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A major challenge in advancing nuclear materials for next-generation fission and proposed fusion reactors 

is to comprehensively understand the formation of irradiation-induced defects [1]. It is essential to 

correlate the evolution of irradiation-induced defects and the degradation of mechanical properties, as they 

collectively dictate the material's lifespan and ensure nuclear safety [2]. Scanning transmission electron 

microscopy (STEM) based techniques have emerged as indispensable tools for irradiation-induced defect 

characterization [3-4], offering high spatial resolution imaging and chemical analysis, such as electron 

energy loss spectroscopy (EELS) and energy dispersive X-ray spectroscopy (EDXS). These techniques 

have been effectively used to obtain an atomic-scale view of the defect structure [5]. Recent advances in 

electron microscopy, particularly in 4D-STEM [6], offer detailed insight into microstructural evolution by 

capturing full 2D diffraction patterns at every pixel position. Using high-speed direct electron detectors, 

this technology generates a four-dimensional dataset, overcoming the limitations of traditional STEM 

imaging.  

 

In this presentation, we discuss the potential for combining 4D-STEM, weak-beam dark-field (WBDF) 

STEM, electron tomography, and EDXS for defect analysis, specifically focusing on irradiation-induced 

dislocation loops in proton-irradiated Fe-5Cr model alloys. This approach offers the advantage of 

obtaining the 3D distribution of dislocation loops in atomic scale, as well as identifying their type (〈100〉 

or 
1

2
〈111〉) and nature (interstitial or vacancy). Through 4D-STEM strain mapping and STEM-EDX 

elemental mapping, we can assess the local strain field and strain interactions between loops, while also 

detecting chemical composition changes near the loops within the same area of interest. 4D-STEM and 

atomic-resolution STEM revealed that when loops are small (diameter <5 nm), their centers may not 

precisely overlap with the "black-dot" features (Fig. 1). In the case of an 〈100〉 edge-on loop (Fig. 1b), its 

center may lie between a pair of black-dots, which represent high-strain areas at the two ends of the loop. 

It was observed that ⟨100⟩ loop strings are composed of ½⟨111⟩ and ⟨100⟩ loops arrayed along ⟨100⟩ 
directions (Fig. 2). STEM-EDX and analysis revealed Cr enrichment associated with the dislocation loops 

(Fig. 2f), supporting prior observations that Cr impedes dislocation loop motion, resulting in a more 

sluggish dislocation loop evolution process in Fe-Cr alloys than in pure Fe [7]. STEM and EDX 

tomography of the loops and Cr-enriched features will also be presented [8]. The experimental results 

from these advanced techniques validate simulation models [9], enhancing the understanding of irradiation 

effects on material properties, crucial for materials development and selection in nuclear applications or 

other extreme environments [10-11]. 



 
Fig. 1. Dislocation loop strings observed in Fe-5Cr irradiated with protons to ~5 dpa at 250°C: (a) 

STEM bright-field (BF) image taken along the [002] zone axis; (b) High-resolution STEM-BF image of 

the red-square-marked region from Fig. 1a; (c) Areal strain perpendicular to the beam direction 

quantified using the 4D-STEM-EWPC method. 

 

Fig. 2. WBDF-STEM and STEM-EDX analysis: (a) STEM-BF image along the [002] zone axis, (b-d) 

WBDF-STEM images along various g-vectors near the [002] zone axis, (e) Identification of dislocation 

loop types through comprehensive g-dot-b analysis, (f) elemental map for Cr Kα (green) extracted from 

the STEM-EDX spectrum image dataset. 
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