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Abstract

A vorticity formulation is described that satisfies velocity boundary conditions for the in-
compressible Navier-Stokes equations. As in previous methods, velocity boundary condi-
tions are satisfied by determining the appropriate vortex sheets that must be created on the
boundary. Typically, the vortex sheet strengths are determined by solving a set of linear
equations that is over-specified. The over-specification arises because an integral con-
straint on the vortex sheets is imposed. Vortex sheets determined this way do not accurate-
ly satisfy both components of the velocity boundary conditions because over-specified
systems do not have unique solutions. To avoid this over-specification and more accurately
satisfy velocity boundary conditions, an integral collocation technique is applied to a gen-
eralized Helmholtz’ decomposition. This formulation implicitly satisfies an integral con-
straint that is more general than constraints typically used. Improvements in satisfying
velocity boundary conditions are shown.
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Introduction

The satisfaction of velocity boundary conditions in vorticity formulations is examined in
detail. Our objective is to develop numerical methods to satisfy velocity boundary condi-
tions more accurately than previous formulations. In previous formulations, errors in satis-
fying velocity boundary conditions are typically much larger than numerical round off
errors. The main source of errors in satisfying velocity boundary conditions is that, as stat-
ed by Ostrikov and Zhmulin [30}], “we can say with confidence that the analytic theory of
vortex dynamics of a viscous fluid is not yet formulated”” Accurately satisfying velocity
boundary conditions is particularly important in analyses where stability is a concern, or
where flow separation occurs (which strongly influences drag). In analyses of these types,
boundary conditions must be satisfied accurately to have confidence in the solutions.
Moreover, engineers who use primitive variable computational fluid dynamics are accus-
tomed to satisfying velocity boundary conditions to within round off error. Accordingly,
they are not generally motivated to make use of formulations (vorticity, or otherwise) that
satisfy boundary conditions less accurately, in spite of advantages that the other methods
offer. Thus, we seek to formulate an improved theory and numerical method to satisfy ve-
locity boundary conditions, and to assess its accuracy in detail.

The principal feature missing from the analytic theory of viscous vortex dynamics is a for-
mulation to uniquely describe the generation of vorticity that is necessary to satisfy veloc-
ity boundary conditions whenever the tangential velocity boundary condition is specified
[30]. The difficulty is that vorticity is the dependent variable in vorticity formulations, so
that velocity boundary conditions must somehow be represented in terms of vorticity.
What is known is that the Navier-Stokes equations indicate that, in order to satisfy tangen-
tial velocity boundary conditions, vorticity must be created at the boundary (Batchelor
[3]). Neither boundary vorticity nor its flux is generally known a priori, however, and as a
result, additional equations must be introduced to relate velocity boundary conditions to
vorticity creation.

Many vorticity boundary condition schemes have been proposed, comprising a wide range
of different approaches (e.g., streamfunction-vorticity (Roache [35], Parmentier and Tor-
rance [31], and Quartapelle [33], [34], Anderson [1], Koumoutsokos, et al. [19], [20]), ve-
locity-vorticity Cauchy formulation (Gatski et al. [9]), vorticity-velocity Poisson equation
(Daube [8]), Biot-Savart (Chorin and Marsden [7]), generalized Helmholtz decomposition
(Wu (J. C.) [39], [40], [41], [42], (also in [4]), Morino [27], [28], Uhlman et al. [37]). The
above formulations rely on kinematics to describe vorticity creation. Other approaches use
dynamics (the Navier-Stokes equations) on the boundary (Kinney et al. [16], [13], Wu (J.-
Z.) [43]). See also reviews by Gresho [10], Puckett [32], Leonard [21], [22], Sarpkaya
[36].

Various features which remain unresolved regarding vorticity creation are:

- Is there a unique specification of vorticity flux to satisfy velocity boundary conditions?
(Some Unanswered Questions in Fluid Mechanics [23].)




- What are the proper integral constraints on vorticity created on boundaries? And, how
should they be implemented in a numerical formulation? (Typically, an integral constraint
is imposed on a linear set of equations for vortex sheets on the boundary, to yield an over-
specified set of equations. There are several methods to solve over-specified systems of
equations (e.g., Hess [11], [12]), but the solution is not unique; (i.e., the solution depends
on the type of solution method used), and the methods rely mainly on empirical criteria, as
discussed by Koumoutsokos [18]. Koumoutsokos developed a method to incorporate a
constraint without over-specifying the system for a stream function formulation. We seek
a formulation that does not require the use of streamfunctions.

- Should both normal and tangential components of the velocity boundary condition be
imposed? Or, is it sufficient to impose only one component? If so, how is it that the un-
specified component is satisfied?

- Are kinematics sufficient to specify vorticity creation? Or, must dynamic information be
used?

- Is the value of vorticity on the boundary (Dirichlet) or its normal gradient (von Neu-
mann) the appropriate vorticity boundary condition?

A more pragmatic view of the problem can be seen by considering a typical time step in a
numerical solution of the vorticity transport equation. Assume a vorticity field exists that
satisfies the velocity boundary conditions. The vorticity field is then transported according
to the vorticity form of the Navier-Stokes equation, wherein vorticity is convected by the
velocity field and diffused as a result of the fluid viscosity. Diffusion of vorticity from the
boundary into the domain, and its convective transport are omitted during the time step
due to a lack of a vorticity boundary condition. The omitted vorticity and the rest of the
vorticity field would induce motion that would satisfy the velocity boundary condition.
But, since some vorticity is missing, the velocity boundary conditions are not satisfied.
Thus, the vorticity field adjacent to the boundary must be corrected.

With the understanding that the vorticity field adjacent to the boundary is deficient, a vor-
ticity boundary condition is seen to be an artifice to introduce the desired correction to the
vorticity in the domain. A Neumann boundary condition specifies a unique addition of
vorticity to the domain, independent of the existing vorticity field (since diffusion can be
separated into two problems: a homogeneous von Neumann boundary condition with an
inhomogeneous initial condition, and an inhomogeneous von Neumann boundary condi-
tion with a homogeneous initial condition). A Dirichlet boundary condition can also spec-
ify a unique addition of vorticity to the domain, but it depends on the existing vorticity
field, which is less convenient. Typically, the correction for the vorticity field is found in
terms of a zero-thickness vortex sheet (Lighthill [24]), which is assumed to expand by vis-
cous diffusion to a finite thickness layer of finite vorticity. A unique specification of the
vorticity gradient can be defined from vortex sheets (Koumoutsakos [19], Kempka, et al.
[15]) contrary to statements made by Wu [43].

The aforementioned unresolved issues lead to errors in satisfying velocity boundary con-
ditions. In many previous schemes, only one component of the velocity boundary condi-
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tion is satisfied at a time; i.e., both components are not satisfied simultaneously. Other
schemes simply do not satisfy the tangential velocity boundary condition (e.g., Roache
[35]). In most cases, the accuracy to which boundary conditions are satisfied is not dis-
cussed in detail.

The investigation by Uhlman et al. [37] is a notable exception. They consider the flow of
an otherwise uniform freestream around a solid, impermeable cylinder in which there is no
other vorticity in the flow field. The no-slip (zero tangential velocity) boundary condition
is satisfied (at collocation points) by determining a vortex sheet strength on the surface.
The normal velocity is not satisfied as accurately, however, and they describe the conver-
gence of the normal velocity boundary condition with discretization of the boundary.

We consider the convergence of the velocity boundary conditions in the presence of a non-
zero vorticity field. We show that the need for integral constraints arises from non-zero
vorticity fields. Failure to accurately satisfy integral constraints is shown to relate directly
to errors in satisfying the velocity boundary conditions. We also note that the constraints
used in previous analyses are not appropriate for general flows. We present an analytical
formulation that implicitly satisfies a necessary integral constraint on the vorticity field.
The constraint is applicable to all flows. A numerical method to solve the system is pre-
sented which is designed to satisfy the constraint implicitly for all discretizations, thus
providing a well-posed method for general flows. Boundary velocities are shown to con-
verge faster than previous formulations.
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Analytical Formulation

The vorticity form of the Navier-Stokes equations for an incompressible flow is

%(_‘fq-(y.V)g) = ((_QOV)Q-FVVZ(Q N 1)

where the velocity field u, the vorticity is @ = V X u, t is time, the constant fluid density
is p, the constant kinematic fluid viscosity is v, and V is the gradient operator.

Boundary conditions are often given in terms of the velocity ¥ = u, on the boundary S.
Specification of a tangential velocity boundary condition generally implies the creation of
vorticity on the boundary that must be determined. In addition, the velocity field must be
obtained using the vorticity field. The formulation described below determines both vor-
ticity creation and the velocity field in a unified manner.

The velocity field is obtained from the vorticity field and the velocity boundary conditions
using a generalized Helmholtz’ decomposition (GHD). The GHD can be viewed as the in-
finite domain solution to the vector Poisson equation

V2y = -Vx©+VD (2)

obtained by performing the curl operation on the definition of vorticity ® = V X u, with
D=Vey.

The GHD has been derived independently by several investigators including Wu and Th-
ompson [39], Morino [27] (based on work by Bykhovskiy and Smirnov [5]), Uhlman and
Grant [37] (based on work by Morse and Feshback [29]), and Meir and Schmidt [25]
(none of whom reference one another, except Morino, who briefly notes some of Wu’s
work). (A derivation of the GHD is found in Appendix A.)

For the velocity boundary condition # = u, on the boundary S, and denoting the fluid do-
main as R, the GHD is

[O outside R and §
027(d — 1)u}(x) on S b= 3)
l21t(d - Du(x)inR

_ [-A(5) % 455,01 X (=)
DX o) gy [ I I )

—-[A(x,) ® E;(Z‘b')](lc -x')
lx-x|¢

CD(x')(x—X) \

ds(x)
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In Eq. (3), x is a point in the infinite domain, primes denote variables of integration, and
subscript “b” denotes a quantity on the boundary. For two-dimensional flows, d = 2, and
for three-dimensional flows, d = 3. The unit normal vector on the boundary (pointing away
from the fluid) is 7. .

o is representative of the internal angle of the boundary divided by 2x (d-1); on smooth
boundaries is o = 1/2. The superscript * in Eq. (3) denotes that the vorticity field @ and
the velocity boundary conditions y, are kinematically consistent for incompressible
flows. The concept of kinematic consistency will be discussed further.

Note that both component of the velocity boundary condition are included in Eq. (3). One
boundary integral contains the normal velocity boundary condition 7 e &, , and the other
contains the tangential velocity boundary conditions in the coefficient 7 X u,, .

Although the GHD is valid for compressible flows (D = Ve u#0), we will consider
only incompressible flows; i.e., D = 0.

As mentioned previously, the superscript * in Eq. (3) denotes that the vorticity field @ and
the velocity boundary conditions y, are kinematically consistent. The test for kinematic
consistency is that @ and y, satisfy the boundary form of Eq. (3), which we write in nor-
mal and tangential components as

021(d — 1)[A(x,) X 5 (xp) X (%) + A(x,)(R(x) ® 43)] = @
(.’,)*(35') x ("Ed_ Z-C')dR(lc') . [—ﬁ(?,cb') X ‘!;(:’.‘:}:’31] X (-E = a:’)dS(-?fb') +
I'E—'El S(x, #x,) I.E_El
Xp FXp
lx—x] St e s 521
Xp FXp

That is, @ and u, cannot be specified arbitrarily; in order for @ and u, to be kinematical-
ly consistent, @ and », must satisfy Eq. (4).

The need to consider kinematic consistency arises from the specification of a tangential
velocity boundary condition. An arbitrary tangential velocity boundary condition cannot
be satisfied, in general, for an arbitrary vorticity field. This can be seen from the theorem
of the rotational [17],

InydR = J‘(de = Ifzxybds.

In order to satisfy a tangential velocity boundary condition (and attain kinematic consis-
tency), vorticity generally must be generated at the boundary.
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Note that any normal velocity boundary condition can be satisfied for any vorticity field,
as long as

J'V-ydR =0 = Iﬁoyde,

for incompressible flows (according to the divergence theorém).

Next, we discuss how kinematically inconsistent @ and u, can occur, and how to create
the vorticity necessary to obtain kinematic consistency.

Kinematically inconsistent @ and u, occur during numerical simulations in which explic-
it time integration is used to advance time for the Navier-Stokes equations. Consider a ki-
nematically consistent initial condition for @ and ¥, . As the vorticity field is transported
according to the Navier-Stokes equations, production and transport of vorticity at the
boundary is not generally accounted for, because the proper boundary condition is not
known. As a result, the new @ and u, are no longer kinematically consistent; i.e., Eq. (4)
is not generally satisfied, and vorticity must be generated on the boundary.

Lighthill [24] proposed that the circulation associated with the unaccounted for vorticity
field could be represented by a vortex sheet. Conveniently enough, the boundary integrals
in Eq. (3) represent the motion induced by vortex sheets Y and source sheets ¢, with
strengths Y = —/i Xy, and 6 = —/i ® 4, . (see Appendix A for further details.)

Following Lighthill’s approach, if the vortex sheet representing the circulation generated
on the boundary is denoted as y_, we can write an equation that is valid for arbitrary @
and g, , subject to the determination of Y,

0 outside R and S
0u(xp)27(d - D)[uy(x,) -7 .(x,) X Aa(x,)] on S 3= 5)
2n(d - )u(x)inR

[Y.(xp)-7i(x') X 4y (x,)] X (x - X)

|x - ¢

fO(x) X (x-X) .,
ar@)+ |

_|
J o |x-x| g

ds(x,) +

—[A(x,) ® up(x )] (x - x)
|x - x|¢

(D(x')(x—X)
|x-x|4

dR(x) +j

S

dS(-Zb')

The boundary form of this equation, in normal and tangential components on the bound-
ary, is

15




a2n(d - 1){[A X uy—y XA +Alf o ]} = (6)

OX)X(x-%) ..,
[

R S(xp # %)

J' (Y. (2 )-A(x,") X (2,01 X (- %)

as(x.') +
P ()

ID(x)(x ) 4o () + ~[A(xy') ® u,(x,)1(x - %)

|x - x| |x - x| a5y

S(xy # %)

As described at the end of Appendix A, if either the normal or tangential component of
Eq. (6) is satisfied, then the other component will also be satisfied. Thus, only one compo-
nent of Eq. (6) should be specified. To determine which component should be specified,
consider that for unknown ¥y , the normal component of Eq. (6) is a Fredholm equation of
the first kind, for which Y (xb) has zero local contribution to the normal velocity at x, .
Such equations can exhibit poor numerical behavior. The tangential component of Eq. (6)
is a Fredholm equation of the second kind, in which the local value of y (x,) has a strong
non-zero contribution at x, , which is 7 Xy a2n(d - 1), yielding a dlagonally dominant
matrix. These considerations indicate that it is better to specify the tangential component
of the velocity boundary condition.

It is significant to note that Eq. (3) and Eq. (6) satisfy the integral identities

I(V Xu)dR = I(r‘z Xu)dS (the theorem of the rotational [17D). @)
R

In the fluid domain, V X ¥ = @, and on the boundary, —# X i is a vortex sheet strength, as
noted above. With these specifications, the theorem of the rotational for the GHD can be
shown to be

[odr = ft@xu)-yas . @®
S

R

Another identity of interest is the divergence theorem,

J'V- udR = fﬁ-gds ©

where Vey = D = 0 in the fluid domain (for incompressible flows) which imposes a
constraint on the normal velocity boundary condition.

Two points of interest regarding these identities are, first, Eq. (7) is an integral relationship

between @, Y (A X u) . Thus, there should be no need to specify any additional integral

constraints on Y, although most previous formulations do so. The constraint most often
used is B

16



¥dS = 0 (10)
J

which is appropriate only for certain flows, such as flow around a closed body with
u, = 0. It is not appropriate, however, for flows where there is a non-zero tangential ve-
locity boundary condition, such as the lid-driven cavity.

Secondly, since Eq. (7) is implicitly satisfied by the GHD, discrete formulations used to
solve the GHD should also implicitly satisfy Eq. (7). This will be discussed further in the
next section.

1. Numerical Formulation

The objective of this section is to formulate a method to solve the GHD (Eq. (6)) for vor-
tex sheets on the boundary in which the integral constraint on vorticity and vortex sheets
in Eq. (7) is satisfied implicitly for arbitrary discretizations. This follows the philosophy
used to construct numerical methods to solve transport equations in which conservation
properties of the analytical equations are satisfied implicitly by the numerical formulation
for arbitrary discretizations. The relationship between the proposed method and the inte-
gral constraint associated with the Fredholm alternative for integrated equations is dis-
cussed.

Most numerical methods to solve for the vortex sheets are based on point collocation tech-
niques in which the discrete equations are obtained by evaluating the GHD (or a related
formulation) at the midpoint of each boundary element. The proposed method is based on
integrating the GHD over each boundary element, rather than evaluating at a single point.
The resulting set of equations will be shown to satisfy the integral constraint implicitly,
unlike point collocation methods. For the case of irrotational flow (® = 0), there are
many well-developed boundary element methods for which additional integral constraints
are not considered, and are apparently not necessary. Thus, issues related to integral con-
straints appear to arise from the existence of non-zero vorticity. As a result, we will focus
on the influence of the velocity field induced by the vorticity field.

To describe the proposed formulation, consider the equation for the GHD on the boundary
(Eq. (6)) in which the velocity induced by the vorticity field (the Biot-Savart law) is denot-
ed as

1 O(x') X (x—x")

Yo = TmET) T gt R (11)
R
the motion induced by a vortex sheet is
v(,,)x(x 2 "
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and an integral operator that is linear in its velocity vector argument is defined as

_ 1 [-A(x,)) e W(x-%) |
L(!‘.‘) - 21t(d— 1)3[ T l-,_x,:'_'_x,'ld ds(%'b) + . (13)
1 (A x@Ix(x-%)
2m(d- 1)! Jx— x| )
In this notation, the GHD becomes
0 outside Rand S
0(xp) [y (%) =Y (%) X A(xp) ] 00 S b = gy + L(wy) + 1y (14)

u(x)inR
Substituting L(u,) = L(u,) + L(u,—u,) yields

0 outside R and S
0(xp)[ay (xp) =Y (xp) X (xp)1 00 S b =[ag )+ L(w))] + [L(wy - u,) +2, 1 (15)
u(x)in R
The first bracketed term on the right hand side is a kinematically consistent velocity field
in its own right, since u,(x,) is certainly a valid boundary condition for u(x). Follow-
ing the paradigm of the GHD for kinematically consistent boundary conditions, Eq. (3),
for the special case u, = u,(x,) ,
0 outside R and S
0(xp)p(xp) On S & =y +L(u,) (16)

Uy(x) inR
For later use, note that the boundary form of Eq. (16) is,
[1-01(x,)1u + L(tg) = O on’S. an
The second bracketed term in Eq. (15) is an incompressible, irrotational velocity field. As

described in Batchelor [3] (exercise 2.4), this type of velocity field can be described in
terms of a vortex sheet Y o’

1 Yol2) X (- %)
“1, = 2m(d- 1)I PR
S

ds(xy) = L(u,—u,) +u, . (18)

With this new representation for L(u, —u,) + u., , Eq. (15) becomes
b ® Ye

18




0 outside Rand S
0x ) [80y(Xp) =Yy (2p) X A(x )l 00 S b = [y + L(u,)] + iy, (19)
u(x)inR

The boundary form Eq. (19) can be re-arranged to obtain a vector Fredholm equation,

Yo(2p) X (- %)

lx- x4

o)[-Yy(5) <@ - 37— | aS(z,) = 20)
S

[1-0(x, )12 (%) + Luy) = h(x,)-

The tangential component of this vector equation has the canonical form of a Fredholm

equation of the second kind. The Fredholm alternative states that in order for a unique so-

lution for 7y, to exist, the tangential component of the right hand side,
hi(x,) = A Xh(x,) XA, must satisfy the integral constraint

fy@mase = o @1)
] |

where y(x,) represents the eigenfunctions for the adjoint problem, [26].

However, from Eq. (17), A(x,) = [1-0u(x,)]u,(%;) + L(z,) = O; thus the Fredholm
constraint is satisfied identically. (Note that if there is no vorticity, the constraint is also
satisfied, so that no constraint issues arise for potential flows.)

The above analysis indicates that in order to obtain valid numerical solutions, the numeri-
cal representation of [1-ou(x,)]¥,(x,) + L(u,) = O must be very accurate. This entails
accurately calculating the integral of the tangential component Biot-Savart velocity on the
boundary. For consistency, all the other boundary integrals must also be accurately re-
solved, which motivates the proposed integral collocation approach.

To begin, the GHD on the boundary is,

af[A X u,—y 1xA+AlAou,1} = u,+u,+L(k,) . (22)

~

The tangential component is,

—nXquﬁ+aﬁxyc=fzx[—ocyb+gm+L(yb)]xﬁ. (23)

is written explicitly, whereas the singular con-

(The singular contribution —y X 7 from y
tribution to L(u,) is not written exphcltlyg
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Figure 1  Velocity components induced on the top of the unit square by unit
vorticity filling the square, and a point vortex at the center of the square,
with unit circulation.

To ensure accurate representation of boundary integrals, Eq. (23) is integrated over each
discrete boundary element,

1ds = 24)

element;

A(xp) X [(—omy) + 1, + L(uy)] X Ai(x,)dS.

element;

The left-hand side contains the unknown vortex sheets, and when discretized, yields ma-
trix coefficients for the vortex sheet strengths. The right-hand side contains known quanti-
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Figure 2  Residual of the theorem of the rotational for 1) unit vorticity in the unit
square, and 2) a point vortex with unit circulation at the center of the
unit square. Residuals are calculated for N-order Gaussian quadratures.

ties, which allows the vortex sheet strength to be determined by solving the dense linear
system of equations.

To see how this formulation accurately satisfies the important boundary integrals contain-
ing the velocity induced by the vorticity, u,,, consider the term,

j AXu,dS. (25)
element;
(The magnitude of 7 X &, is the same as the magnitude of 7 X u,, X #.) The sum of these

terms over all boundary elements is the complete boundary integral of the tangential ve-
locity,

n_elements
3 J' Axu,dS; = f A xu, dS (26)
i=1 element; S

which we know must satisfy the theorem of the rotational,

_[ wdR = J A X dS. @7
R S
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Figure 3  Errors in satisfying the zero velocity boundary condition for a point
vortex in the unit square, 20 boundary elements on each side. Errors on
one side of the unit square are shown for four solution methods are
shown. u, denotes the largest integral error in tangential velocity. TOR
denotes the residual to the Theorem of the Rotational.

Thus, the theorem of the rotational provides a measure of how well the boundary integrals
are being represented. This provides a paradigm about which the numerical method can be
designed. In particular, the numerical method must ensure that the boundary integrals for
each element (Eq. (25)) are calculated so their sum satisfies Eq. (27). As will be seen, er-
rors in satisfying Eq. (25) result in errors in satisfying the velocity boundary conditions.

To summarize the proposed approach, the tangential component of the GHD is integrated
over each boundary element (integral collocation). The integral of the tangential velocity
over each element must be accurately represented, so that collectively, the resulting set of
linear equations accurately satisfies the theorem of the rotational. Thus, no additional con-
straints need to be imposed, so there is no over-specification.
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Figure 4 Errors in the tangential velocity boundary condition using point
collocation for the point vortex problem. Results are shown for 10, 20,
100, and 200 linear boundary elements per side of the unit square. The
residual for the theorem of the rotational (TOR) is also shown.

2. Accuracy Assessment:

Two test problems are considered. Results from the proposed method are compared with
results from point collocation techniques. The comparison is made for both piece-wise
constant boundary elements, and piece-wise linear boundary elements. The domain for
both test problems is the interior of the unit square. Many previous investigations indicate
that additional integral constraints are needed only in only exterior problems to eliminate
the arbitrariness associated with multiply-connected (exterior) domains. As will be shown,
even in interior domains, satisfaction of the theorem of the rotational provides a better nu-
merical solution.

The two problems considered are a point vortex centered in the unit square, and a uniform
field of unit vorticity in the unit square (Figure 1). The objective in both problems is to
solve for the vortex sheets on the boundary that satisfy the zero velocity boundary condi-
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Figure 5  Convergence characteristics for integral collocation and point collocation
for the point vortex problem using linear boundary elements. Errors in the
normal velocity on the boundary are shown for 10, 20, 100, and 200
boundary elements per side of the unit square.

tion. The accuracy of the solutions are assessed by examining the values of the normal and
tangential velocities on the boundary. Recall that, analytically, if the tangential component
of the velocity boundary condition is satisfied, then the normal component must also be
satisfied. In discrete systems, however, the normal velocity is not satisfied exactly, but er-
rors should decrease with increasing resolution.

The two problems considered here were chosen since they include corners, at which it is
anticipated that satisfying both components of the velocity boundary condition will be dif-
ficult, and therefore a good test of the proposed formulation. Analytical representations for
the integrated velocities on each (flat) element are used in these calculations to avoid
quadrature errors and thus provide the most accurate solutions.

Average boundary velocity errors # e,i ArC calculated for boundary element i with arc
length As; using the computed vortex sheets strengths. Only averages of the velocity on a
boundary element are considered, even for point collocation results. Non-zero values of
the integrated velocity component are errors since the velocity boundary condition is zero.

AXE, xA+AlAeE, | = 1j{%[gm+yy+yur+yun]+‘Xc><ﬁ(3~cb)}dS (28)

S.

14

T is the circulation contained in the domain. Normalization by this quantity results in the
same errors for all values of the circulation for the point vortex and for the constant value
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Figure 6 Errors in the tangential velocity boundary condition using point
collocation for the unit vorticity in a box problem. Results are shown
for 10, 20, 100, and 200 linear boundary elements per side of the unit
square.
of vorticity in the problems discussed below. Values of #, ; are plotted at the midpoint of
each boundary element. The degree to which the theorem of the rotational is satisfied is

also examined. The residual quantity that will be reported is

J'@dA-§(ﬁxym-pds =R, (29)
A

The Biot-Savart velocity induced on one side of the unit square for the two problems of in-
terest are shown in Figure 1. The integrated tangential velocities on each side of the square
are shown in Figure 2. Note that to obtain similar accuracy in satisfying the theorem of the
rotational for the Biot-Savart velocny, a much higher resolution is required for the case of
unit vorticity than for a point vortex!. As a result, it will be seen that for similar discretiza-
tions, more accurate results will be obtained for the point vortex problem.

1. As shown in Figure 2, for a particular quadrature, integration of the Biot-Savart velocity on the
boundary satisfies the theorem of the rotational more accurately for the point vortex problem than
the constant vorticity problem. This is due to the fact that, in the analytical solution for the velocity
induced by constant vorticity, there are logarithmic terms which are not integrated as accurately by
standard Gaussian quadrature as non-logarithmic integrands, such as for the velocity induced by a
point vortex. Special quadratures for logarithmic integrands can be used to obtain more accurate re-
sults; e.g., [2], but this would complicate the numerical algorithm considerably. This motivates the
use of analytical solutions, instead of quadratures in the solutions to be described.
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Figure 7 Normal velocity errors on the boundary of the unit square filled with unit
vorticity, using 10, 20, 100, and 200 linear boundary elements per side.

Figure 3 shows the boundary velocity errors for the point vortex problem with 20 bound-
ary elements on a side. The different curves are obtained from combinations of point col-
location and integral collocation methods, and linear and constant boundary elements.
(For the problems of interest, “double noding” for linear elements in the corners is not re-
quired due to symmetry.) The best accuracy is for the integral collocation with linear ele-
ments. Note that the two integral collocation solutions satisfy the theorem of the rotational
and the tangential velocity boundary condition to within 10 3 (for double precision calcu-
lations), by design of the integral collocation method. Point collocation methods not only
have larger errors in the normal velocity, they also have non-negligible errors in the tan-
gential velocity, and in satisfying the theorem of the rotational. For constant boundary ele-
ments, the large errors in the normal velocity at corners decrease very little with increasing
resolution. Thus, constant boundary elements are not considered further.

The convergence characteristics for linear boundary elements for the point vortex problem
are shown in Figure 4 (tangential velocity errors) and Figure 5 (normal velocity errors).
Note that the tangential velocity errors are roughly given by the residual to the theorem of
the rotational. The tangential velocity errors for integral collocation are 0(10°13) for each
discretization, which is ten orders of magnitude more accurate than the point collocation
results. The residual for the theorem of the rotational is also ten orders of magnitude
smaller for the integral collocation method. For errors in the normal velocity, the integral
collocation method yields smaller errors for each discretization.

Note that the errors in tangential velocity on the boundary (O(10°1) in Figure 4) are much
smaller than the errors in the normal velocity on the boundary (> 0(10'6) in Figure 5). The
much higher accuracy in the tangential velocities might seem unnecessary, but it is not. If
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the tangential velocities are not accurate, then the theorem of the rotational is not satisfied
accurately. The result of small errors in satisfying the theorem of the rotational can be that
errors occur in the vorticity field, and grow with each time step. For example, tangential
velocity errors of O(10°%) in satisfying the theorem of the rotational can lead to errors of
O(101) after a few tens of time steps.

To see why the errors grow with each time step, consider that errors in satisfying the theo-
rem of the rotational generally result in vortex sheet strengths that are too large. After the
sheets enter the domain, they induce velocities on the boundary that are too large. In the
next time step, the new vortex sheets generated to eliminate the too-large boundary veloc-
ities also fail to satisfy the theorem of the rotational. As a result, the new vortex sheet
strengths are too large for the too-large velocities on the boundary. In this way, errors in
vortex sheet strengths are amplified each time-step, and accumulate rapidly. This is the
reason that many formulations explicitly impose an integral constraint on vorticity genera-
tion even though it over-specifies the system: failure to accurately satisfy the integral con-
straint yields large errors in vorticity generation.

Figure 6 shows the convergence properties for tangential velocity errors for point colloca-
tion on the unit square filled with unit vorticity, using linear boundary elements. Note that
for point collocation, relatively large errors in tangential velocity persist near the corners
even for the largest number of boundary elements. Again, the residual to the theorem of
the rotational is a rough indication of the tangential velocity errors. Figure 7 shows the
convergence properties for errors in the normal velocity. Results for point collocation and
integral collocation compare in the same way as before: integral collocation yields better
accuracy in satisfying both components of the velocity on the boundary.

Summary

A well-posed method to calculate vortex sheet strengths to satisfy velocity boundary con-
ditions has been formulated and implemented numerically. The main formulation consists
of a generalized Helmholtz decomposition (GHD) which depends on the vorticity field,
and both components (normal and tangential) of the velocity boundary conditions.

The main conclusion is that a unique, well-posed (i.e., not over-specified) formulation can
be obtained by using an integral collocation technique on the tangential component of the
GHD. The set of linear equations obtained from the integral collocation method implicitly
satisfy the integral constraint on the vortex sheets. Since a well-posed method to deter-
mine vortex sheet strengths exists, and since vorticity fluxes can be obtained from vortex
sheet strengths, a well-posed, unique vorticity flux can be determined for use in Navier-
Stokes simulations.

Discretization errors for the integral collocation method were shown to decrease with de-
creasing element size faster than point collocation methods, and always provide greater
accuracy, particularly in the tangential velocity boundary condition. It was also found that
linear boundary elements provide sufficiently greater accuracy than constant elements to
warrant the recommendation that constant elements be avoided.
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Future activities in this area include using this formulation to solve for nodal vorticity val-
ues (rather than vortex sheets) in order to satisfy velocity boundary conditions. This ap-
proach would avoid the singular-behavior associated with vortex sheets, and additional
boundary velocity errors that occur when the vortex sheets diffuse into the domain.
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APPENDIX A Construction of a Generalized Helmholtz Decomposition

A generalized Helmholtz’ decomposition is derived. The purpose for this derivation is to
make evident the most important features of the generalized Helmholtz’ decompositions.
These features have not been made clear by previous investigators who used the it (Wu
[40], Morino [27], Uhlman [37]). Three important features that have not been sufficiently
emphasized previously are:

1) Satisfying a single component (normal or tangential) of the generalized Helmholtz’ de-
composition implies that the other unspecified component is satisfied implicitly. Thus, in
principle (that is to say, analytically, but perhaps not numerically) specification of both
components of the decomposition on the boundary is an over-specification, and is not nec-
essary. This result is due principally to the fact that the velocity outside the fluid domain is
required to be zero.

2) The generalized Helmholtz’ decomposition implicitly satisfies integral constraints on
vorticity field and velocity boundary conditions. As a result, integral constraints (which
over-specify the problem and result in errors) should not be necessary (as long as numeri-
cal methods implicitly approximate the integral constraint).

3) The generalized Helmholtz’ decomposition can be used to solve for the vorticity field,
rather than vortex sheets, thus avoiding the errors in satisfying velocity boundary condi-
tions that are intrinsic with vortex sheets.

An important aspect of the generalized Helmholtz’ decomposition is that it essentially ad-
dresses the infinite domain, restricting non-zero velocity fields to the fluid domain, and
zero velocity outside the fluid. Feature number 1 listed above follows directly from this.
Due its importance, extensive discussion is given regarding the zero velocity outside the
fluid.

The generalized Helmholtz decomposition is generalized in the sense that the classical
Helmbholtz decomposition does not contain the velocity boundary conditions, whereas the
generalized formulation does, thus making it more general. The classical Helmholtz de-
composition specifies a velocity field ¥ in terms of a vorticity field © = V X u, and a di-
vergence of the velocity field D(x) = V e 4 as (Batchelor [3], Morino [28])

u(x) = Vx _[ O(x)G(x, x)dR(x) -V f D(x)G(x, x)dR(x') A.30
R R

oo oo

1. The motion induced by zero thickness vortex sheets is much different from the motion induced
after a vortex sheet attains a finite thickness due to viscous diffusion. As a result, boundary condi-
tions that are well-satisfied by vortex sheets, are not well-satisfied after the sheets diffuse.
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The vorticity and velocity divergence field are integrated over the infinite domain R, .
Points in the domain are denoted by x, and variables of integration are denoted by primes.
G(x, x) is the infinite domain Green’s function for a Poisson equation. In two-dimen-
sions, S

1 1

w1 1 1 . w_ 1 1
G(x,x') = log[ ] and for three-dimensions, G(x, x') = i

2n Clx-x]
The velocity field in Eq. A.30 field is arbitrary to within an incompressible, irrotational ve-
locity field, classically denoted as V¢ (which is irrotational since Vx V¢ =0), where ¢
is a scalar potential that satisfies V2¢ = O (which is obtained by requiring that V¢ is so-
lenoidal, V ¢ V¢ = 0). Solutions to Laplace equations admit normal velocity boundary
conditions, but do not admit tangential velocity boundary conditions. V¢ is typically add-
ed to Eq. A.30 to satisfy the normal velocity boundary condition, but usually does not sat-
isfy the tangential velocity boundary condition. The deviation from the desired tangential
velocity boundary condition is treated as a vortex sheet.

The generalized Helmholtz’ decomposition allows the tangential velocity boundary condi-
tion AXuX#n to be specified, in addition to the normal velocity boundary condition,
fi e y. (7 is the outward pointing unit normal vector on the boundary.)

c(x)u(x)= A.31

V x f@(z‘)G(ac, x¥)dR(x) +V x j[—ﬁ(zcb‘) X u(x,)1G(%, x,)dS(x,)
R S

-V f D(x)G(x, ¥)dR(x')- Vj'[—fz(:.c,;) o u(2,)1G(x, x,)dS(x,)
R S

The vorticity and velocity divergence field are integrated over the finite or infinite domain
R, and the velocity boundary conditions are integrated over S, the surface of the domain.
Points on the boundary are denoted by x, . The coefficient c is given by

1 in the domain R
¢(x) = | a on the boundary S A.32
0 outside the region R and boundary S

o is the value of the internal angle, divided by 27 for two-dimensional flows, and the inter-
nal solid angle divided by 4% in three-dimensional flows. For example, on a smooth
boundary of a two-dimensional domain, the internal angle is &, so o0 = 1/2.

In Appendix B, it is shown that for incompressible (D = 0), irrotational (® = 0) flows,
the boundary integrals in the generalized Helmholtz’ decomposition are analytically
equivalent to the potential velocity field V¢ obtained from the solution of V2¢ = 0. A
derivation of the generalized Helmholtz’ decomposition is described below.
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Figure 8  Configuration of fluid and boundary domains, R and R;. The unit
normal vector # points outward from the fluid. The side of R,
adjacent to the fluid is denoted as S°, and the other side of Ry, is
denoted as S*.

2. Derivation of the Generalized Helmholtz Decomposition

Derivation of the generalized Helmholtz’ decomposition begins by decomposing each of
the integrals over the infinite domain into integrals over the fluid domain R, a thin region
on the boundary of the fluid R,, and the remainder of the infinite domain R, as shown in
Figure 8,

j()dR= j()dR+j()dR+J()dR A33
R, R, R, R,
The vorticity and velocity divergence are specified to be zero in R, to prevent the non-
physical situation of phenomena outside the fluid influencing fluid. In R,, the vorticity and
velocity divergence are assumed to be non-zero, and although R, lies outside the fluid, a
limiting process will be applied to it so its thickness approaches zero. The zero thickness
form of R, becomes the boundary of the fluid. The vorticity and velocity divergence in R,
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will be affected by the limiting process, and will contribute velocities that are integrably
singular on the boundary.

Consider R, to be defined by a thickness An and a surface area dS,
dR, = dS eAn. A34

In the limit as An approaches zero, the boundary region R, collapses to form the bound-
ary. The limiting process also takes into account the non-zero vorticity and velocity diver-
gence, ®#0 and D#0 in R, The two surfaces of Ry, in Figure 8 are denoted S* and S
. This notation is based on an the definition of a normal unit vector which points outward
from the fluid. Accordingly, S* is the surface that lies in the positive “+” normal direction
from R;. Similarly, S~ denotes the surface that lies in the negative “-” normal direction
from R,

2.1 Vortex Sheets

For non-zero vorticity @, in the boundary region R;, consider holding the quantity @,An
constant as the thickness is reduced to zero, and ®, approaches infinity,

Y= lim @An A.35
L @, =

An—0

e —0

where 7y is the strength of a vortex sheet. Note that the normal component of vorticity is
zero to satisfy the constraint that vortex lines cannot cross the boundary.

Applying this limiting procedure to the velocity due to @, in R, yields the velocity in-
duced by a vortex sheet on the boundary of the fluid,

lim Vx j ©,(x)G(z, £)dR(x) = V X _[ T(x,)G(x xp)dS(x,) . A36
An—0 R, S
fee—0

Note that the specification 71 ® ® — O satisfies V X ¥ = @ since it can be shown that (see
Batchelor [3], p. 86)

Vxu = @+I(fzc(p)GdS.
S

2.2 Source Sheets

Now consider a region of non-zero velocity divergence Dy, in the boundary region Ry, Fol-
lowing a similar procedure as above, a surface distribution of a source ¢ is defined as
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6 = lim DAn. A.37
Dy —»eo
An—90

Applying this limiting procedﬁre to the velocity due to Dy, in R, yields the velocity in-
duced by a source sheet on the boundary of the fluid,

lim V[D,(x)6(x )dR() - V [0(2,)6(x ¥)dS(z,) - A38
>
an—0 R

Applying these new boundary integrals to the domain decomposition Eq. A.33 yields,

u(x)= A39
v x j@(zc')G(:.c, £)dR(x') +V x j ¥(5,)G(x x,)dS(x,)
S

-V ID(E')G(E,J.C')dR(?.C')— v jﬁ(z'b)G(z,zb')dS(zb’)
R S

The boundary integrals in Eq. A.36 and Eq. A.38 are integrably singular at points x, on
the boundary (Kellog [14]). At a boundary point where the internal angle of the boundary
is B, (and d = 2 denotes two-dimensional region, d = 3 denotes a three-dimensional region,
and o = +1 on S*and o = -1 on §), the boundary integral containing the vortex sheet
strength has the value

V< [1(5)6. %,)dS(z,)= A40

P ) XY@+ VX [ 1E)0G £)dS(,)

S(x',#xp)
Similarly, on the boundary, the boundary integral containing the source sheet strength has
the value

Vo160 )a5(sy) = 5 sh)00) + Y fol)00 )ds(y) Ad1

S(x'p #xp)

These results indicate that there is a velocity jump across the boundary. To show this, de-
note ¥, as the non-singular contribution to the velocity at a point on the boundary,
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w = Vx [0@)GG )R-V [D)60 ¥)4RE)
[ 1@6@ase)-v T oG dse)

S(x'p #xp) S(x'y #xp)

The restriction x, # x,' on the limits of the boundary integrals indicates that u,(x,) has
the same value at S*(x,) and S°(x,). The velocity jump at x, is due to Y(x,) and
6(x,), and is not included in u;(x,) .

The velocity on S* is

by = A X YEN + IO ey . A2

and the velocity on $”

s = ST X Y AGo ) ey . A3

Subtracting these equations yields the tangential and normal velocity jumps across the
boundary

-ty = 2 XY + S0 - Add

Values for the vortex sheet and source sheet strengths can be specified in terms of

Lis-&-- l'!S‘ as

Y5 = g5 8) X gy (55 (5] A4S

(using  A(x,) X [-A(x,) XY(x,)]1 = y(x,) since Y has components only in the tan-
gential directions, according to the definition Eq. A.35) and

o(x,) = ﬁf‘—?—_T)ﬁ(zb) o [ (x,)-ug(x,)] . A46
On smooth boundaries, B/(n(d-1)) = 1 , which is the case we consider hereafter.

Substituting  Y(x,) = A(x,) X [#5, (3,)-us (x,)] and 0(x,) = Alxy) @ [ug,—ug]

into the Helmholtz decomposition evaluated on S* (Eq. A.42) yields (for B/(nd) = 1)
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= u+ A47

%[ﬁ(zc;,) X [ oo (). (x)] X (%) + A(xp H{A(x)) @ (860 (xp) 4. (x3)]}]

and on 5 (Eq. A.43)

ys- = -

|- s

SU(,) X g0 (5p) 15 (5)] X () + ACx (T, © [t (3p) 5. (5)1H]

Representing ., and u 5. on the left-hand side of the two above equations in normal and
tangential components

U, = AXyXn+n(he

l:

)

The equations for #, and u,. become identical (dropping the notation #(x,) )

"[nX[ +ys-]Xﬁ+ﬁ(ﬁ[ys++ys-])] = U A48

~S+

or, simply,
—(-S++u )=y A49

so that “evaluation on the boundary” has a unique meaning, even though there is a velocity
jump across the boundary.

2.3 Assignment of Values for u o and u o

Next, the generalized Helmholtz decomposition is completed by assigning values for u o
and u ¢ . We assign the velocity boundary condition for the fluid to be u_, since u_ is the
velocity on the fluid side of the boundary.

On the other side of the boundary lies the boundary of the non-fluid region which contains
zero vorticity and zero velocity divergence. Accordingly, u,, = Vo, . with V2¢ = 0,
and, at infinity, V¢ = 0, where the location of this boundary condition is assumed to ex-
tend beyond the location associated with any velocity boundary condition at infinity (e.g.,
see Batchelor, p 86). Thus, ¥, = V¢ must satisfy the constraints

qu)ondS Oandj'wmds 0. A50
S+

We note that there are an infinite number of choices that will satisfy these constraints, and
for each different domain of interest, we could specify any one of the infinite choices for
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the von Neumann boundary condition 2 ® V¢, and solve V2¢ = 0 (in the region outside
the fluid) to determine % Vo, , to fully define the velocity V¢, . Such a procedure
would be inconvenient to say the least, but having defined u o+ = Vg, , the generalized
Helmholtz decomposition would be complete. :

One particular choice, however, is very convenient, and also allows the specification of a
Dirichlet condition in addition to the von Neumann condition, thus making it very general.
The choice of interest is u¢, = 0, which clearly satisfies both integral constraints on the
velocity boundary condition.

First, consider the von Neumann condition, V¢ @ #i = 0. The solution for this boundary
condition is well-known to be V¢ = O everywhere, including on S*, Vé et = 0 on S¥,
which is consistent with U, = 0. (Batchelor [3])

Next, consider the boundary condition Vo ®% = 0 on S*. Vo ¢4 = 0 implies that ¢ =
constant on the boundary. Then, from the maximum-minimum modulus theorem (which
states that harmonic functions can have maxima and minima only on boundariesz), if the
velocity is zero on S*, and zero at infinity, then V¢ = O everywhere outside the fluid, in-
cluding Vo o7t = 0 on S™.

Thus, the choice of ¥, = 0 provides a valid and convenient choice, and yields the final
result,

c(x)u(x)= Al

V x J-@(J!)G(Js, ¥)dR(x') +V X j[-ﬁ(acb') X u(x,)1G(%, x,,')dS(x,,")
R S

-V j D(x)G(z, ¥)dR(x' )~ Vj[-ﬁ(acb') o u(x,)1G(x, 1,)dS(x,) A2
R S

To examine the meaning of the boundary integrals, define the linear operator

2. The maximum-minimum modulus theorem applies to closed bounded regions; i.e., the theorem
is not generally stated as applying to unbounded domains. However, as described by Wu [39] and
Morino [27], velocity boundary conditions at infinity can be properly represented by the boundary
integrals in Eq. A.39 when the integrals are applied to a boundary whose location approaches infin-
ity. In this sense, all domains can be considered as bounded.

’
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L = Vx [[-(x) x 4516 2,)d5(x,) - A.53
S

v j [(x,) » #(x,)1G(z, x,)dS(x,)
S

Substitute the classical decomposition for incompressible flows,

u = u,+Vo A.54
where
to = V> [0()G( ¥)dRE) - A5
R
Eq. A.51 becomes
c(x)u(x) = u,+L(y,) + L(VY) A.56

The terms u,, + L(4,) equals ¥, in the domain, and zero outside the domain. ( L(u,) is
zero in the domain, and -, outside the domain.)

The term L(V¢) is shown in Appendix B to be the solution to V2¢ = 0, which allows
tangential velocity boundary conditions to be calculated directly, without having to first
find ¢ and then differentiate it.
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APPENDIX B: Validation of a Generalized Potential Velocity Field

Overview

A formulation is derived for incompressible, irrotational flows that allows tangential or normal
velocity boundary conditions to be specified. In contrast, the classical potential formulation for in-
compressible, irrotational flows does not allow the tangential velocity boundary condition to be
specified. The opportunity to specify the tangential velocity boundary condition has application in
three areas:

1. creation of continuous vorticity (not vortex sheets) to satisfy velocity boundary conditions,
2. simplification of non-uniqueness issues in multiply-connected domains, and

3. methodology to calculate velocities on "outflow" boundaries without the use of ad hoc assump-
tions.

The formulation which admits the tangential velocity boundary condition is shown to be equiva-
lent to the classical formulation for potential velocity fields.

Introduction

Velocity fields 4 which are incompressible V e 4 = 0 and irrotational V Xy = 0 are classically
described as the gradient of a velocity potential V¢ (since V x ¢ =0), in which the velocity po-
tential ¢ satisfies the Laplace equation,

V2 = 0. B.1
(obtained from requiring Veuy = Ve V¢ = 0).

A generalization of Helmholtz’ decomposition includes two surface integrals which yield a poten-
tial (incompressible and irrotational) velocity field. This formulation allows a potential velocity
field to be determined using tangential velocity boundary conditions. This type of boundary con-
dition is not admitted in the classical approach to determine potential velocity fields, which is
based on a Laplace equation for the velocity potential. Thus, the generalized Helmholtz’ formula-
tion has a distinct advantage over classical formulations.

The objective of this appendix is to show analytically the equivalence of the potential velocity
portion of the generalized Helmholtz decomposition and the classical potential velocity field ob-
tained from solving Laplace’s equation.

With Dirichlet ¢ and/or von Neumann 7 ¢ V¢ boundary conditions, Eq. B.1 can be solved for ¢,
and then differentiated to obtain the velocity field V¢. It is shown that the velocity field due to the
surface integrals in the generalized decomposition is equal to V¢.

To compare the classical and Helmholtz formulations, the boundary element solution to Eq. B.1 is
considered
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¢(x)—"¢()a() San()

G(x, x')dS B.2

where Dirichlet and von Neumann boundary conditions can be specified in the integrals over the
surface S. Spatial points are denoted as x, and integration variables are denoted with a prime.
G(x, x') is the infinite domain Green’s function. 7 is the outward pointing unit normal vector on
the surface. Once ¢ is determined from Eq. B.2, the potential velocity field can be obtained by
evaluating,

_ 9G(x, x') 3d(x")
Vo(x) = -V_s[¢( )2 )+Vj G( ,)dS . B3
The generalized Helmholtz’ decomposition is
c(x)u(x)= B4

Vx I@(E’)G(& x)dR(x') +V X j[—fl(&b') X up (25 )1G(%, %,)dS (%)
S

-V JD(;‘)G(:;, ¥)dR(x') - Vj(—[ﬁ(zb') ® 1y, (2, )G (% x,)dS (%)

In this formulation, @ = V X u is the vorticity, D = V e u is the expansion rate of the fluid, and
u, is the velocity boundary condition. In the domain, ¢ = 1 on smooth boundaries ¢ = 1/2,
and on non-smooth boundaries, c is representative of an interior angle. The surface integrals rep-
resent an additive incompressible, irrotational flow which must satisfy the constraint on tangential
velocity

J'cde - J'n X 0, dS . B.5

The classical formulation must satisfy the more limited case,

J'ﬁxubds =0 B.6
S

We focus on the incompressible, irrotational velocity field from the generalized decomposition
(@ =D =0)

u(x) = Vx j [~A(x") X 1, ()]G (z, x')dS(x) = V j (~[A(x') ® 1, (x))G(x, 3,)dS(x)
S S
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Note that the tangential velocity on the boundary appears in the first integral in Eq. B.4. This for-
mulation is not well-known, hence we are motivated to show that it is equivalent to the classical
potential formulation.

Equivalence of Generalized and Classical Formulations for Incompressible, Irrotational
Flows

To begin the comparison of the two formulations, note that d¢./dn in Eq. B.3 and #i @ &, in Eq.
B.4 are the normal velocity boundary condition. For d¢/0n = 7 e u,, the two integrals contain-
ing these terms are exactly the same. Thus, it remains to be shown that

0G(x, x)

! . 7
S B B

V x f [—A(x) X up,(x')]1G(x, x)dS(x') = VJ¢( X)—=—
S

In fact, this equation is derived in Morino’93, with the exception of a contour integral which is
zero for a closed surface, such as the surface encompassing a fluid domain. (Morino entitled the
proof as "Equivalence of Doublet and Vortex Layers.") In Morino’85 [27], Eq. B.7 is described as
"well-known," citing Batchelor [3] (exercise 4 in chapter 3) and Campbell [6], p. 258-260. But, in
Morino’93 [28], it is noted that the only published proof is given in an Army research report co-
authored by Morino, who describes the proof as "cumbersome."” The proof discussed here is from
Morino’93 [28] with a few (excruciating?) details added for clarity.

Morino’s (*93) [28] proof is "given for a flat surface (on which the normal is constant) since the
proof for a general smooth surface S can be obtained by approximating a surface with the union
of small triangular flat elements and taking the limit as the element dimensions vanish, in which
the contributions of the contour integrals (that will be seen to arise) cancel out except for the out-
er contour."

The basic approach described below is to manipulate the left hand side of Eq. B.7 until it matches
the right-hand side.

To begin, recognize that
—fixuy, = -AxVb, B.8
where Vg is the surface gradient operator defined by!

d()

Vs() = -AxAxXV() or Vg() = %

1. The surface gradient operator is needed as a result of the fact that ¢ is a doublet strength. That is, since
¢ is the coefficient of dG /dn in a surface integral, O(x) represents ajumpin ¢ at x from a value of
¢0(x) on the domain-side of the boundary, to a value of ¢ = O on the non-domain side of the boundary.
The normal derivative of such a jump is not defined, and is excluded accordingly in the definition of Vy .
Similarly, —71 X u,, is a vortex sheet strength, which is a jump in tangential velocity across the boundary from
~fi X 7t X u,, to 0; the vortex sheet strength is 7 X (0 —u,) , or =& X u,,.
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where the operator —# X #i X ( ) extracts the tangential component of any vector, and % is the unit
tangent vector.

Now, new notation is introduced. The gradient with respect to variables of integration (denoted
with primes) is denoted as : ‘

3.9,
V-—é‘;"‘a—}:’*‘a'—z;, B.10

and the gradient of non-integration variables is

d , 0 d
,=24+2,.9, B.11
V=3t
Substituting Eq. B.8 into in Eq. B.7 and then applying the curl operator yields
V. () %1, ()16 £)dS()
3 B.12

V. x j[—ﬁ(z‘) X Vo (x)1G(x, x)dS(x)
S

[V:605 ) x -G x VoS )
s
Using the relation V.G = -V G, this equation becomes
V.x j[—fz(:;) X 4, (£)1G(3, ¥)dS(x) = j VG(z, x) X [A(x') X V50(x)1dS(x) . B.13
S S

Now, use the identity aX(bXxc¢) = b(aec)—c(aeb) to obtain (omitting functional depen-
dencies for clarity)

V. x j[-ﬁ x V01GdS j'ﬁ[VG o V. 01dS(x') - JVSq)[VG o A]dS B.14
S S

h

The first integral on the right hand side can be re-expressed using
Vie (OVG) = VGe Vo + ¢V e VG B.15

and using the surface divergence theorem [38] (assuming the normal unit vector is constant, as de-
scribed following Eq. B.7)
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A

v

Figure 9. On a planar surface S, the normal unit vector is 7. The boundary of the
surface is C, which has unit normal ¥, and unit tangent T = A x V.

jvs o (0VG)dS = 3§¢VG o Vds - j K o (OVG)dS B.16
S C S

where C is the perimeter of the surface §, and ds is the differential arc length of C, and V is the
outward pointed normal of C, which lies in the plane tangent to S. (See Figure 1.) The curvature is
K (which Morino omitted, but which cancels with a similar integral that was also omitted later in
the prooof).

Using equations Eq. B.15 and Eq. B.16, the first integral on the right hand side of Eq. B.14 be-
comes (again, assuming the normal unit vector is constant)

jﬁ[VG «V0ldS = — qup(vs e VG)dS + Sﬁfzq;(VG o 0)ds - J' Ak(0h e VG)dS BT
S S C S

The coefficient V¢ @ VG is represented by noting that (for a unit tangent vector 1)

_.i .0G .0G _82G_ 2
Ve VG = ‘ar'(”an +’c—aT) =32 = VG, B.18
and
0%G
VZG = V%G"‘"a? B.19

A crucial step in Morino’s proof is that V2G = 0 on S for x not on S, so that

202G
V3iG = _—, B.20
§ on?

Finally, the first integral on the right hand side of Eq. B.14 becomes
A[VG e VpldS = n¢a—5ds +PAd(VG e V)ds . B.21
n
S c

S
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Now, the second integral on the right hand side of Eq. B.14 can be expressed using
Vi(0VGe) = (Vsd)(VG o) +0V(VGe) B.22
and the surface gradient theorem [38]

_[VS(¢VG o 7)dS = §(¢VG o 7)0ds - J'ﬁxq)VG o 7dS . B.23
S C S

(Morino also omitted the curvature term in Eq. B.23.) Using Eq. B.22 and Eq. B.23, the second
integral on the right hand side of Eq. B.14 becomes,

j (Vs0)(VG o 7)dS = - j OV (VG » 7)dS + j%(vc; o A)0ds - J' AkVGendS  B24
A S C S

Using equations Eq. B.21 and Eq. B.24, Eq. B.14 becomes

V*ij[—hxvsq)]GdS:
S

B.25
2
J ¢[ﬁ3—f+VS%; dS+§¢[ﬁ(VG-0)—\“/(VG0ﬁ)]ds
S " C
Noting that
26 0 9G (.9 .o PG _ oG
na—nz-+VS-a-; = (n571+Vs 3 = V-ér—z. B.26
V*xj[—ﬁxvsmcds = j¢[V?)—"i|dS+§¢[ﬁ(VG-0)—0(VGoﬁ)]ds B.27
S S C

In the line integral, once again use the identity ax(bXc) = b(aec)—c(aeb) tore-express
the integrand as

V*xj[—ﬁszq)]GdS - I¢[V%-§']d$+§¢vcxdg B.28
S S C

where ds = 7 X Vds is the differential arc length in the tangential direction.

Using V.G = -VG and VG xXds = -V, X Gds on the right hand side of the above equation,
yields




V*xj[—nxvsq)]ads = -V j ¢—ds V. x 3§¢VG><d§ B.29

The contour integral represents the motion associated with a jump in potential within the domain,
which we need not include. Thus, for a domain containing no jumps in potential or vortex sheets,

V. X j [-7 x V01GdS = -V, f ¢g—fds : B.30
S S

which proves that Eq. B.7 is correct. Thus, the potential velocity field obtained from the general-
ized decomposition is equal to the classical potential velocity ﬁeld and is therefore a valid meth—
od to specify potential velocity fields.
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