

1 **Enzyme Selection, Optimization, and Production toward Biodegradation of**
2 **Post-Consumer Poly(ethylene terephthalate) at Scale**

4 Ya-Hue Valerie Soong ^a, Umer Abid ^a, Allen C. Chang ^b, Christian Ayafor ^c, Akanksha Patel ^b, Jiansong
5 Qin ^a, Jin Xu ^d, Carl Lawton ^a, Hsi-Wu Wong ^a, Margaret J Sobkowicz ^b, Dongming Xie ^{a*}

6 ^a Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA

7 ^b Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA

8 ^c Energy Engineering Program, University of Massachusetts Lowell, Lowell, MA 01851, USA

9 ^d Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA

10

11 * Corresponding author:

12 Dr. Dongming Xie, Department of Chemical Engineering, University of Massachusetts Lowell. Phone:

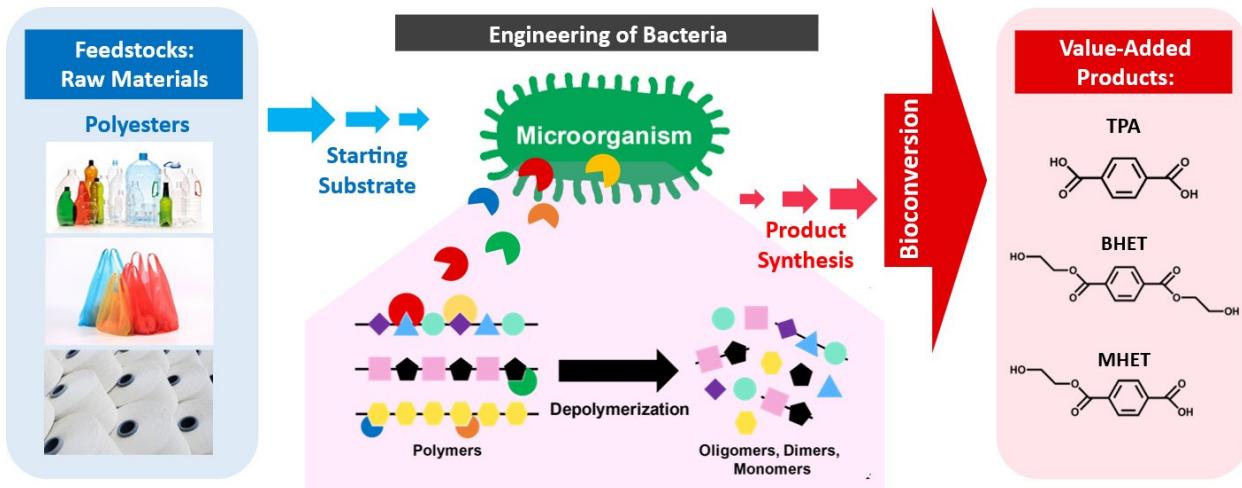
13 +1-978-934-3159; Email: Dongming_Xie@uml.edu.

14

15

16

17


Abstract

2 Poly(ethylene terephthalate) (PET) is one of the world's most widely used polyester plastics. Due
3 to its chemical stability, PET is extremely difficult to hydrolyze in a natural environment. Recent
4 discoveries in new polyester hydrolases and breakthroughs in enzyme engineering strategies have
5 inspired enormous research on biorecycling of PET. This study summarizes our research efforts
6 toward large-scale, efficient, and economical biodegradation of post-consumer waste PET,
7 including PET hydrolase selection and optimization, high-yield enzyme production, and high-
8 capacity enzymatic degradation of post-consumer waste PET. First, genes encoding PETase and
9 Mhetase from *Ideonella sakaiensis* and the ICCG variant of leaf-branch compost cutinase
10 (LCC^{ICCG}) were codon-optimized and expressed in *Escherichia coli* BL21(DE3) for high-yield
11 production. To further lower the enzyme production cost, a *pelB* leader sequence was fused to
12 LCC^{ICCG} so that the enzyme can be secreted into the medium to facilitate recovery. To help bind
13 the enzyme on the hydrophobic surface of PET, a substrate-binding module in a
14 polyhydroxyalkanoate depolymerase from *Alcaligenes faecalis* (PBM) was fused to the C-
15 terminus of LCC^{ICCG} . The resulting four different LCC^{ICCG} variants (LCC, PelB-LCC, LCC-PBM,
16 and PelB-LCC-PBM), together with PETase and Mhetase, were compared for PET degradation
17 efficiency. A fed-batch fermentation process was developed to produce the target enzymes up to
18 1.2 g/L. Finally, the best enzyme, PelB-LCC, was selected and used for the efficient degradation
19 of 200 g/L recycled PET in a well-controlled, stirred-tank reactor. The results will help develop an
20 economical and scalable biorecycling process toward a circular PET economy.

22 **Keywords:** Poly(ethylene terephthalate), Terephthalic Acid, Biodegradation, Leaf-Branch
23 Compost Cutinase, PETase,

1
2

Graphical Abstract

3
4
5

1 **Introduction**

2 Poly(ethylene terephthalate) (PET) is one of the world's most widely used polyester plastics.
3 PET is durable, transparent, lightweight, non-reactive, thermally stable, cost-effective,
4 exhibiting high-pressure resistance, mechanical strength, and barrier properties (i.e.,
5 impermeable to carbon dioxide). While the remarkable material properties make PET a desirable
6 material for applications in food and beverage packaging and the textile industry, they also make
7 PET very challenging to decompose. The demand for PET bottles is continually rising as more
8 bottled beverages are consumed. In 2016, 480 billion plastic bottles were sold in the global market,
9 while 300 billion were sold in 2004 [1]. In addition, 56 million tons of PET were manufactured
10 but only 2.2 million tons were recycled in 2013 [2]. The vast amount of post-consumer PET waste
11 released into the environment harms marine life by entering the food chain [3, 4]. Growing
12 concerns surrounding the environmental impact of post-consumer plastic waste have inspired the
13 search for new technologies and solutions, where microbial biodepolymerization is presently
14 evaluated as a more environmentally friendly strategy for dealing with plastic pollution [5-7].

15 A variety of bacterial and fungal PET hydrolases have been characterized by actinobacteria
16 and fungi, such as *Thermobifida fusca* [8], *Ideonella sakaiensis* [9, 10], *Fusarium solani* [11-13],
17 and *Humicola insolens* [14]. Advances in metagenomic analysis have created the possibility of
18 obtaining complete or nearly complete genome sequences from uncultured microorganisms,
19 broadening the extent to which genetic information can be explored [15, 16]. A novel gene,
20 encoding a cutinase homolog, with PET degradation activity, leaf-branch compost cutinase (LCC),
21 was cloned from a fosmid library of a leaf-branch compost metagenome by functional screening
22 using tributyrin agar plates [17].

23 Recently, a gram-negative bacterium, *I. sakaiensis* 201-F6, that can use PET polymer as an
24 energy and carbon source was discovered and isolated [10]. Two important hydrolases to degrade
25 PET were identified, namely the PETase (PET hydrolase) and MHETase (mono(2-hydroxyethyl)
26 terephthalate hydrolase) [18, 19]. The PETase from *I. sakaiensis* and its engineered variants
27 catalyze the degradation of PET polymer into terephthalic acid (TPA), mono(2-hydroxyethyl)
28 terephthalate (MHET), bis(2-hydroxyethyl) terephthalate (BHET), and ethylene glycol (EG) [20].
29 A mutated *Ideonella* PETase (IsPETase) has been reported to manifest superior thermal stability
30 and higher PET depolymerizability as compared to its wild type counterpart [21]. MHETase
31 further catalyzes the deconstruction of BHET or MHET into TPA and EG. The catalytic activities

1 of five different cutinases from bacteria *T. fusca* (BTA1 and BTA2), *I. sakaiensis* (PETase),
2 filamentous fungus *F. solani pisi* (FsC), and metagenome-derived LCC have been recently studied
3 on crystalline bottle-grade PET [22] where wild the type LCC outperformed all other evaluated
4 PET hydrolases. Various computational and experimental studies have been performed to study
5 the optimal depolymerization conditions for the development of redesigned PETase variants with
6 improved melting temperatures and enhanced degradation performances at elevated temperatures
7 [20, 23, 24]. In general, the PET degradation rate of wild type LCC (93.2 mg TPA/h/mg enzyme),
8 in the aforementioned study, has outperformed most other enzymes [22]. Owing to the high
9 potential of LCC in degrading persistent semi-aromatic polyesters such as PET, more efforts are
10 being made to seek strategies to make LCC work more efficiently. Detailed structural and
11 functional analysis of LCC has facilitated an understanding of the mechanism by which LCC
12 hydrolyzes PET and thus led to the development of a more efficient enzyme. Several research
13 studies have been accomplished for the improvement of enzymatic PET degradation efficiency
14 and performance by fusing different binding domains to the C-terminus of previously reported
15 variants of LCC [25, 26]. These binding domains, fused to selective PET hydrolases, are able to
16 improve the enzyme sorption at solid-water interface. Therefore, they are considered to be highly
17 effective affinity tags for immobilizing the target enzyme on the surface of the solid substrates,
18 resulting in improved hydrolysis of polymer substrates [27]. The enzyme's activity can be further
19 improved by increasing its thermostability. Tournier et al. generated all possible 209 LCC variants
20 through site-specific saturation mutagenesis [22]. Of those LCC mutant candidates, two variants,
21 namely ICCG (F243I/D238C/S283C/Y127G) and WCCG (F243W/D238C/S283C/Y127G),
22 demonstrated increased deactivation temperatures (thermal tolerance) and significantly increased
23 PET depolymerization [22].

24 In this study, major PET hydrolases including PETase, MHETase, and LCC^{ICCG} were
25 investigated for the degradation of various PET materials, including extruded post-consumer waste
26 PET flakes, PET powder, and amorphous PET films having different physical properties. The *E.*
27 *coli* BL21(DE3) strain was employed for the overexpression of desired enzymes, and a fed-batch
28 fermentation process was developed and optimized to achieve high-yield enzyme productions (>
29 1 g/L). To further improve LCC^{ICCG}'s efficiency, new variants of LCC^{ICCG} were generated to
30 improve the secretion of the produced enzyme in fermentation and to enhance the binding
31 efficiency of LCC^{ICCG} on PET surfaces. Finally, the top two LCC^{ICCG} variants (LCC and PelB-

1 LCC) were used to degrade recycled PET in a scaled-up reactor with a high working capacity (200
2 g PET/L).

3

4 Materials and Methods

5 Strains, Growth, and Culture Conditions

6 *Escherichia coli* NEB5α was used as the host strain for plasmid construction and propagation.
7 *E. coli* BL21(DE3) was used as the host for protein expression under a T7 promoter. The plasmids
8 used in this study are listed in **Table 1**. All recombinant plasmids were originally derived from
9 low copy number pET-based expression vectors including pET21b(+), pET26b(+), and pET28a(+).
10 The genes of interests inserted into plasmids were under the control of the T7 RNA polymerase
11 promoter.

12
13 **TABLE 1. Plasmids used in this study.**

PLASMID	DESCRIPTION	REFERENCE
pLCC	<i>Kan</i> ^R , pET26b(+) derivative that contained a codon-optimized leaf branch compost cutinase (LCC ^{ICCG}) variant (F243I/D238C/S283C/Y127G, ICCG) under the control of T7 promoter.	[22]
pPelB-LCC	<i>Kan</i> ^R , pET26b(+) derivative that a codon-optimized PelB-LCC fused gene which was constructed by fusion of a signal peptide (PelB) of Pectate lyase B (Met1-Ala22) from <i>Pectobacterium carotovorum</i> to a LCC ^{ICCG} under the control of T7 promoter.	This work
pLCC-PBM	<i>Kan</i> ^R , pET26b(+) derivative that contained a codon-optimized LCC-PBM fused gene which was constructed by fusion of a linker region from Pro263-Pro287 of 1,4-beta-cellobiohydrolase I from <i>Trichoderma reesei</i> and a polyhydroxyalkanoate binding module (Ala428-Pro488) (PBM) of the polyhydroxybutyrate depolymerase from <i>Alcaligenes faecalis</i> (GenBank AAA21974.1) to an LCC ^{ICCG} under the control of T7 promoter.	This work
pPelB-LCC-PBM	<i>Kan</i> ^R , pET26b(+) derivative that contained a codon-optimized PelB-LCC-PBM fused gene which was constructed by fusion of a PelB to an LCC-PBM under the control of T7 promoter.	This work
pPETase	Amp ^R , pET21b(+) derivative that contained a codon-optimized lsPETase (W159H/S238F) from <i>Ideonella sakaiensis</i> 201-F6 under the control of T7 promoter.	[28]
pMHETase	<i>Kan</i> ^R , pET28a(+) derivative that contained a codon-optimized MHETase gene from <i>Ideonella sakaiensis</i> 201-F6 under the control of the T7 promoter.	This work

1 *All plasmids were constructed with the addition of a short tract of the poly-histidine tag to the N-terminus or C-
2 terminus to facilitate the enzyme purification

3
4 The plasmid constructs were transformed into *E. coli* strains NEB5 α and BL21(DE3)
5 competent cells (New England Biolabs, Ipswich, MA) by the heat shock method. Media and
6 growth conditions for *E. coli* have been previously described by Sambrook and Russell [29]. *E.*
7 *coli* strains were grown at 30 °C, pH 7.0 with constant agitation speed for shaking at 250 rpm in
8 Luria–Bertani Broth supplemented with 100 μ g/mL ampicillin or 50 μ g/mL kanamycin. The LB
9 medium contained 10 g/L NaCl (BP 358-212, Fisher Bioreagents), 10 g/L BactoTM Tryptone
10 (211705), and 5 g/L ultra-pure yeast extract (J850-500G, VWR chemicals).

11

12 **Plasmid Construction**

13 **General molecular biology methods.** Restriction enzymes and DNA polymerases were
14 procured from New England Biolabs. Polymerase chain reaction (PCR) amplifications were
15 conducted with Q5 High-Fidelity DNA Polymerase or Taq DNA polymerase at recommended
16 conditions. PCR products and DNA fragments were purified using Monarch® PCR & DNA
17 Cleanup Kit (New England Biolabs). Electrophoresis analysis of the resultant PCR amplicons was
18 carried out in a 1–2% agarose gel. Gel extraction was performed using the QIAquick Gel
19 Extraction kit (Qiagen). Plasmids containing the desired genes were constructed using NEBuilder
20 HiFi DNA assembly cloning kit (New England Biolabs).

21 **Shake-flask Cultivations of *E. coli* Strains**

22 LCC^{ICCG} [16], PelB-LCC (fused signal peptide of Pectate lyase B (Met1-Ala22) (PelB) to
23 LCC^{ICCG}), LCC-PBM (fused polyhydroxyalkanoate binding module (Ala428-Pro488) (PBM) to
24 LCC^{ICCG}), PelB-LCC-PBM (fused PelB to an LCC-PBM), PETase (*Is*PETase W159H/S238F),
25 and MHETase were expressed in *E. coli* BL21(DE3) with the corresponding plasmids shown in
26 **Figure S4 and Table 1**. The *E. coli* cells were grown in ZYM-5052 auto-induction medium, which
27 contained 1% tryptone (gibco BactoTM Tryptone, Cat. No. 211705), 0.5% yeast extract, 25 mM
28 Na₂HPO₄, 25 mM KH₂PO₄, 50 mM NH₄Cl, 5 mM Na₂SO₄, 2 mM MgSO₄, 0.2X trace elements,
29 0.5% glycerol, 0.05% glucose, and 0.2% α -lactose. The final pH of the medium was adjusted to
30 7.0 using 1M NaOH. A single transformed colony was selected from an LB plate with an
31 appropriate antibiotic for selection and used to inoculate a starter culture in an LB medium. The

1 starter culture was grown overnight at 30 °C with agitation speed of 250 rpm and was freshly used
2 at a dilution of 1:50 to inoculate expression cultures in the ZYM-5052 auto-induction medium.
3 The expression cultures were grown at 25 °C, 250 rpm for 24 h to achieve maximum enzyme
4 production. Samples were taken steriley after 0, 3, 6, 12, and 24 h and analyzed for OD₆₀₀. From
5 OD₆₀₀ dry cell weight (DCW, g/L) was calculated by an established correlation (DCW = 0.47
6 × OD₆₀₀). All flask culture experiments were performed in duplicate.

7

8 **1-L Fed-batch Fermentation of *E. coli* Strains**

9 For seed preparation, *E. coli* strains were cultivated on LB agar plates with antibiotics at 30
10 °C overnight and one single colony was inoculated to 30 mL LB medium in a 250-mL shake flask
11 to start the first-stage seed culture. When the OD₆₀₀ reached 3-4, 1 mL of the first-stage seed culture
12 was transferred to a 250-mL flask containing 35 mL fresh seed culture medium to grow for another
13 6 hours until an OD₆₀₀ of 1.5-2.5 was reached. All shake flask cultures were carried out at 30 °C,
14 250 rpm in a New Brunswick G25 Shaker Incubator. The second-stage seed culture was used to
15 inoculate the 1-liter fed-batch fermentor (Biostat B-DCU, Sartorius, Germany) at 5% (v/v). The
16 exponentially growing cells from the second-stage flask seed culture were transferred into the
17 bioreactor to initiate the fermentation (t = 0 h). The initial fermentation medium (0.7 liters)
18 contained 20 g/L yeast extract, 1.7 g/L citric acid, 14 g/L KH₂PO₄, 4 g/L (NH₄)₂HPO₄, 0.6 g/L
19 MgSO₄, 0.5 g/L NaCl, 11 mg/L CaCl₂, 15 g/L glucose, 1X trace metals I, 1mL/L kanamycin, and
20 1 mL/L antifoam 204 (Sigma, United States of America). The trace metals I (100X) stock solution
21 contained 840 mg/L EDTA, 220 mg/L CuSO₄·5H₂O, 1500 mg/L MnCl₂·4H₂O, 250 mg/L
22 CoCl₂·6H₂O, 300 mg/L H₃BO₃, 4 g/L C₆H₈FeNO₇, 250 mg/L Na₂MoO₄·H₂O, and 1,300 mg/L
23 Zn(CH₃COO)₂. The dissolved oxygen level of the fermentation experiments was set at > 5% of air
24 saturation by cascade controls of agitation speed between 600 and 1200 rpm, gas flow rate between
25 0.3 - 0.6 vvm, and pure oxygen enrichment (0-50 %). A two-stage temperature control profile was
26 implemented (30 °C for the growth phase during 0-12 h and 25 °C for enzyme production in the
27 remainder of the run) and the pH value was maintained at 7.0 throughout the run by feeding 5M
28 ammonium hydroxide solution. Glucose feeding started as initial glucose was depleted (t = 10-11
29 h). The glucose feed solution contained 600 g/L glucose, 1M MgSO₄, and 1X trace metals II. The
30 trace metals II (100X) stock solution contained 1,300 mg/L EDTA, 370 mg/L CuSO₄·5H₂O, 2,350
31 mg/L MnCl₂·4H₂O, 400 mg/L CoCl₂·6H₂O, 500 mg/L H₃BO₃, 4 g/L C₆H₈FeNO₇, 400 mg/L

1 $\text{Na}_2\text{MoO}_4 \cdot \text{H}_2\text{O}$, and 1,600 mg/L $\text{Zn}(\text{CH}_3\text{COO})_2$. Residual glucose concentrations were maintained
2 at limited levels (< 0.1 g/L) during the fed-batch fermentation by using the pre-set feeding profile.
3 Enzyme expression was induced by adding three shots of Isopropyl β -D-1-thiogalactopyranoside
4 (IPTG), *i.e.*, 3 mL, 2.5 mL, and 2.5 mL of IPTG (0.1 M in stock solution) at 11 h, 14 h, and 17 h,
5 respectively, to achieve a total IPTG concentration of 1 mM in the culture medium. For DCW
6 analysis, 5 mL of cultivation broth was washed and centrifuged (4,500 g for 10 min at 4 °C), and
7 then filled into a pre-dried and pre-weighed aluminum weighing dish before drying at 60 °C for
8 72 h. The *E. coli* fermentation broth was collected and centrifuged (4,500 g for 30 min at 4 °C).
9 Both pellets and supernatants were frozen separately at -20 °C for subsequent product extraction
10 and quantification. For crude enzyme preparation, the *E. coli* cells were disrupted by several
11 freeze/thaw cycles at -80 °C and the cultivation broth was centrifuged (4,500 \times g for 30 min at 4
°C). The supernatant containing crude enzymes was harvested.

13

14 **Enzyme Extraction and Quantification**

15 Polyhistidine-tagged expressed proteins were collected and purified using the MagneHis™
16 protein purification system (Promega). The size and molecular weight (kDa) of enzymes were
17 estimated via protein migration in SDS-polyacrylamide gel using XCell SureLock™
18 electrophoresis tank and the enzyme concentrations were quantified using the Pierce™ Gold BCA
19 protein assay kit to determine the mass concentration (g/L) of enzyme/protein produced.

20 **Poly(ethylene terephthalate) (PET) Substrates**

21 Post-consumer recycled waste PET flakes (RPET), PET powder (PPET, Goodfellow), and
22 amorphous PET film (AmPET, Goodfellow) were used as substrates for the enzymatic degradation
23 of PET in this study. The Extruded RPET (ExPET) was obtained by extrusion of RPET using twin
24 screw extrusion at 200 rpm with a throughput of 9 g/min (15 mm diameter screws 60:1 L:D,
25 Technovel Japan) [30]. The types of poly(ethylene terephthalate) (PET) materials used in this
26 study and their properties are listed in **Table 2**. Glass transition temperature (T_g), melting
27 temperature (T_m), and crystallinity (%) values were acquired using Differential Scanning
28 Calorimetry (DSC) analysis. Number average and weight average molecular weight (*i.e.*, Mn and
29 Mw, respectively) for PET substrates was determined using Gel Permeation Chromatography
30 (GPC). Detailed protocols for DSC and GPC analysis are provided in the Supplementary

1 Information. However, intrinsic viscosity (IV) measurements were carried out using Ubbelohde
2 Viscometer by adding o-chlorophenol as a solvent. Billmeyer's relationship, as described in
3 Supplementary Information, was used to determine IV values for PET substrates.

4

5 **TABLE 2. Types of poly(ethylene terephthalate) (PET) used in this study.**

Abbreviation	Description	Manufacturer	T_g (°C)	T_m (°C)	Crystallinity	IV	M_n (kDa)	M_w (kDa)	PDI
RPET	Recycled PET bottle flakes acquired after washing/shredding	Post-consumer from UltrePET	81.8	244.5	30.5%	0.75	35.9	68.7	1.91
PPET	PET powder, copolymer with 1ppm Acetaldehyde, 300 μ m	Goodfellow	74.2	244.1	> 40%	0.8	27.3	52.0	1.91
ExPET	Extruded RPET	Post-consumer from UltrePET	67.9	251.9	7%	0.38	17.6	44.3	2.51
AmPET	Amorphous PET film, 0.25 mm	Goodfellow	69.7	250.2	2-5%	0.75	—	—	1.58

6
7 The RPET flake used in this study was obtained from UltrePET, LLC. (Albany, New York),
8 which has a number average molecular weight (M_n) of 24,500 g/mol, a melting point (T_m) of
9 244.5 °C, a glass transition temperature (T_g) of 81.8 °C, and a 30.5% crystallinity. An ultra-high
10 twin screw extruder (Technovel Corporation Osaka, Japan) was used for the reactive processing
11 of RPET flakes. A mechanical grinder (Wiley Mill grinder) was used to mill the extruded samples
12 into small particles, which were then sieved using a Rotap sieve shaker for further analysis and
13 degradation studies. The PET materials were ground into particles with Mesh-40 and -60 sizes,
14 which correspond to maximum particle sizes of 0.4 mm and 0.25 mm, respectively. The intrinsic
15 viscosity (IV) and M_n of the extruded samples were calculated using o-Chlorophenol (Sigma-
16 Aldrich). The experimental protocols for reactive extrusion setup and RPET particle preparation
17 are included in the supplementary information.

18

19 **PET Depolymerization in 15-mL tube reaction**

20 **Using PPET or RPET as Substrate:** The enzymatic reactions were carried out in 15 mL
21 glass tubes, with each containing 5 mg PPET or RPET (40 mesh or 60 mesh size) and 1 mL of

1 protein-specific buffer, i.e., 100 mM potassium phosphate buffer (pH 8.0) for LCC^{ICCG} variants
2 and 50 mM glycine-sodium hydroxide (pH 9.0) for *Is*PETase (W159H/S238F) and MHETase. The
3 depolymerization was initiated by adding the purified enzyme (LCC^{ICCG} variant, *Is*PETase, or
4 *Is*PETase + *Is*MHETase) to a final concentration of 0.1 μ M. The tube reactions were conducted
5 without pH control at 40 °C for PETase and PETase + MHETase and 65 °C for LCC with an
6 agitation of 250 rpm in a water-bath shaker for 48 h. Samples were harvested at multiple time
7 points and analyzed by thin-layer chromatography (TLC) or high-performance liquid
8 chromatography (HPLC) to determine PET depolymerization kinetics. Samples taken for HPLC
9 and TLC analysis were quickly quenched using equal volume of methanol for immediate
10 termination of the depolymerization reaction. PET degradation was observed at 40X magnification
11 under a light microscope. Assays were performed in duplicates and evaluated accordingly.

12 **Using AmPET or ExPET as Substrate:** The enzymatic reactions were carried out in 15
13 mL glass tubes, with each containing either 10 mg AmPET + 2 mL potassium phosphate buffer
14 (100 mM, pH 8.0) or 2.5 mg ExPET + 1 mL potassium phosphate buffer (100 mM, pH 8.0). The
15 depolymerization was initiated by adding the purified LCC^{ICCG} variant to a final concentration of
16 0.1 μ M. The tube reactions were conducted without pH control at 65 °C with an agitation of 250
17 rpm in a water-bath shaker for 10 days. Samples were harvested at multiple time points and
18 quenched using an equal volume of methanol to immediately terminate the reaction. Harvested
19 and quenched samples were then analyzed by HPLC to determine PET depolymerization kinetics.
20 PET degradation was observed at 40X magnification under a light microscope. Assays were
21 performed in duplicates and evaluated accordingly.

22 PET Depolymerization in 1-L reactor

23 The enzymatic degradation of PET was scaled-up in a 1-L bioreactor (BIOSTAT® B-DCU,
24 Sartorius, Germany). Prior to the 1-L reactor experiments, the recycled PET (RPET) rods with a
25 crystallinity within 10-12% and diameters of 1-2 mm were ground into pellets with particle sizes
26 \leq 2 mm. The reaction medium (0.5 L) contained 200 g/L RPET pellets in the 100 mM potassium
27 phosphate buffer (pH 8.0). The pH meter was calibrated using standard pH 4.0 and pH 7.0 buffers.
28 The reaction was initiated by adding the purified LCC^{ICCG} or PelB-LCC enzyme to the reaction
29 medium to a final concentration of 2 μ M which corresponds to ratios of 0.29 mg LCC/g PET or
30 0.31 mg PelB-LCC/g PET, respectively. The reactor's temperature was controlled at 65 °C and
31 the pH value was maintained at 8.0 by cascade control with the addition of KOH (10 M). The

1 agitation speed was maintained at 200 rpm throughout the experiment using a single six-blade,
2 Rushton-type impeller to provide efficient mixing in the reactor.

3 Samples of 5 mL were collected every 2-12 h from the reaction at different time points using
4 the sterile syringe for further HPLC analysis. An equal volume (5 mL) of tetrahydrofuran (THF)
5 was immediately added to each sample right after collection, to quickly quench the reaction. These
6 samples were then diluted using 100 mM potassium phosphate buffer (pH 8.0) to determine the
7 amount of TPA and BHET produced from the degradation of PET pellets using HPLC.

8

9 **Analytical Methods for TPA, MHET, BHET Detection and Quantification**

10 **Thin-Layer Chromatography (TLC):** TLC, as a qualitative technique, was used to
11 separate TPA from untreated and degraded PET samples and performed directly on the spots of
12 TLC aluminum sheets (silica gel 60 F₂₅₄) (Millipore-Sigma). The same samples analyzed by TLC
13 were also analyzed by HPLC. The solvent for TPA detection and separation on the TLC plate was
14 prepared by mixing methanol: deionized water: 7.6% hydrochloric acid (by dissolving 37% HCl
15 in methanol) in the ratio of 18: 2: 0.15 (v/v/v), respectively. After developing the TLC plate, the
16 TPA spots were detected using a 254 nm UV lamp.

17 **High-Performance Liquid Chromatography (HPLC):** The concentrations of TPA,
18 MHET, and BHET in samples were quantified by HPLC to determine the extent of PET
19 depolymerization. When required, samples were diluted in 100 mM potassium phosphate buffer
20 at a pH of 8.0. Then, 500 μ L of methanol was added to 500 μ L of sample dilution. After
21 homogenization and filtering through a 0.25 μ m syringe filter, samples were injected into Agilent
22 1100 Series HPLC system (Agilent Technologies, Palo Alto, CA) equipped with a pump module,
23 an autosampler, a column oven, and a UV absorbance detector.

24 The separation of the sample mixtures was achieved using a Luna® C18(2) LC column (150
25 \times 4.6 mm, 5 μ m) (Phenomenex, Torrance, CA). The mobile phase consisted of deionized water
26 with 20 mM H₂SO₄ (A), and methanol (B), which were eluted using the following gradient: 80%
27 A and 20% B to 35% A and 65% B in 15 min, back to 80% A and 20% B in 5 min, and held at the
28 composition for another 5 min. The flow rate was adjusted to 0.6 mL/min. The temperature was
29 held constant at 40 °C. The injection volume was 1.5 μ L. The chromatograms were acquired at
30 240 nm. The TPA, MHET, and BHET peak areas were calibrated using solutions prepared by
31 commercial TPA (Acros Organics, Geel, Belgium) and BHET (TCI, Tokyo, Japan) and MHET

1 synthesized in-house. Typical HPLC chromatograms and the retention times for standard TPA,
2 MHET, BHET and real reaction samples are shown in **Figure S1** in Supplementary Information.
3 Sample quantification assays were performed in triplicates and evaluated accordingly.

4 These HPLC results were then utilized to determine the percentage degradation efficiency
5 of PET into TPA, MHET, and BHET by using the **Equation (1)**, which considers the
6 depolymerization of PET into its all three possible monomer products (TPA, BHET, or MHET).
7 Since the repeating unit of PET has a molecular weight of 192 g/mol and the molecular weights of
8 the monomers TPA, MHET, BHET are 166 g/mol, 209 g/mol, and 254 g/mol, respectively, the
9 overall PET degradation efficiency can be calculated as:

$$Degradation\ Efficiency\ (\%) = \frac{TPA\ (g)\ \frac{192}{166} + MHET\ (g)\ \frac{192}{209} + BHET\ (g)\ \frac{192}{254}}{Total\ PET\ loaded\ (g)} \times 100\% \quad (1)$$

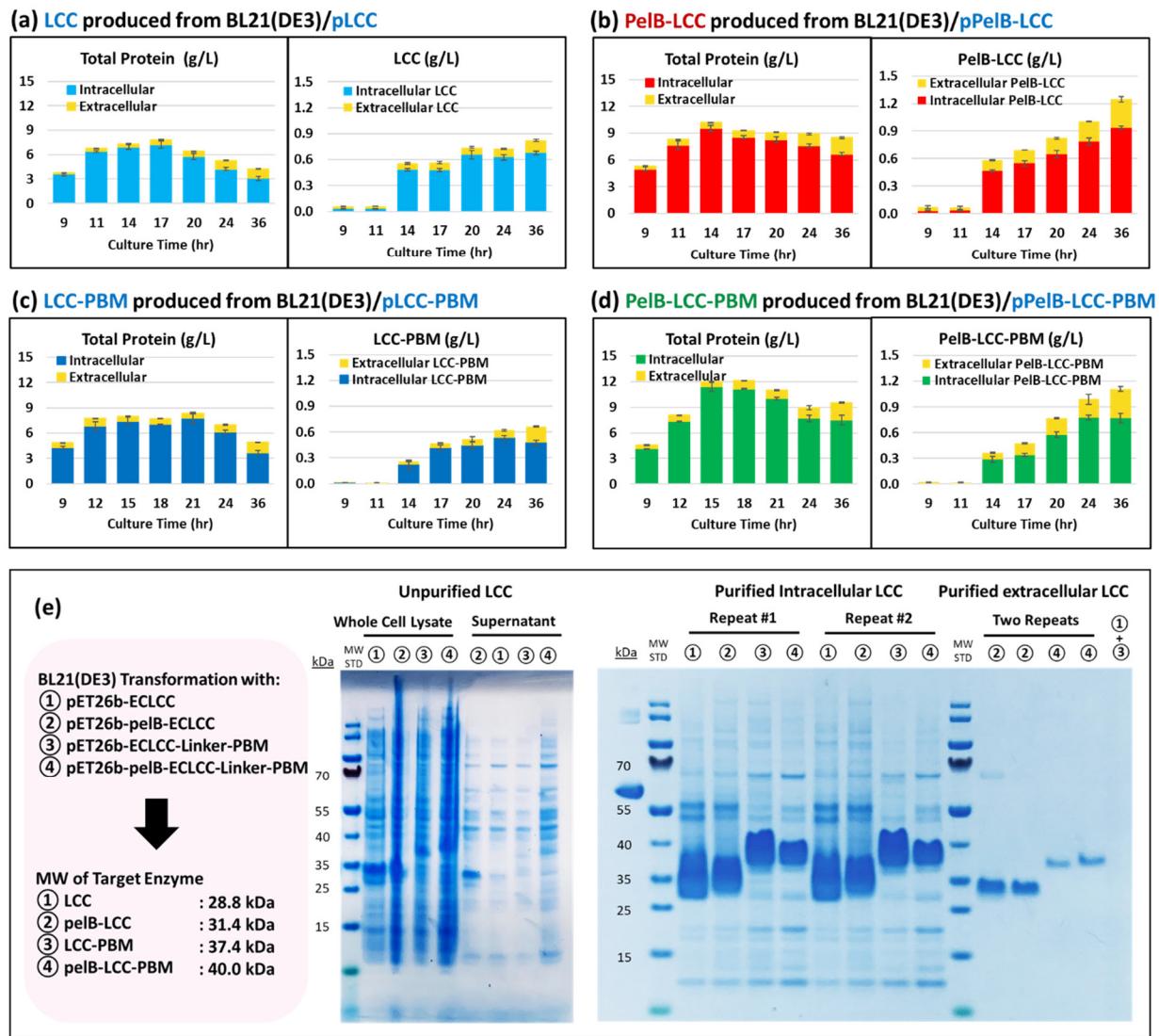
10

11 **Results**

12 **Expression of PETase, MHETase, and LCC^{ICCG} variants in *E. coli* BL21(DE3)**

13 The *E. coli* BL21(DE3) with a T7 RNA polymerase-based expression system was used to
14 overexpress the re-engineered PETase (*Is*PETase W159H/S238F) and MHETase with enhanced
15 efficiency [28]. After that, the expression system was further used to express the LCC^{ICCG} [22]
16 and its variants to degrade PET more efficiently than PETase and MHETase. To promote the
17 production of LCC in the culture medium, the secretion of recombinant proteins in the periplasmic
18 space or extracellular environment offers a potential advantage [31]. Thus, an N-terminal PelB
19 signal peptide, leader sequence of pectate lyase B (Met1-Ala22) from *Pectobacterium*
20 *carotovorum*, was attached to the LCC to direct the protein to the outer membrane through the
21 Sec-dependent pathway. Recombinant proteins were produced as LCC without the signal peptide
22 or with the N-terminal PelB (PelB-LCC). Since binding the enzyme to the surface of PET may
23 help initiate the degradation process, the substrate-binding modules (polymer-binding domain,
24 PBM) of a polyhydroxyalkanoate depolymerase from *Alcaligenes faecalis*, together with the linker
25 (2.3 kDa) from a cellobiohydrolase from *Trichoderma reesei*, [32, 33] was fused to the C-terminus
26 of LCC to improve enzyme adsorption to the PET substrate. Therefore, four LCC^{ICCG} constructions
27 (namely LCC, PelB-LCC, LCC-PBM, and PelB-LCC-PBM) were generated and compared for
28 PET degradation. Plasmids containing the genes encoding PETase, MHETase, LCC, PelB-LCC,

1 LCC-PBM, and PelB-LCC-PBM were constructed separately with the addition of a short tract of
2 the poly-histidine tag to the N-terminus or C-terminus to facilitate the enzyme purification. The *E.*
3 *coli* BL21(DE3) cells harboring corresponding plasmids were grown in shake flasks for producing
4 the target enzymes, which were purified through an immobilized metal affinity chromatography
5 (IMAC) and verified by SDS-PAGE.


6 As shown in the non-reducing SDS-PAGE gel pictures in **Figures 1(e), 2, and S2**, the *E.*
7 *coli* cells successfully produced all the target enzymes (LCC: 29 kDa; PelB-LCC: 31 kDa; LCC-
8 PBM: 37 kDa; PelB-LCC-PBM: 40 kDa; PETase: 36 kDa; MHETase: 52 kDa) in the shake flask
9 cultures. In addition, it appeared that some of the produced PETase and MHETase were leaked
10 into the culture medium after the IPTG induction for 20 h, suggesting that some cell lysis might
11 have taken place due to the possible toxicity of PETase or MHETase to the *E. coli* cells.

12

13 **High-Yield Production of PETase and LCC^{ICCG} Variants in Fed-Batch Bioreactor**

14 Based on the recent techno-economic analysis by the National Renewable Energy
15 Laboratory (NREL) [34], a significant portion of the cost of the recycled TPA from the enzymatic
16 PET hydrolysis process is due to the enzyme cost. The results suggested that increasing the enzyme
17 loading from 1 to 10 mg/g PET may lead to an 11% higher total cost [34]. Therefore, reducing the
18 enzyme production cost is important to a commercially viable PET enzymatic hydrolysis process.
19 In addition to the earlier effort of using PelB signal peptide to help secrete the produced target
20 protein, we further optimized the fed-batch fermentation conditions, including the temperature
21 profile, glucose feeding strategy, and IPTG induction for protein expression, to achieve the highest
22 production of PETase, MHETase, and four LCC^{ICCG} variants (LCC, PelB-LCC, LCC-PBM, and
23 PelB-LCC-PBM) with the *E. coli* BL21(DE3) expression systems, as described in the fed-batch
24 fermentation protocols. All enzyme expressions were induced by adding three shots of IPTG
25 during 11~17 h for a total of 0.1 M in the fermentation medium.

26

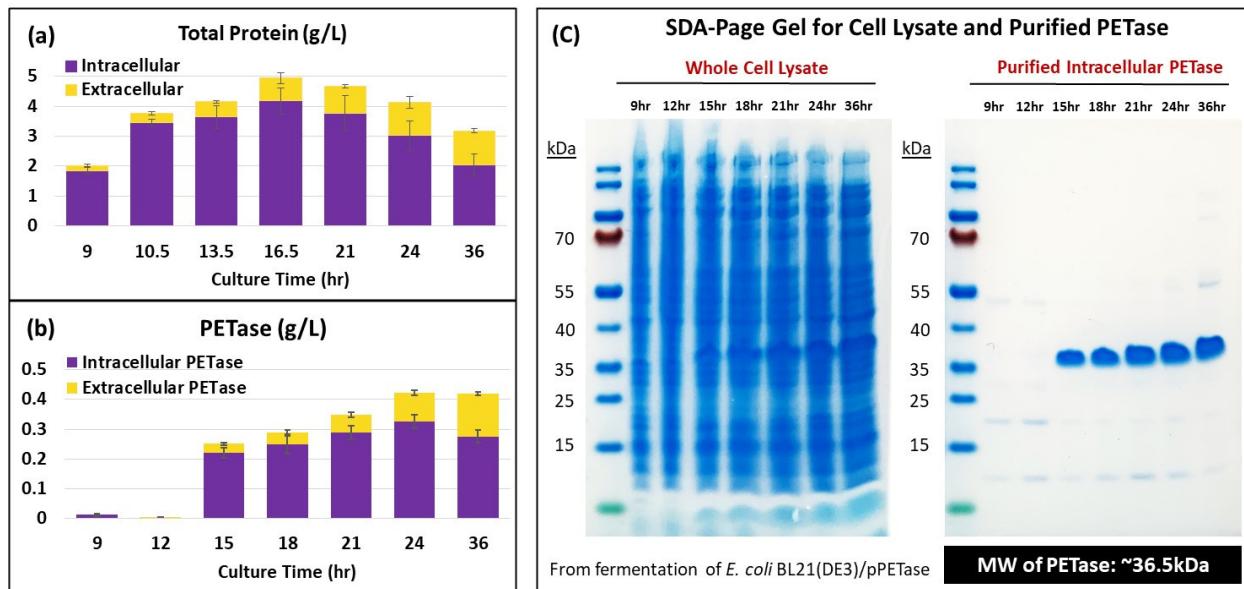
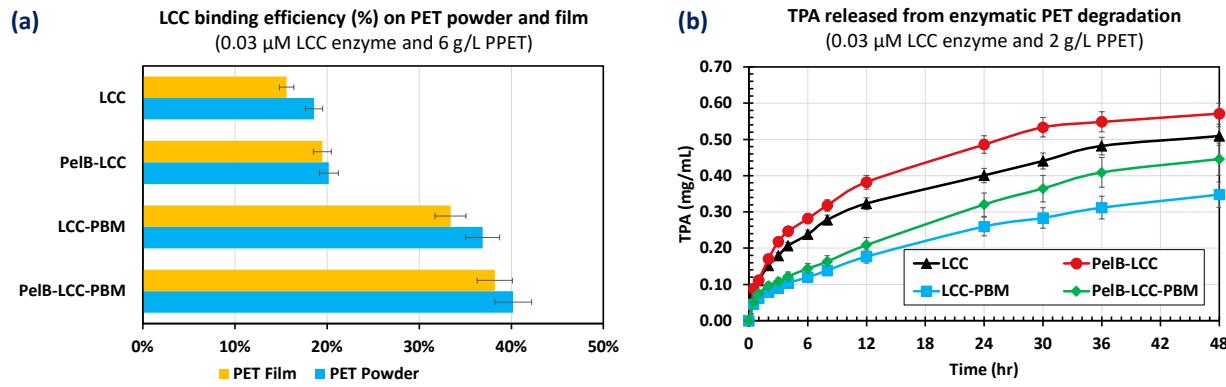


FIGURE 1. Production of LCC^{ICCG} enzymes (LCC, PelB-LCC, LCC-PBM, PelB-LCC-PBM) from fermentation of *E. coli* BL21(DE3) under 1-L fed-batch bioreactor conditions. **(a) - (d)** Time courses of intracellular and extracellular total protein and purified LCC, PelB-LCC, LCC-PBM, and PelB-LCC-PBM, respectively. **(e)** Non-reducing SDS-PAGE gel results of the samples of whole cell lysate, supernatant, and purified LCC^{ICCG} enzymes from both cell pellets (intracellular LCC^{ICCG}) and supernatant (extracellular LCC^{ICCG}). The *E. coli* BL21(DE3) was transformed with the plasmid pLCC, pPelB-LCC, pLCC-PBM, or pPelB-LCC-PBM, respectively, for the production of corresponding LCC^{ICCG} variants. Enzyme expression was induced by adding three shots of IPTG during 11~17 h for a total of 0.1 M in the fermentation medium. Note: The non-reducing SDS-PAGE results of LCC and PelB-LCC may give higher molecular weights than expected because their 3D structures retain disulfide bond.

1 The produced enzymes PETase (*Is*PETase W159H/S238F), Mhetase, and four LCC^{ICCG}
2 variants (LCC, PelB-LCC, LCC-PBM, and PelB-LCC-PBM) were purified. The concentrations of
3 total proteins and purified enzymes were quantified by using Pierce™ Gold BCA protein assay kit,
4 as described in the protocols. These purified enzymes were further tested and compared for their
5 PET depolymerization activities with various PET materials to identify the best enzyme. **Figure 1**
6 shows the production of the total protein and the target enzyme for all four LCC^{ICCG} variants under
7 the optimized fed-batch fermentation conditions. For all four strains, the total protein production
8 reached the peak values (7-12 g/L) at around 18 h, which was about 6 hours after the first IPTG
9 induction. After that, the total protein production started to decline. It appeared that the PelB signal
10 peptide for LCC secretion helped increase total protein production. The strain expressing PelB-
11 LCC-PBM produced the highest total protein (12 g/L), followed by the strain expressing PelB-
12 LCC (9.5 g/L). Among all the total protein produced, about 10-15% was the target LCC enzyme.
13 PelB-LCC was produced at the highest concentration (1.2 g/L or 38 μ M), followed by PelB-LCC-
14 PBM (1.1 g/L or 28 μ M), LCC (0.8 g/L or 28 μ M), and LCC-PBM (0.6 g/L or 16 μ M), respectively.
15 Unlike the total protein productions, which had a peak concentration at approximately 18 h, all
16 LCC concentrations continued to increase until the end of the run. The PelB secretion peptide
17 indeed helped the *E. coli* strains secrete more extracellular LCC enzymes, which contributed to
18 about 30% of the total PelB-LCC and PelB-LCC-PBM produced (**Figure 1 b and d**). However,
19 for LCC and LCC-PBM about 10-15% was also produced extracellularly (**Figure 1 a and c**). A
20 similar study has been conducted to improve the secretion efficiency of PETase by *E. coli* BL21
21 using PelB signal peptide [31]. However, the secretion efficiency and PET degradation capability
22 reported in that study were not as high as observed by our *E. coli* strains that secreted more
23 extracellular LCC enzyme with a contribution to about 30% of the total targeted LCC enzyme for
24 significantly improved PET degradation capabilities. Probably due to cell lysis, as indicated by the
25 cell density decline in **Figure S3 (a)**, some proteins were released from the cells for strains without
26 expressing the PelB signal peptide. The produced LCC enzymes were confirmed with the non-
27 reducing SDS-PAGE gel analysis (**Figure 1 e**).

28 The total protein and PETase production for strain *E. coli* BL21(DE3)/pPETase under the 1-
29 L fed-batch fermentation conditions was shown in **Figure 2**. The total protein production reached
30 the maximum value (5 g/L) at 16.5 h, and the PETase concentration continuously increased to 0.4
31 g/L at around 24 h and remained constant until the end of the run. As indicated by the extracellular

portion in **Figure 2 (a) and (b)**, up to 30% of the total protein or PETase was released into the medium in the late stage of the fermentation due to cell lysis. It seems that PETase is more toxic to the *E. coli* cells as compared to LCC^{ICCG} variants (LCC, PelB-LCC, LCC-PBM, and PelB-LCC-PBM), thus the cell density (**Figure S3 b**), total protein, and target enzyme production were all lower than those achieved in the experiments with the *E. coli* strains expressing LCC enzymes (**Figure 1**). The lower cell density as shown in **Figure S3 (b)** clearly supports the claim of the increased toxicity from PETase. The produced PETase was also confirmed by SDS-PAGE for the samples of whole-cell lysate and purified PETase (**Figure 2 c**).

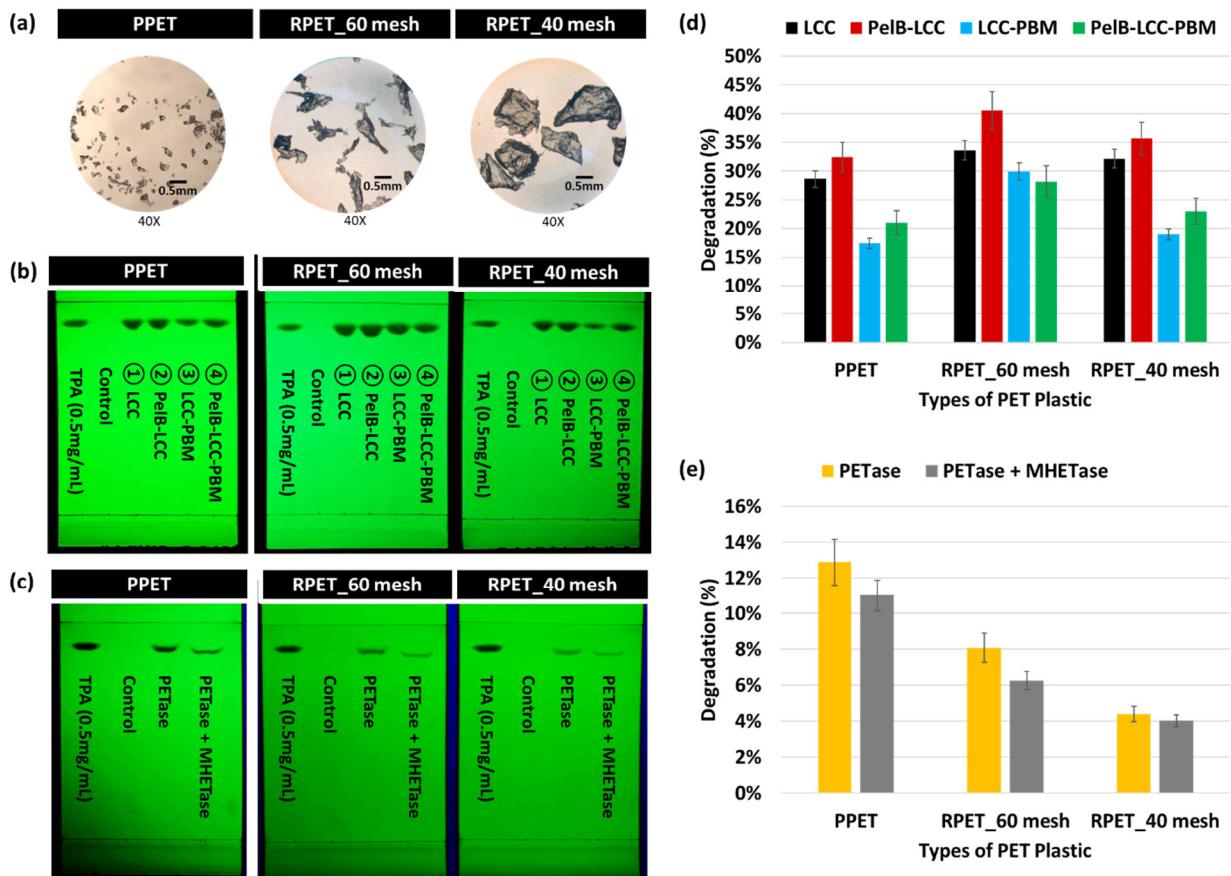

FIGURE 2. Production of PETase from the fermentation of *E. coli* BL21(DE3) under 1-L fed-batch bioreactor conditions. **(a)** Total intracellular and extracellular protein produced by *E. coli* BL21(DE3)/pPETase; **(b)** Intracellular and extracellular PETase produced by *E. coli* BL21(DE3)/pPETase; **(c)** The non-reducing SDS-Page gel results of the samples of whole cell lysate and purified intracellular PETase enzymes from both cell pellets (intracellular PETase) and supernatant (extracellular PETase).

15

16 Comparison between LCC, PelB-LCC, LCC-PBM, and PelB-LCC-PBM

17 To increase the binding efficiency of the PET hydrolase to the PET substrate surface, a
18 PBM (6.3 kDa) was designed to attach to the LCC^{ICCG} by a linker sequence (2.3 kDa). The
19 cutinases fused to the binding module were compared to the original LCC^{ICCG} enzymes in terms
20 of affinity towards the hydrophobic substrates, PET substrate from post-consumer bottle scraps,
21 and commercial PET powders. Binding efficiency of enzyme with PET substrate was estimated in

1 accordance with the difference between the final and initial concentration of free enzyme in the
 2 buffer solution, along with PET substrate, after certain reaction time. In both cases, the adsorption
 3 of PBM-containing enzymes, *i.e.*, LCC-PBM and PelB-LCC-PBM, almost doubled the binding
 4 efficiency on PET films and PET powders as compared to the cutinases without binding domains
 5 (LCC and PelB-LCC) (**Figure 3 a**).


6 **FIGURE 3.** Comparison between the four LCC^{ICCG} variants (LCC, PelB-LCC, LCC-PBM, and PelB-LCC-
 7 PBM) for PET degradation and enzyme binding efficiency (%) on PET. **(a)** Binding/adsorption efficiency
 8 (%) of four LCC^{ICCG} variants on PET powder (Goodfellow) and film; enzyme and substrate loading: 0.03
 9 mg enzyme /g PET; error bar: triplicate reaction. **(b)** TPA is produced from the degradation of PET powder
 10 (Goodfellow) with four different LCC^{ICCG} variants. The experiments used 0.03 μ M LCC enzyme and 2 g/L
 11 PPET; buffer loading: 100 mM potassium phosphate buffer (pH 8.0); reaction temperature: 65 °C.
 12

13 The use of PBM links containing the hydrophobic nature contributed to increased binding
 14 efficiency on the surface of PET. This relevance of enzyme adsorption for efficient hydrolysis of
 15 polymers by fusing PBM with the native enzyme has also been reported in literature [33]. However,
 16 The PET degradation efficiencies were PelB-LCC > LCC and PelB-LCC-PBM > LCC-PBM based
 17 on the TPA released from the reaction (**Figure 3 b**). It appeared that the improved binding on the
 18 PET surface with PBM failed to improve the PET degradation. Interestingly, the PelB signal
 19 peptide for protein secretion significantly improved the PET degradation as PelB-LCC > LCC and
 20 PelB-LCC-PBM > LCC-PBM, as seen in **Figure 3 (b)**. In addition, the PelB peptide slightly
 21 improved the binding efficiency of the enzyme on PET surface (**Figure 3 a**). It is still unclear
 22 whether binding the enzyme to the PET surface is critical to the enzymatic degradation process.
 23

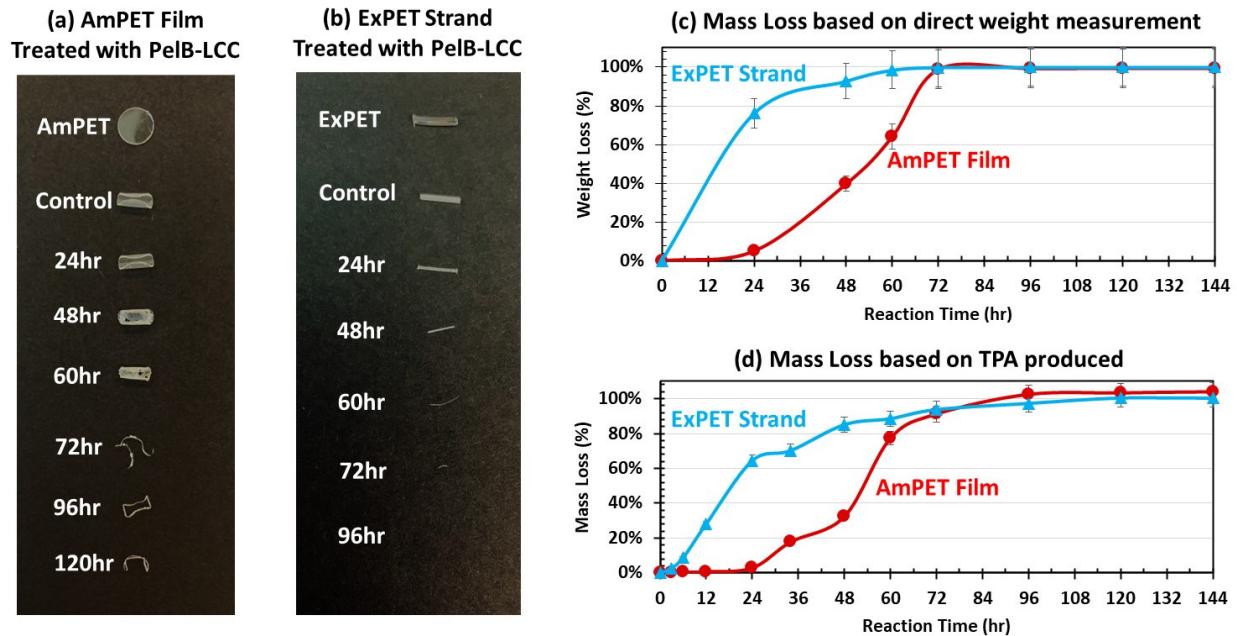
24

1 Identify the Best PET Hydrolase for Biodegradation of PET

2 Various PET materials were further tested to identify the best enzyme from the candidate
 3 group of LCC, PeIB-LCC, LCC-PBM, PeIB-LCC-PBM, PETase, and PETase + MHETase.
 4 Commercial PET powders (PPET, Goodfellow) with particle sizes < 0.3mm and crystallinities >
 5 40%, mesh-40 recycled PET (RPET) particles with sizes < 0.4 mm and crystallinities of 28.2%,
 6 mesh-60 RPET particles with sizes < 0.25 mm and crystallinities of 30.5% were used as the
 7 feedstocks (**Figure 4 a**). TPA generated from the PET degradation experiments within 48 h was
 8 rapidly confirmed by TLC (**Figure 4 b and c**). Then the produced TPA using four LCC^{ICCG} variants,
 9 PETase, PETase + MHETase was further analyzed by HPLC and the degradation efficiencies are
 10 shown in **Figure 4 d and e**.

11
 12 **FIGURE 4.** Catalytic activities of LCC^{ICCG} variants on PET powder (PPET) or recycled PET (RPET) flakes.
 13 **(a)** PPET, RPET_60 mesh, and RPET_40 mesh particles observed under a microscope; **(b)** Degradation of
 14 PPET, RPET_60 mesh and RPET_40 mesh particles with LCC^{ICCG} variants; **(c)** Degradation of PPET,
 15 RPET_60 mesh and RPET_40 mesh particles with PETase and MHETase; **(d)** PET degradation efficiency
 16 (%) for LCC^{ICCG} variants based on produced TPA; **(e)** PET degradation efficiency (%) for PETase and

1 PETase + MHETase based on the produced TPA. The TPA released from PET was analyzed by TLC for
2 (b) and (c) and further quantified with HPLC for (d) and (e). Enzyme loading: 0.1 μ M; substrate loading: 5
3 mg/mL; buffer: 100 mM potassium phosphate buffer (pH 8.0); reaction temperature: 65 °C.

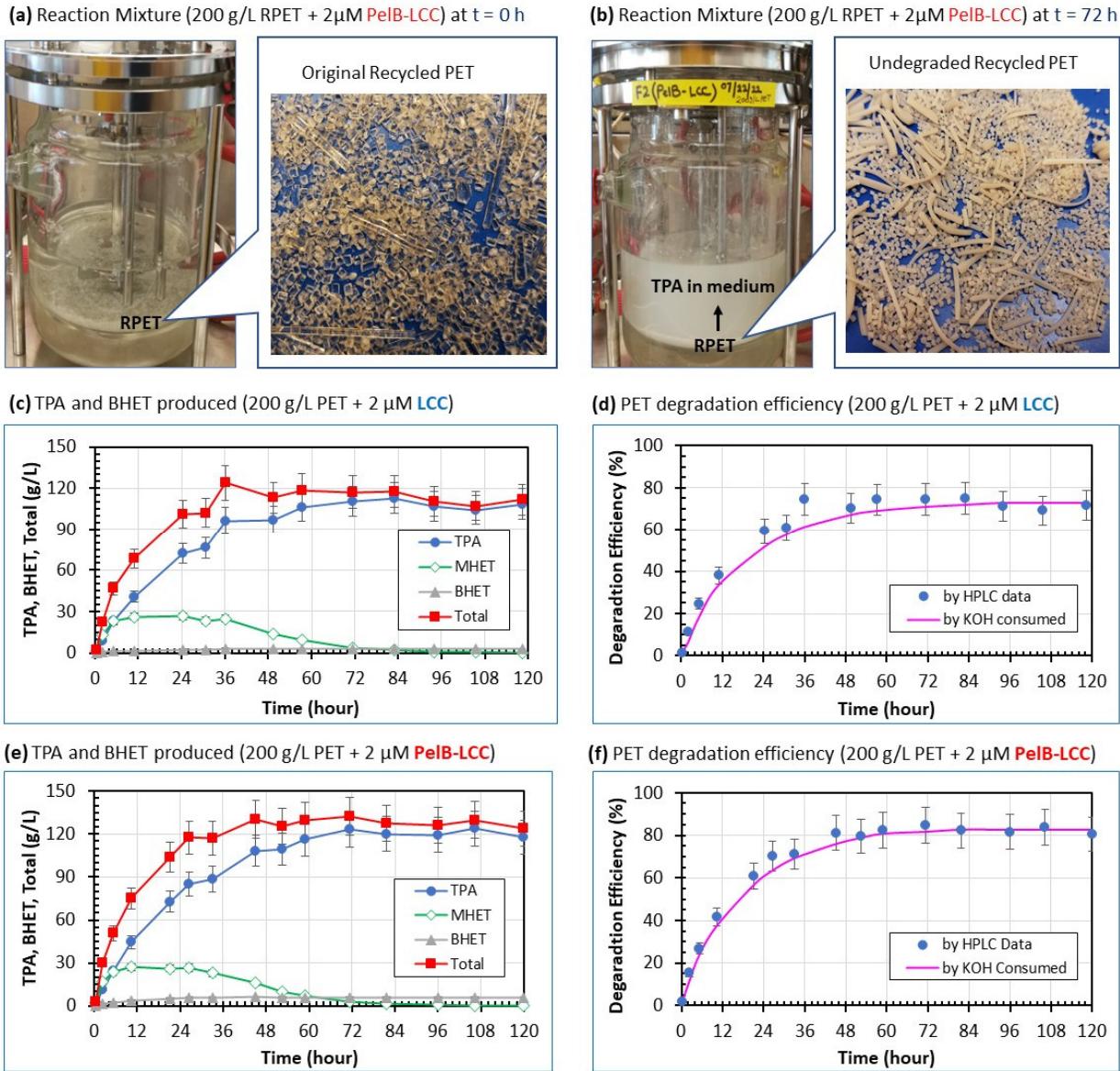

5 As shown in **Figure 4 b and d**, The RPET samples with 60 mesh sizes (≤ 0.45 mm) had
6 higher degradation rates than the samples with 40 mesh sizes (≤ 0.7 mm) for all the enzymes
7 investigated. Several studies have been reported suggesting the higher initial enzymatic
8 depolymerization rate for substrate with higher surface area and smaller particle size as compared
9 to substrates with lower surface area [35, 36]. It was observed that the smaller particles of PET
10 had higher specific surface area, which was more beneficial for the enzymatic degradation process.
11 TPA production from PPET (≤ 0.30 mm), however, was comparable to that from RPET_40 mesh
12 (≤ 0.45 mm). The higher crystallinity in PPET increased the difficulty in enzymatic degradation,
13 though PPET has the smallest particle size [37]. Among all four LCC^{ICCG} variants/constructions,
14 PelB-LCC led to the highest TPA production, followed by LCC, PelB-LCC-PBM, and LCC-PBM.
15 The results were consistent with our early investigation, as seen in **Figure 3 (b)**, i.e., the PelB
16 peptide improved PET degradation as well as protein secretion. Although the adsorption to PET
17 by the LCC-PBM and PelB-LCC-PBM fusion enzymes was significantly enhanced as compared
18 with LCC and PelB-LCC, their catalytic activities on PET substrates were not as competitive
19 (**Figure 3 b, Figure 4 d**).

20 The PETase and the PETase + MHETase produced from *E. coli* BL21(DE3) were also tested
21 for PET degradation. Overall, the performance of PET hydrolysis using any LCC^{ICCG} variants was
22 much higher than that using PETase and MHETase from *I. sakaiensis* 201-F6 (**Figure 4 d and e**).
23 About 12% degradation by PETase was obtained from the provided PPET after 48 hours. PETase
24 has an optimal operating temperature of around 40°C, which is relatively low compared to the
25 glass transition temperature (T_g) of PET, which is around 70 °C [38]. However, all LCC^{ICCG}
26 variants showed the highest activities at 65°C, which is close to PET's glass transition temperature
27 T_g . It appeared that the lower thermotolerance of PETase and its optimum working temperature
28 (40 °C) far lower than T_g may have limited the enzyme's degradation activity. Further engineering
29 of PETase for higher thermotolerance (65 °C or higher) may be helpful to significantly improve
30 its degradation capability at a large scale [23, 39]. In addition, the substrates treated with PETase
31 and MHETase cocktail exhibited lower levels of TPA production than those only treated with

1 PETase (**Figure 4 e**). These results were different from what was reported earlier [10, 28]. The
2 MHETase produced from the *E. coli* system may need to be further optimized and purified for
3 future studies.

4 **Degradation of Low-crystallinity PET with PelB-LCC in 15-mL tube reaction**

5 As demonstrated earlier (**Figure 3 b** and **Figure 4 d**), PelB-LCC was the most efficient
6 enzyme for PET degradation among all four investigated LCC^{ICCG} constructs. It was further used
7 to examine its catalytic activities for two lower-crystallinity PET materials: circular amorphous
8 PET films (crystallinity 2-5%, diameter ~12 mm, thickness ~0.5 mm) and extruded amorphous PET
9 strands (crystallinity ~7%, length ~5 mm, diameter ~0.25 mm). The results showed that ExPET strands
10 were completely degraded after being treated with PelB-LCC for 72 hours while the AmPET films
11 were nearly completely degraded (**Figure 5 a and b**). For the circular AmPET films, the edges
12 remained undegraded after the enzymatic hydrolysis for 120 hours. The edges of the films, created
13 via mechanical forces, looked opaque and may have higher crystallinity, which may have caused
14 the slow degradation (**Figure 5 a**). The ExPET strands, however, had very minimal rough edges,
15 and thus showed almost complete degradation after 72 hours (**Figure 5 b**). The results were further
16 confirmed by direct weight loss measurements (**Figure 5 c**) and the calculated degradation
17 efficiency based on the TPA yields determined by the HPLC (**Figure 5 d**). In addition, the AmPET
18 films treated with purified PelB-LCC showed a slower degradation efficiency in the beginning as
19 compared to the ExPET strands. The primary reason was that the AmPET films have much smaller
20 specific surface areas than the ExPET strands. The degradation rate of the AmPET films eventually
21 caught up after three days, probably because enzymatic degradation in the early stages created
22 more holes and uneven surfaces, which helped open more surfaces available for accelerating the
23 degradation process. This was verified by the observations of the reacting PET samples under the
24 microscope, where prominent pitting was observed on the surfaces of both AmPET films and
25 ExPET strands (**Figure S5**).



1
2 **FIGURE 5.** Biodegradation of AmPET films (crystallinity 2-5%, circular film with a diameter \sim 12 mm
3 and a thickness \sim 0.5 mm) and ExPET strands (crystallinity \sim 7%, short string with a length \sim 5 mm and a
4 diameter \sim 0.25 mm) with PelB-LCC. (a) Pictures for AmPET film sample during the biodegradation
5 process; (b) Pictures for ExPET strand sample during the biodegradation process; (c) Weight loss (%)
6 during the biodegradation process; (d) Mass loss (%) determined by the produced TPA concentrations
7 (analyzed by HPLC) (i.e., the calculated degradation efficiency % based on the TPA, MHET, and BHET
8 produced). Enzyme loading: 0.1 μ M purified PelB-LCC; substrate loading: 5 mg/mL AmPET or 2.5 mg/mL;
9 buffer loading: 100 mM potassium phosphate buffer (pH 8.0); reaction temperature: 65 $^{\circ}$ C.
10

11 Scale-up of the degradation of recycled PET in 1-L reactor

12 To scale up the developed enzymatic PET degradation process, the enzymatic reaction was
13 further carried out in a 1-L bioreactor system with temperature, pH value, and agitation speed
14 controlled at 65 $^{\circ}$ C, pH 8.0, and 200 rpm, respectively. Recycled PET (RPET) materials in rod
15 (with a crystallinity of \sim 12%) were extruded into pellets (as described by the protocols provided
16 in Supplementary Information), with most of them having sizes within 1-2 mm (**Figure 6 a**) and
17 loaded to the reaction medium at an initial concentration of 200 g/L. Based on the enzyme activity
18 results from the 15 mL tube scale reactions, the top two LCC^{ICCG} variants, namely LCC and PelB-
19 LCC, were selected as candidates for the scale-up (1-L reactor) experiments. The LCC enzymes

were added into the reactor to a concentration of 2 μM , which corresponded to enzyme/substrate ratios of 0.29 mg LCC/g PET and 0.31 mg PelB-LCC/g PET, respectively.

FIGURE 6. Scaled-up degradation of recycled PET pellets (with particle sizes of ~ 2 mm) in a 1-L bioreactor with 200 g/L PET and 2 μM LCC (0.29 mg enzyme/g PET) or PelB-LCC (0.31 mg enzyme/g PET). (a) the reactor and the PET material at $t = 0$ h, (b) the reactor and the leftover PET material (undegraded) at $t = 72$ h, (c) TPA, MHET, and BHET produced during the reaction with LCC (determined by HPLC), (d) PET degradation efficiency (%) for the reaction with LCC by estimation with total KOH used to neutralize the produced TPA or by calculation with TPA, MHET, and BHET measured by HPLC, (e) TPA, MHET, and BHET produced during the reaction with PelB-LCC (determined by HPLC), (f) PET

1 degradation efficiency (%) for the reaction with PelB-LCC by estimation with total KOH used to neutralize
2 the produced TPA or by calculation with TPA, MHET, and BHET determined by HPLC.

3

4 Consistent with what was observed earlier in tube reaction experiments (**Figure 3 b**), PelB-
5 LCC demonstrated more efficient degradation of the recycled PET in the 1-L reactor than LCC,
6 within three days which achieved 80% and 70% degradation, respectively (**Figure 6 d and f**). TPA
7 was observed to be the overall major degradation product along with the minimal production of
8 BHET. During the depolymerization process of PET, it was observed that MHET was produced
9 as an intermediate product, and mainly accumulated during the first three days (**Figure 6 c and e**).
10 After that, it was further converted into TPA, which is the primary product of our interest. In both
11 scaled-up reaction experiments, the raw PET pellets were depolymerized very quickly at the
12 beginning of the reaction, but the depolymerization rate started to slow down with no significant
13 degradation seen after 72 h. While the original PET pellets looked transparent (**Figure 6 a**), the
14 residual pellets (undegraded PET) after 72 h were typically seen in reduced sizes and looked white
15 and opaque (**Figure 6 b**). Further DSC analysis of the undegraded PET materials showed a
16 significantly increased crystallinity (up to 30%), which may be one of the major reasons that
17 caused the extremely slow degradation after 72 h. In addition, it was observed that the produced
18 TPA had a low solubility in the aqueous reaction medium (< 10 g/L) under pH 8.0 as gradually
19 increased tiny, white suspensions/precipitations were seen in the reactor during the reaction
20 (**Figure 6 b**), which may be caused by accumulation of TPA (> 100 g/L in the late stage).

21

22 **Discussion**

23 The cutinase-like enzyme from the leaf-branch compost cutinase, LCC, is a good candidate
24 for biodegradation of post-consumer PET waste. In this study, LCC^{ICCG} [22] demonstrated
25 significantly higher degradation efficiency for several PET materials from different sources than
26 PETase from *I. sakaiensis* [10, 28]. Four variants of LCC^{ICCG}, namely LCC, PelB-LCC, LCC-
27 PBM, and PelB-LCC-PBM, were constructed with codon optimization and expressed in *E. coli*
28 BL21(DE3) under the inducible T7 expression system, which aimed to improve the overall enzyme
29 production in bioreactors, the binding efficiency of the produced enzyme on PET surface, and/or
30 the enzyme's catalytic activities.

1 *E. coli* cells, like other Gram-negative bacteria, possess an inner and outer membrane that
2 separates the organism into two main subcellular compartments: the cytoplasm and the periplasm.
3 The most common choice to produce recombinant proteins is in the cytoplasm. However, the
4 periplasmic space or the extracellular environment is more suitable when disulfide bonds are
5 required for correct protein folding [40, 41], especially toxic heterologous recombinant proteins.
6 In fact, the toxicity caused by the expression and accumulation of intracellular LCC led to decline
7 of cell density after the *E. coli* reached its maximum DCWs within 20 h (Figure S3 a). LCC
8 contains one disulfide bond, which contributes not only to the thermodynamic stability but also to
9 the kinetic stability of LCC [42]. The disulfide bridge cannot be efficiently formed in the reducing
10 condition of the cytoplasm [40]. To overcome the limitation of *E. coli* cytoplasm expression, we
11 engineered the LCC with a signal sequence that directs them to the more oxidizing bacterial
12 periplasm for proper folding. With the assistance of the N-terminal PelB leader sequence [31],
13 about 30% of the recombinant PelB-LCC or PelB-LCC-PBM produced by *E. coli* was secreted to
14 the culture medium (Figure 1 a-d). The secretion of recombinant proteins not only facilitates
15 downstream recovery but also offers other potential advantages. The translocation increases the
16 cell viability (reduces cell toxicity) and enzyme yields, which is consistent with our results that the
17 *E. coli* transformed with pPelB-LCC-PBM or pPelB-LCC plasmids showed higher cell densities
18 (PelB-LCC > LCC and PelB-LCC-PBM > LCC-PBM) (Figure S3 a) and enzyme titers (PelB-
19 LCC > LCC > PelB-LCC-PBM > LCC-PBM) (Figure 1 a-d). In addition, the translocation also
20 reduces the exposure of the recombinant enzyme to the cytoplasmic protease, thus reduces the
21 enzyme degradation. Although the PelB signal peptide may be cleaved when it passes the inner
22 periplasmic membrane, we found that the PelB-LCC purified from both cell pellets (intracellular)
23 and fermentation supernatant (extracellular) had almost the same activity and both showed > 20%
24 improvements over LCC. This suggests the produced PelB-LCC is most likely a mature protein.

25 Though it is believed that the PelB signal peptide can be cleaved by the signal peptidase
26 during the translocation across the inner periplasmic membrane, resulting in the release of the
27 mature protein into the periplasm, a few research studies indicated that the signal peptide may not
28 necessarily be cleaved, or at least not completely cleaved from the linked protein [43-45]. In this
29 study, the SDS-Page denaturing gels of the purified intracellular PelB-LCC (31.4 kDa) and LCC
30 (28.8 kDa) showed that the former indeed had a higher molecular weight (Figure 1e and Figure
31 S7), which suggests that the majority of the intracellular PelB-LCC stayed as a mature protein,

1 similar to what was observed by Deb A et al [45] using mass spectrometry and denaturing gels.
2 However, it was also observed that the extracellular PelB-LCC showed a reduced molecular size,
3 with a molecular weight very similar to LCC (**Figure S7**). It seemed that the PelB signal peptide
4 was likely cleaved when the produced PelB-LCC was secreted into the extracellular medium. In
5 the *E. coli* fermentation, about 70% of the PelB-LCC was produced intracellularly, which may
6 have helped retain the PelB signal peptide [46, 47]. Interestingly, we observed that both
7 extracellular and intracellular PelB-LCC showed very comparable PET biodegradation activity,
8 which were both significantly higher than what was observed for the intracellular LCC. This
9 suggested that the PelB signal peptide may not necessarily have a direct impact on LCC's catalytic
10 activity. Instead, it was reported that the PelB signal peptide could influence the soluble protein
11 levels and improve the bioactivity of protein owing to the slow aggregation process and shifting
12 of the target protein to a folding pathway [48]. The cytoplasmic reducing conditions may
13 contribute to the LCC misfolding and inclusion body formation. However, the desirable high level
14 of protein expressions in industrial applications may lead to the aggregation and misfolding of
15 desired proteins and resultantly affecting the function of protein. This negative effect on the
16 activity of cutinase, has been experimentally observed in various studies [49, 50]. If the target
17 protein is expressed in the cytosol with aggregation and misfolding, it generally lacks to fulfill its
18 biological function [51]. With the help of secreting some of the produced enzyme to the
19 extracellular medium, PelB-LCC exhibited higher catalytic activities on PET degradation as
20 compared to other three LCC^{ICCG} variants (**Figure 3 b** and **Figure 4 d**).

21 Apart from the active site area, the surface interaction of the cutinases and substrates appears
22 to have a major impact on the hydrolysis of PET [32, 52]. If a PET hydrolase harbors a substrate-
23 binding module linked via spacers to its catalytic domain, it may facilitate the adsorption of the
24 enzyme during the natural hydrolysis of a polymer [27]. Enzymes with substrate binding domains
25 have been shown not only to increase the amount of active enzyme on the polymer interface [53],
26 but also to enhance the hydrolysis of insoluble substrates by partially disrupting the structure of
27 the polymer and therefore making the targeted bonds more accessible to the catalytic domain [54-
28 56]. To increase the adsorption of active enzymes on the PET interface, LCC enzymes were
29 engineered to fuse a polymer-binding module (PBM) from *A. faecalis* via a linker from *T. reesei*
30 to the C-terminus in this study. The PBM binding module has a hydrophobic nature that can help
31 bind the enzyme on the hydrophobic surface of PET. Our results showed that adsorption to PET

1 by the LCC-PBM and PelB-LCC-PBM enzymes was almost doubled as compared with LCC and
2 PelB-LCC (**Figure 3 a**). Although the performance of PET hydrolysis of all four LCC^{ICCG}
3 constructions was much higher than that of the bacterial enzyme PETase from *Ideonella*
4 *sakaiensis* 201-F6, the degradation efficiencies of LCC-PBM and PelB-LCC-PBM were not as
5 high as LCC and PelB-LCC (**Figure 5** and **Figure 6**). The increased binding efficiency of PBM
6 failed to improve PET degradation, which may be attributed to the complexity of the binding
7 process and the formation of the active enzyme-substrate complex. Our unpublished data showed
8 that the crystallinities of PET in aqueous solution gradually increased from 12% to ~30% in the
9 first three days. Previous studies have shown that PET hydrolases preferably degrade the
10 amorphous regions of PET [57-61], which is similar to what we observed in the biodegradation of
11 low-crystallinity PET, where nearly 100% degradation rate was achieved when the amorphous PET
12 was employed as feedstock for the PelB-LCC reaction (**Figure 5 a-d**). Increased crystallinity limits
13 the movement of the polymer chains and therefore, decreases the availability of polymer chains
14 for enzymatic attack [62]. On one hand, enzyme should be bound to low-crystallinity (e.g., < 20%)
15 PET surface to start the depolymerization process. On the other hand, if the enzyme happens to be
16 bound to the high-crystallinity (e.g. > 30%) substrate, then it may no longer become available for
17 a new enzymatic reaction, thereby limiting the overall depolymerization activity.

18 Biodegradation is a complex process and is governed by many factors, such as the
19 availability of the substrate, surface topology, morphology, molecular weight of the polymer, and
20 orientation of the polymer chains [62-65]. The accessibility of the polymer structure to enzymes
21 and water depends primarily on crystallinity, hydrophobicity, and the steric effects of the side
22 groups in the polymer backbone [66]. Different levels of PET degradability were shown in this
23 study, especially based on the particle size of PET (i.e., specific surface area) and the degree of
24 crystallinity. To improve biodegradation efficiency, recycled PET (RPET) was ground into smaller
25 pellets to decrease particle size and increase the surface area. As a result, the degradation rate of
26 LCC in the presence of smaller RPET particle sizes (with 60 mesh screen) was significantly
27 improved (**Figure 4 b and d**).

28 Genetic engineering methods can be used to create recombinant enzymes and/or microbial
29 strains as the preferred strategy to enhance the biodegradation of synthetic petroleum-based plastic
30 waste. Recently, advances in artificial intelligence and its application in protein design and
31 engineering bring in new opportunities for discovering or creating new enzymes with significantly

1 higher catalytic activities. For example, Alper's group has used a machine learning algorithm to
2 engineer *IsPETase*. The mutant enzyme, FAST-PETase, has an increased thermostability up to
3 50 °C and demonstrated nearly complete degradation of some postconsumer PET within a week
4 [20].

5 Small size reactions in tubes or shake flasks were efficient for screening enzymes and
6 optimizing basic reaction conditions such as the temperature and initial pH values, but it is not
7 necessary that these preliminarily determined conditions can be easily extended to large-scale
8 applications. For example, using a phosphate buffer is enough to maintain the pH value within 7~8
9 in tube reactions with ~ 5 g/L PET substrate, but in a reactor with high-capacity PET loading, such
10 as 200 g/L in the 1-L reactor study, concentrated base (KOH, NaOH) has to be continuously fed
11 into the reactor to control the pH value and maintain the enzyme's activity. Other challenges
12 including the inefficient mixing and mass transfer due to the use of high loadings of solid substrate
13 (PET) and accumulation of insoluble product (TPA) may also become limiting factors in PET
14 degradation. Therefore, scale-up experiments in reactors with high-capacity substrate loading is
15 crucial for understanding the practical applications of the selected enzyme(s) and the optimized
16 process conditions at large scale. More importantly, the scale-up experiments will provide key
17 technical data for techno-economic analysis and identify the major limiting factors or technical
18 barriers that may affect the commercialization opportunities. In this study, the top two LCC^{ICCG}
19 variants (namely LCC and PelB-LCC) were selected for further testing in a 1-L stirred tank
20 bioreactor, which contained 200 g/L recycled PET. PelB-LCC improved PET degradation rate by
21 >20% over the original LCC^{ICCG}, which would lead to the reduction of either the use of the enzyme
22 or the reaction time in a real application. In either case, this improvement suggests lower process
23 cost, as analyzed by the earlier TEA study [34].

24 In the scaled-up experiments, crystallinity increase in substrate (PET) and enzyme instability
25 may be the two major reasons that accounted for the gradual slow-down depolymerization rate
26 after the first two or three days (**Figure 6 c-f**). The whitish color and the change to the opaque
27 appearance of the undegraded PET material (**Figure 6 b**) suggested that the crystallinity of the
28 surface of recycled PET have increased during the reaction, which was verified by DSC analysis
29 as the crystallinity increased from 12% for the original material to ~ 30% for the undegraded PET
30 materials after 72 h. This may have led to significantly less efficient degradation of PET since our
31 previous research indicated that high crystallinity is one of the major challenges for efficient PET

1 degradation [22, 37]. Our preliminary research on the enzyme stability also indicated that the
2 specific activities of LCC and PelB-LCC at 65 °C may decline by 30% within 120 hours (**Figure**
3 **S6**). The combined effects from both the crystallinity increase of PET and the enzyme instability
4 may have led to the near stop of the PET depolymerization after 72 hours. Further research should
5 be conducted to understand the enzymatic reaction mechanism at a large scale so that the limiting
6 factors can be revealed, and the major barriers can be overcome. The continuing research may
7 include improving the enzyme activity and stability, increasing the specific surface area of PET,
8 and lowering the crystallinity by pretreating PET so that complete and fast degradation of post-
9 consumer PET waste can be achieved.

10

11 Conclusion

12 Enzymatic degradation provides an attractive approach for the biodegradation and
13 biorecycling of post-consumer plastic wastes. The LCC^{ICCG} showed significantly higher PET
14 degradation efficiency than PETase (W159H/S238F) from *Ideonella sakaiensis* 201-F6 due to its
15 higher thermostability and peak activity at 65 °C. Four designed LCC^{ICCG} variants including LCC,
16 PelB-LCC, LCC-PBM, and PelB-LCC-PBM were expressed by the *E. coli* BL21(DE3). A fed-
17 batch fermentation process was developed to produce the LCC enzymes up to 1.2 g/L within 36
18 hours. The PBM binding module doubled the binding efficiency of LCC on PET samples but failed
19 to improve the degradation rate. The PelB unit not only helped secrete the produced enzyme but
20 also improved PET degradation. In general, PET samples with smaller particle sizes and lower
21 crystallinity had significantly higher degradation efficiency. Nearly complete degradation was
22 achieved in tube reactions for amorphous PET films and extruded recycled PET particles treated
23 with 0.2 μmol PelB-LCC/g PET for 72 hours. The developed enzymatic degradation process was
24 scaled up in 1-L bioreactor experiments containing 200 g/L recycled PET pellets and 2 μM (or 60
25 mg/L) LCC or PelB-LCC, which demonstrated more than 80% degradation within three days.
26 Further studies on enzyme engineering and stability, the enzymatic reaction mechanism, and the
27 pretreatment of post-consumer waste PET materials are needed in future to achieve fast and
28 complete degradation at a large scale.

29

1 **Acknowledgments**

2 This work is supported by the Department of Energy (Award number EE0008930). The
3 authors would also like to thank Dr. Gregg Beckham's research group at NREL for technical
4 guidance and support during the research.

5

6 **Author Contributions**

7 Ya-Hue Soong designed the experiments, analyzed the experimental data, and wrote the
8 manuscript. Umer Abid performed the 1-L enzyme reaction experiments and helped write the
9 manuscript. Allen C. Chang and Akanksha Patel helped prepare the recycled PET for experiments.
10 Allen C. Chang also helped review and edited the manuscript. Christian Ayafor provided the
11 HPLC analysis for all enzymatic reaction samples. Jin Xu helped conduct the protein gel analysis.
12 Carl Lawton provided the general guidance in experiments of cell culture, molecular biology, and
13 protein gel analysis. Hsi-Wu Wong and Margaret J Sobkowicz helped supervise the project,
14 reviewed and edited the manuscript. Dongming Xie designed the project, provided technical
15 guidance and supervision, and helped write the manuscript.

16

17 **Conflict of Interest**

18 The authors declare no conflict of interest.

19

20 **Data Availability Statement**

21 The research data from this paper are available from the corresponding author upon reasonable
22 request.

23

24

1 **References**

2 [1] PlasticSoupFoundation, *The world's population consumes 1 million plastic bottles every minute* 2017,
3 pp. <https://www.plasticsoupfoundation.org/en/2017/2007/the-worlds-population-consumes-2011-million-plastic-bottles-every-minute/>.

5 [2] Coghlan, A., *Bacteria found to eat PET plastics could help do the recycling* | *New Scientist*, New
6 Scientist 2016, pp. <https://www.newscientist.com/article/2080279-bacteria-found-to-eat-pet-plastics-could-help-do-the-recycling/>.

8 [3] Zhao, S., Wang, T., Zhu, L., Xu, P., *et al.*, Analysis of suspended microplastics in the Changjiang
9 Estuary: Implications for riverine plastic load to the ocean. *Water Research* 2019, *161*, 560-569.

10 [4] Narancic, T., O'Connor, K. E., Plastic waste as a global challenge: are biodegradable plastics the answer
11 to the plastic waste problem? *Microbiology (Reading, England)* 2018, *165*, 129-137.

12 [5] Wei, R., Von Haugwitz, G., Pfaff, L., Mican, J., *et al.*, Mechanism-Based Design of Efficient PET
13 Hydrolases. *ACS Catalysis* 2022, *12*, 3382-3396.

14 [6] Carniel, A., Waldow, V. d. A., Castro, A. M. d., A comprehensive and critical review on key elements
15 to implement enzymatic PET depolymerization for recycling purposes. *Biotechnology Advances* 2021, *52*,
16 107811-107811.

17 [7] Soong, Y.-H. V., Sobkowicz, M. J., Xie, D., Recent Advances in Biological Recycling of Polyethylene
18 Terephthalate (PET) Plastic Wastes. *Bioengineering* 2022, *9*, 98.

19 [8] Müller, R. J., Schrader, H., Profe, J., Dresler, K., Deckwer, W. D., Enzymatic Degradation of
20 Poly(ethylene terephthalate): Rapid Hydrolyse using a Hydrolase from *T. fusca*. *undefined* 2005, *26*, 1400-
21 1405.

22 [9] Tanasupawat, S., Takehana, T., Yoshida, S., Hiraga, K., Oda, K., *Ideonella sakaiensis* sp. nov., isolated
23 from a microbial consortium that degrades poly(ethylene terephthalate). *International Journal of Systematic
24 and Evolutionary Microbiology* 2016, *66*, 2813-2818.

25 [10] Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., *et al.*, A bacterium that degrades and assimilates
26 poly(ethylene terephthalate). *Science* 2016, *351*, 1196-1199.

27 [11] Egmond, M. R., De Vlieg, J., *Fusarium solani pisi* cutinase. *Biochimie* 2000, *82*, 1015-1021.

28 [12] Cunha, M. T., Costa, M. J. L., Calado, C. R. C., Fonseca, L. P., *et al.*, Integration of production and
29 aqueous two-phase systems extraction of extracellular *Fusarium solani pisi* cutinase fusion proteins.
30 *Journal of Biotechnology* 2003, *100*, 55-64.

31 [13] Longhi, S., Cambillau, C., Structure-activity of cutinase, a small lipolytic enzyme. *Biochimica et
32 biophysica acta* 1999, *1441*, 185-196.

33 [14] Ronkvist, Å. M., Xie, W., Lu, W., Gross, R. A., Cutinase-Catalyzed hydrolysis of poly(ethylene
34 terephthalate). *Macromolecules* 2009, *42*, 5128-5138.

35 [15] Garza, D. R., Dutilh, B. E., From cultured to uncultured genome sequences: metagenomics and
36 modeling microbial ecosystems. *Cellular and molecular life sciences : CMLS* 2015, *72*, 4287-4308.

37 [16] Parages, M. L., Gutiérrez-Barranquero, J. A., Reen, F. J., Dobson, A. D. W., O'Gara, F., Integrated
38 (Meta) Genomic and Synthetic Biology Approaches to Develop New Biocatalysts. *Marine drugs* 2016, *14*.

39 [17] Sulaiman, S., Yamato, S., Kanaya, E., Kim, J. J., *et al.*, Isolation of a Novel Cutinase Homolog with
40 Polyethylene Terephthalate-Degrading Activity from Leaf-Branch Compost by Using a Metagenomic
41 Approach. *Applied and Environmental Microbiology* 2012, *78*, 1556-1556.

1 [18] Kawai, F., Kawabata, T., Oda, M., Current State and Perspectives Related to the Polyethylene
2 Terephthalate Hydrolases Available for Biorecycling. *ACS Sustainable Chemistry and Engineering* 2020,
3 8, 8894-8908.

4 [19] Knott, B. C., Erickson, E., Allen, M. D., Gado, J. E., *et al.*, Characterization and engineering of a two-
5 enzyme system for plastics depolymerization. *Proceedings of the National Academy of Sciences of the*
6 *United States of America* 2020, 117, 25476-25485.

7 [20] Lu, H., Diaz, D. J., Czarnecki, N. J., Zhu, C., *et al.*, Machine learning-aided engineering of hydrolases
8 for PET depolymerization. *Nature* 2022 604:7907 2022, 604, 662-667.

9 [21] Maity, W., Maity, S., Bera, S., Roy, A., Emerging Roles of PETase and MHETase in the
10 Biodegradation of Plastic Wastes. *Applied Biochemistry and Biotechnology* 2021, 193, 1-18.

11 [22] Tournier, V., Topham, C. M., Gilles, A., David, B., *et al.*, An engineered PET depolymerase to break
12 down and recycle plastic bottles. *Nature* 2020, 580, 216-219.

13 [23] Brott, S., Pfaff, L., Schuricht, J., Schwarz, J. N., *et al.*, Engineering and evaluation of thermostable
14 IsPETase variants for PET degradation. *Engineering in Life Sciences* 2022, 22, 192-203.

15 [24] Cui, Y., Chen, Y., Liu, X., Dong, S., *et al.*, Computational Redesign of a PETase for Plastic
16 Biodegradation under Ambient Condition by the GRAPE Strategy. *ACS Catalysis* 2021, 11, 1340-1350.

17 [25] Graham, R., Erickson, E., Brizendine, R. K., Salvachúa, D., *et al.*, The role of binding modules in
18 enzymatic poly(ethylene terephthalate) hydrolysis at high-solids loadings. *Chem Catalysis* 2022, 2, 2644-
19 2657.

20 [26] Xue, R., Chen, Y., Rong, H., Wei, R., *et al.*, Fusion of Chitin-Binding Domain From Chitinolyticbacter
21 meiyuanensis SYBC-H1 to the Leaf-Branch Compost Cutinase for Enhanced PET Hydrolysis. *Frontiers in*
22 *Bioengineering and Biotechnology* 2021, 9, 1315-1315.

23 [27] Boraston, A. B., Bolam, D. N., Gilbert, H. J., Davies, G. J., Carbohydrate-binding modules: fine-tuning
24 polysaccharide recognition. *Biochemical Journal* 2004, 382, 769-769.

25 [28] Austin, H. P., Allen, M. D., Donohoe, B. S., Rorrer, N. A., *et al.*, Characterization and engineering of
26 a plastic-degrading aromatic polyesterase. *Proceedings of the National Academy of Sciences of the United*
27 *States of America* 2018, 115, E4350-E4357.

28 [29] Sambrook, J., Fritsch, E. F., Maniatis, T., Molecular cloning: a laboratory manual. *Molecular cloning:*
29 *a laboratory manual*. 1989.

30 [30] Patel, A., Chang, A. C., Perry, S., Soong, Y.-H. V., *et al.*, Melt Processing Pretreatment Effects on
31 Enzymatic Depolymerization of Poly(ethylene terephthalate). *ACS Sustainable Chemistry & Engineering*
32 2022.

33 [31] Shi, L., Liu, H., Gao, S., Weng, Y., Zhu, L., Enhanced Extracellular Production of IsPETase in
34 *Escherichia coli* via Engineering of the pelB Signal Peptide. *Journal of Agricultural and Food Chemistry*
35 2021, 69, 2245-2252.

36 [32] Ribitsch, D., Yebra, A. O., Zitzenbacher, S., Wu, J., *et al.*, Fusion of binding domains to *Thermobifida*
37 *cellulosilytica* cutinase to tune sorption characteristics and enhancing PET hydrolysis. *Biomacromolecules*
38 2013, 14, 1769-1776.

39 [33] Gamerith, C., Herrero Acero, E., Pellis, A., Ortner, A., *et al.*, Improving enzymatic polyurethane
40 hydrolysis by tuning enzyme sorption. *Polymer degradation and stability* 2016, 132, 69-77.

41 [34] Singh, A., Rorrer, N. A., Nicholson, S. R., Erickson, E., *et al.*, Techno-economic, life-cycle, and
42 socioeconomic impact analysis of enzymatic recycling of poly(ethylene terephthalate). *Joule* 2021, 5, 2479-
43 2503.

1 [35] Brizendine, R. K., Erickson, E., Haugen, S. J., Ramirez, K. J., *et al.*, Particle Size Reduction of
2 Poly(ethylene terephthalate) Increases the Rate of Enzymatic Depolymerization But Does Not Increase the
3 Overall Conversion Extent. *ACS Sustainable Chemistry & Engineering* 2022, *10*, 9131-9140.

4 [36] Pasula, R. R., Lim, S., Ghadessy, F. J., Sana, B., The influences of substrates' physical properties on
5 enzymatic PET hydrolysis: Implications for PET hydrolase engineering. *Engineering Biology* 2022, *6*, 17-
6 22.

7 [37] Chang, A. C., Patel, A., Perry, S., Soong, Y. V., *et al.*, Understanding Consequences and Tradeoffs of
8 Melt Processing as a Pretreatment for Enzymatic Depolymerization of Poly(ethylene terephthalate).
9 *Macromolecular rapid communications* 2022, *43*.

10 [38] Jog, J. P., Crystallization of Polyethyleneterephthalate. *Journal of Macromolecular Science, Part C*
11 1995, *35*, 531-553.

12 [39] Bell, E. L., Smithson, R., Kilbride, S., Foster, J., *et al.*, Directed evolution of an efficient and
13 thermostable PET depolymerase. *Nature Catalysis* 2022 *5*:8 2022, *5*, 673-681.

14 [40] Sandomenico, A., Sivaccumar, J. P., Ruvo, M., Evolution of *Escherichia coli* Expression System in
15 Producing Antibody Recombinant Fragments. *International Journal of Molecular Sciences* 2020, *21*, 1-39.

16 [41] Bhatwa, A., Wang, W., Hassan, Y. I., Abraham, N., *et al.*, Challenges Associated With the Formation
17 of Recombinant Protein Inclusion Bodies in *Escherichia coli* and Strategies to Address Them for Industrial
18 Applications. *Frontiers in Bioengineering and Biotechnology* 2021, *9*.

19 [42] Sulaiman, S., You, D. J., Kanaya, E., Koga, Y., Kanaya, S., Crystal structure and thermodynamic and
20 kinetic stability of metagenome-derived LC-cutinase. *Biochemistry* 2014, *53*, 1858-1869.

21 [43] Harrington, J. M., Nishanova, T., Pena, S. R., Hess, M., *et al.*, A retained secretory signal peptide
22 mediates high density lipoprotein (HDL) assembly and function of haptoglobin-related protein. *J Biol Chem*
23 2014, *289*, 24811-24820.

24 [44] de Souza, G. A., Leversen, N. A., Målen, H., Wiker, H. G., Bacterial proteins with cleaved or uncleaved
25 signal peptides of the general secretory pathway. *Journal of Proteomics* 2011, *75*, 502-510.

26 [45] Deb, A., Johnson, W. A., Kline, A. P., Scott, B. J., *et al.*, Bacterial expression, correct membrane
27 targeting and functional folding of the HIV-1 membrane protein Vpu using a periplasmic signal peptide.
28 *PLOS ONE* 2017, *12*, e0172529.

29 [46] Ng, D. T. W., Sarkar, C. A., Engineering Signal Peptides for Enhanced Protein Secretion from
30 *Lactococcus lactis*. *Applied and Environmental Microbiology* 2013, *79*, 347-356.

31 [47] Köchl, R., Alken, M., Rutz, C., Krause, G., *et al.*, The signal peptide of the G protein-coupled human
32 endothelin B receptor is necessary for translocation of the N-terminal tail across the endoplasmic reticulum
33 membrane. *J Biol Chem* 2002, *277*, 16131-16138.

34 [48] Chen, W., Wu, J., Chen, W., Hu, P., Wang, X., An approach to achieve highly soluble bioactive ScFv
35 antibody against staphylococcal enterotoxin A in *E.coli* with pelB leader. *IOP Conference Series: Earth*
36 *and Environmental Science* 2020, *512*, 012077.

37 [49] Caspers, M., Brockmeier, U., Degering, C., Eggert, T., Freudl, R., Improvement of Sec-dependent
38 secretion of a heterologous model protein in *Bacillus subtilis* by saturation mutagenesis of the N-domain of
39 the AmyE signal peptide. *Applied Microbiology and Biotechnology* 2010, *86*, 1877-1885.

40 [50] Gasser, B., Saloheimo, M., Rinas, U., Dragosits, M., *et al.*, Protein folding and conformational stress
41 in microbial cells producing recombinant proteins: a host comparative overview. *Microbial Cell Factories*
42 2008, *7*, 11.

1 [51] Vabulas, R. M., Raychaudhuri, S., Hayer-Hartl, M., Hartl, F. U., Protein folding in the cytoplasm and
2 the heat shock response. *Cold Spring Harb Perspect Biol* 2010, 2, a004390.

3 [52] Herrero Acero, E., Ribitsch, D., Steinkellner, G., Gruber, K., *et al.*, Enzymatic surface hydrolysis of
4 PET: Effect of structural diversity on kinetic properties of cutinases from *Thermobifida*. *Macromolecules*
5 2011, 44, 4632-4640.

6 [53] Bolam, D. N., Ciruela, A., McQueen-Mason, S., Simpson, P., *et al.*, Pseudomonas cellulose-binding
7 domains mediate their effects by increasing enzyme substrate proximity. *The Biochemical journal* 1998,
8 331 (Pt 3), 775-781.

9 [54] Din, N., Damude, H. G., Gilkes, N. R., Miller, R. C., *et al.*, C1-Cx revisited: intramolecular synergism
10 in a cellulase. *Proceedings of the National Academy of Sciences of the United States of America* 1994, 91,
11 11383-11383.

12 [55] Murase, T., Suzuki, Y., Doi, Y., Iwata, T., Nonhydrolytic fragmentation of a poly[(R)-3-
13 hydroxybutyrate] single crystal revealed by use of a mutant of polyhydroxybutyrate depolymerase.
14 *Biomacromolecules* 2002, 3, 312-317.

15 [56] Din, N., Gilkes, N. R., Tekant, B., Miller, R. C., *et al.*, Non-Hydrolytic disruption of cellulose fibres
16 by the binding domain of a bacterial cellulase. *Bio/Technology* 1991, 9, 1096-1099.

17 [57] Gamerith, C., Zartl, B., Pellis, A., Guillamot, F., *et al.*, Enzymatic recovery of polyester building blocks
18 from polymer blends. *Process Biochemistry* 2017, 59, 58-64.

19 [58] Donelli, I., Freddi, G., Nierstrasz, V. A., Taddei, P., Surface structure and properties of poly-(ethylene
20 terephthalate) hydrolyzed by alkali and cutinase. *Polymer Degradation and Stability* 2010, 95, 1542-1550.

21 [59] Welzel, K., Müller, R. J., Deckwer, W. D., Enzymatischer Abbau von Polyester-Nanopartikeln.
22 *Chemie Ingenieur Technik - CHEM-ING-TECH* 2002, 74, 1496-1500.

23 [60] Brueckner, T., Eberl, A., Heumann, S., Rabe, M., Guebitz, G. M., Enzymatic and chemical hydrolysis
24 of poly(ethylene terephthalate) fabrics. *Journal of Polymer Science Part A: Polymer Chemistry* 2008, 46,
25 6435-6443.

26 [61] Carr, C. M., Clarke, D. J., Dobson, A. D. W., Microbial Polyethylene Terephthalate Hydrolases:
27 Current and Future Perspectives. *Frontiers in Microbiology* 2020, 11, 2825-2825.

28 [62] Mohanan, N., Montazer, Z., Sharma, P. K., Levin, D. B., Microbial and Enzymatic Degradation of
29 Synthetic Plastics. *Frontiers in Microbiology* 2020, 11, 2837-2837.

30 [63] Harrison, J. P., Boardman, C., O'Callaghan, K., Delort, A. M., Song, J., Biodegradability standards
31 for carrier bags and plastic films in aquatic environments: a critical review. *Royal Society Open Science*
32 2018, 5.

33 [64] Ammala, A., Bateman, S., Dean, K., Petinakis, E., *et al.*, An overview of degradable and biodegradable
34 polyolefins. *Progress in Polymer Science (Oxford)* 2011, 36, 1015-1049.

35 [65] Albertsson, A. C., Andersson, S. O., Karlsson, S., The mechanism of biodegradation of polyethylene.
36 *Polymer Degradation and Stability* 1987, 18, 73-87.

37 [66] Zambrano, M. C., Pawlak, J. J., Venditti, R. A., Effects of Chemical and Morphological Structure on
38 Biodegradability of Fibers, Fabrics, and Other Polymeric Materials. *BioResources* 2020, 15, 9786-9833.

39