 1 s timeout. Tables 6.3 and 6.4 display these results. For

our results at 1 s timeout, no multi-processing was used. These results are further summarized in

Figures 6.4, 6.5, and 6.6.

Table 6.3: GAMA-MCTS results for a 1 s timeout

Clock Trial Win Percentage Average Simulations Average Time to Solve

2 v 1 60.62% 157.56 1.0067 s

4 v 2 45.62% 108.88 1.0143 s

6 v 3 51.25% 41.44 1.3441 s

Table 6.4: SAMA-MCTS results for a 1 s timeout

Clock Trial Win Percentage Average Simulations Average Time to Solve

2 v 1 54.38% 175.12 1.0052 s

4 v 2 33.12% 123.75 1.0051 s

6 v 3 23.12% 92.56 1.0063 s

Figure 6.4: Framework win percentage comparison for a 1 s timeout
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Figure 6.5: Framework average simulations comparison for a 1 s timeout

Figure 6.6: Framework average time to solve comparison for a 1 s timeout

For the 2 v 1 clock trials, we see a large increase in win percentage over the baseline at both
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timeouts. At a 5 s timeout, both frameworks see decreased win percentage, decreased average

simulations, and increased average time to solve as the number of players increases. This makes

sense, when comparing the 6 v 3 scenario with the 2 v 1 scenario, there are 6 more players in the tree

that need to have their actions forward-simulated. SAMA-MCTS outperforms GAMA-MCTS in

every metric. GAMA-MCTS struggles more when the number of players increases. In particular,

GAMA-MCTS has a lower average simulations and worse average time to solve (287.31 and 5.056

s, respectively) compared to SAMA-MCTS (459.06 and 5.0069 s, repectively) in the 6 v 3 clock

trials.

For the 1 s timeout, the results are considerably worse than those for the 5 s timeout. In addi-

tion, there are cases where GAMA-MCTS outperforms SAMA-MCTS. With less time allocated to

the decision making process, we get a lower number of simulations and lower quality action deter-

mination. Surprisingly, we see that GAMA-MCTS outperforms SAMA-MCTS in win percentage.

Though, GAMA-MCTS continues to perform worse in average simulations and average time to

solve. This is due to GAMA-MCTS’ high branching factor. In the Expansion procedure, the tree

is expanded to include all possible actions for the leaf node’s child. For GAMA-MCTS in the 6

v 3 scenario, the branching factor for the agents is 96 = 531, 441. Therefore, there are 531, 441

possible actions or newly added nodes to the tree that need to call Simulation. This leads to a large

amount of overhead as the average time to solve for GAMA-MCTS in this scenario is 1.3441 s.

Therefore, an extra 0.3441 s is being allocated to decision making. In a critical environment where

each decision needs to occur in a timely manner, this is unacceptable. This occurs because we only

check the timeout before calling Selection.

On the other hand, SAMA-MCTS maintains good average time to solves, only increasing to

1.0063 s for the 6 v 3 scenario. Due to how the tree is built, the branching factor for SAMA-MCTS

is only 9. The win percentages decrease from 54.38% for the 2 v 1 scenario to their lowest point

of 23.12% for the 6 v 3 scenario. When determining actions for a large amount of agents at a low

timeout, it is likely that many of the agents are receiving default actions because the height of the

tree is small. This leads to low winning percentages.
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The results from the 5 s timeout illustrate the improvements achieved by SAMA-MCTS. These

results led us to use SAMA-MCTS for the rest of this thesis. In the next section, we present results

for RP-VAO which addresses the default action issue that occurs at low timeouts and for a large

amounts of players.

6.3 RP-VAO

As stated previously, our RP-VAO method requires that N ≥ m. Therefore, in our 6 v 3

scenario, we need at least 6 parallel root trees in order to use RP-VAO. In this section, we present

results for each of our testing suites utilizing 6, 9, and 12 parallel root trees at a timeout of 1 s.

We focused on low timeouts for this section because this is where we saw performance reductions

for SAMA-MCTS. Utilizing RP-VAO for larger timeouts, such as 5 s, results in near 100% win

percentage for all scenarios due to the substantial amount of simulations that can be performed in

the larger amount of time. Though, the same general trends for average simulations and average

time to solve remain (except they are about 5 times greater in magnitude).

Table 6.5 displays the results for our 2 v 1 scenario. Similar to previous 1 s timeout results, each

clock is run one at a time. The row for the parallel root trees value of 1 is the result from the above

section that did not use RP-VAO. Results for the 4 v 2 and 6 v 3 scenarios are shown in Tables 6.6

and 6.7, respectively. These results are further summarized in Figures 6.7, 6.8, and 6.9.

Table 6.5: RP-VAO results for the 2 v 1 scenario at 1 s timeout

Parallel Root Trees Win Percentage Average Simulations Average Time to Solve

1 54.38% 157.56 1.0067 s

6 76.88% 933.69 1.111 s

9 71.25% 1228.94 1.2186 s

12 76.25% 1303.19 1.1331 s
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Table 6.6: RP-VAO results for the 4 v 2 scenario at 1 s timeout

Parallel Root Trees Win Percentage Average Simulations Average Time to Solve

1 33.12% 123.75 1.0051 s

6 87.5% 653.44 1.0591 s

9 93.12% 836.75 1.0767 s

12 86.25% 895.88 1.0885 s

Table 6.7: RP-VAO results for the 6 v 3 scenario at 1 s timeout

Parallel Root Trees Win Percentage Average Simulations Average Time to Solve

1 23.12% 92.56 1.0063 s

6 75% 485.19 1.0589 s

9 83.75% 641.75 1.0783 s

12 78.75% 684.56 1.0911 s

Figure 6.7: RP-VAO win percentage comparison for a 1 s timeout
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Figure 6.8: RP-VAO average simulations comparison for a 1 s timeout

Figure 6.9: RP-VAO average time to solve comparison for a 1 s timeout

Through RP-VAO, we see large increases in win percentage. We see a 22.5%, 60%, and 60.63%
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win percentage boost for the 2 v 1, 4 v 2, and 6 v 3 scenarios, respectively. These win percentage

boosts are due to the novel ordering technique and the large increase in average simulations brought

by RP-VAO. From 1 to 12 parallel root trees, we see an increase in average simulations from 157.56

to 1303.19 for 2 v 1, from 123.75 to 895.88 for 4 v 2, and from 92.56 to 684.56 for 6 v 3. The

increases for the more complex environments are smaller because there are more players that need

to have their actions forward-simulated. In addition, the increase in average simulations for each

scenario is not linear. Instead, they exhibit asymptotic behavior as shown by the increase in average

simulations from 9 to 12 parallel root trees being small. This means we are reaching the limits of

our computational capability (100% CPU utilization). There is also more overhead required to

instantiate more parallel root trees seen by the increasing average time to solves which could be

contributing to the trends for average simulations.

The larger number of parallel root trees do not necessarily result in best performance. For

example, the best results for 2 v 1, 4 v 2, and 6 v 3 occur at 6, 9, and 9 parallel root trees, respectively.

This could be due to unnecessary overlap of information occurring at larger amounts of parallel root

trees or due to randomness in the Simulation procedure. All in all, RP-VAO is a promising technique

used to overcome scalability issues in our SAMA-MCTS framework that arise when increasing the

number of players.

6.4 IMPROVED ACTION SETS

The final results that we present are for our improved action sets. To show the benefits of adding

the offensive strategy action, we ran these tests at a timeout of 5 s. This allowed us to quantify the

difference between experiments without dealing with the limitations caused by low timeouts. For

simplicity in this section, we call the agent’s DA with 10 actions the combo action set and the

agent’s DA with 7 actions the compact action set. RP-VAO is not used in this section.

Tables 6.8, 6.9, and 6.10 display the results for our 2 v 1, 4 v 2, and 6 v 3 scenarios, respectively.

The rows for the default action set are taken directly from Table 6.2. Similar to previous 5 s timeout

results, we used multi-processing and ran all four clocks in unison. The win percentage results are
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further summarized in Figure 6.10. Figures summarizing the average simulations and average time

to solve results for these experiments are omitted since these values remain relatively constant.

Table 6.8: Improved action sets results for the 2 v 1 scenario at 5 s timeout, running each clock in
unison

Action Set Win Percentage Average Simulations Average Time to Solve

Default 89.38% 1002.31 5.0026 s

Combo 93.75% 962.88 5.0025 s

Compact 96.25% 1091.69 5.0024 s

Table 6.9: Improved action sets results for the 4 v 2 scenario at 5 s timeout, running each clock in
unison

Action Set Win Percentage Average Simulations Average Time to Solve

Default 82.5% 556.81 5.0057 s

Combo 89.38% 517.94 5.0064 s

Compact 99.38% 490.19 5.0064 s

Table 6.10: Improved action sets results for the 6 v 3 scenario at 5 s timeout, running each clock in
unison

Action Set Win Percentage Average Simulations Average Time to Solve

Default 56.25% 459.06 5.0069 s

Combo 65% 420.31 5.0077 s

Compact 89.38% 394.62 5.0074 s
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Figure 6.10: Improved action sets win percentage comparison for a 5 s timeout, running each clock
in unison

As we move from the default action set to the combo action set, we see increased winning per-

centage for all scenarios. Specifically, we see increases of 4.37%, 6.88%, and 8.75% for the 2 v 1,

4 v 2, and 6 v 3 scenarios, respectively. Therefore, adding the offensive strategy action, represented

by a proportional controller, does benefit the team of agents. Though, the win percentage for the 6

v 3 scenario is still low, only reaching 65%. By throwing away the RD = go straight actions, thus

decreasing the number of possible actions from 10 to 7, we can get further in the tree with the same

number of simulations. This is beneficial when the number of players in the game increases.

Due to this, we saw further improvements by moving to the compact action set. We reached

96.25%, 99.38%, and 89.38% for the 2 v 1, 4 v 2, and 6 v 3 scenarios, respectively. By limiting our

action set to only include those that were essential, we are able to get deeper in the tree quicker.

This is an important trade-off that occurs in MCTS for adversarial environments. We want action

sets that are as small as possible while still effectively solving the environment. If the action set is

too rich, it would take too long to build the tree. Conversely, if the action set is too limited, it will

not be able to solve the environment.
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CHAPTER 7

LIMITATIONS AND FUTUREWORK

As stated previously, MCTS is highly dependent on the code’s runtime and computer archi-

tecture. Therefore, our results are limited in this regard. To improve our results further, we could

continue to optimize our code or purchase more compute. In addition, we could move from Python

to C++. Python is an interpreted language while C++ is a compiled language, meaning that C++

has much higher execution efficiency.

Our results are also limited by the use of random rollouts in the Simulation procedure. Each

time we run MCTS, we could receive a different action for execution. Eventually, if we perform

enough simulations, this returned action should converge, but we are running our experiments at

relatively low timeouts to simulate real-time behavior. [17] gets around this by incorporating two

neural networks, a policy network and a value network. The value network replaces the random

rollouts directly, providing an immediate evaluation from the current leaf node. By removing the

random rollouts, efficiency is massively increased.

In terms of future work, these frameworks and associated methods should be applied to more

complicated environments than the planar 2D multi-agent adversarial environment. This could be

tested by developing a more complex dynamics model than the one pulled from [24]. Additionally,

we could attempt to use our frameworks and associated methods in non-adversarial multi-agent

environments to see if they improve on the current literature. For strategic actions, we could explore

other closed-loop or feedback actions to insert into the action set. Specifically, we could add actions

that incorporate defensive strategy or add a trained Deep RL model that maps current states to

agent actions. Finally, we could look at ways to bypass the use of forward-simulated actions. For

example, [24] made use of the MA.
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CHAPTER 8

CONCLUSION

Our frameworks and associated methods led to large increases in performance for the multi-

agent adversarial environment where a team of agents leveraging MCTS engage a team of higher-

performing baseline adversaries. In the baseline experiment where there is lack of intelligence,

we saw a low winning percentage of 25% for the 2 v 1 clock trials. We looked to improve on

this baseline in all future experiments. We presented two multi-agent MCTS frameworks, GAMA-

MCTS and SAMA-MCTS. It was determined that SAMA-MCTS was the superior framework for

multi-agent adversarial environments due to its low branching factor. Based on how the tree is set-

up, we were able to start exploiting its promising actions sooner. For a 5 s timeout, we received win

percentages of 89.38%, 82.5%, and 56.25% for the 2 v 1, 4 v 2, and 6 v 3 scenarios, respectively.

These values decreased to 54.38%, 33.12%, and 23.12% for a timeout of 1 s. Either way, there was

a large increase in performance for the 2 v 1 clock trials over our baseline experiment.

The decrease in win percentage as we increase the number of players or lower the timeout can

be attributed to a lack of height in the tree while utilizing SAMA-MCTS. This led to default actions

selected for execution. RP-VAO was introduced to overcome this. To challenge our method, we

utilized RP-VAO for experiments with a 1 s timeout. We saw increases of 54.38% to 76.88%,

33.12% to 93.12%, and 23.12% to 83.75% for the 2 v 1, 4 v 2, and 6 v 3 scenarios, respectively.

At a 5 s timeout, these win percentages all jumped to nearly 100% due to the large amounts of

simulations that could be achieved via RP-VAO at the larger timeout. Therefore, RP-VAO did an

exceptional job in overcoming the scalability issues found in SAMA-MCTS.

Finally, we showed that utilizing improved action sets led to increases in win percentage. Our

default action set only contains “open-loop” actions. Each node stores the current states, so it

is possible to include closed-loop or feedback actions. We included a proportional controller with

offensive strategy, increasing our win percentage for the 5 s timeout from 89.38% to 93.75%, 82.5%

to 89.38%, and 56.25% to 65% for the 2 v 1, 4 v 2, and 6 v 3 scenarios, respectively. By decreasing
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the number of actions to 7 and only including those that were essential, these win percentages

increased to 96.25%, 99.38%, and 89.38%. Thus, there is a trade-off between action quality and

number of actions that needs to be considered when working with MCTS.

All in all, we effectively extended MCTS to a multi-agent adversarial environment. Our frame-

works and associatedmethods incorporated innate teaming, allowing a team of agents to beat a team

of higher-performing baseline adversaries. By leveraging MCTS, no pre-training occurred. Our

frameworks and associated methods are relevant for a differing number of players, differing player

performance, or a differing adversary strategy, giving it the upper-hand over Deep RL for these

types of environments.
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