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• Develop a two-phase compressible CO2-brine solver for running on wafer 
scale engine (WSE)

• Demonstrate numerical accuracy and scalability of the WSE-based solver 
on synthetic problems

• Demonstrate the WSE-based solver on well data from the Illinois Basin -  
Decatur Project (IBDP)

Objectives
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WSE/Wafer Field Application (WFA)
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WSE
Colovore
(https://www.colovore.com/cerebras-

systems-a-global-leader-in-ai-

hardware-deploys-their-most-powerful-

supercomputers-at-colovore/)

Neocortex
(https://www.cmu.edu/psc/aibd/neoc

ortex/)

WFA
General CFD

Material Problems

Subsurface modeling



WSE/WFA Software
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Mapping to WSE

Approximation Through Discretization

Quantities and behaviors affected mostly by 

local values and immediate neighbor values

Core WSE Chip

850,000 Cores -> 84 Dies -> 1 WSE Chip

Carbon Storage 

Problem in 3D/4D

Discretization of 

the Problem in 

3D/4D

WFA 
Connection

Discretize Formulate 
Problem

Map

1. Scientific physical approach for high-fidelity results 

2. Faster speed than traditional simulations 

comparable to Artificial Intelligence/Machine 

Learning (AI/ML)



Two-Phase Model

Numerical Model – Governing Equations
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• The two-phase model for fluid flow in porous media is developed based on the water and gas equations. The 

model accounts for the pressure – volume - temperature (PVT) properties and the relative permeability 

calculations. The gas solubility in the liquid phase and the gravity effect are considered in the model.

• Water flow equation:

𝜕 (𝜑 𝜌𝑤 𝑆𝑤)

𝜕𝑡
= ∇. (

𝜌𝑤

𝜇𝑤
 𝑘 𝑘𝑟𝑤  (∇pw + 𝛾𝑤∇z)) + 𝑞𝑤

• Gas flow equation:

𝜕 (𝜑 (𝜌𝑔 𝑆𝑔 +  𝜌𝑤 𝑆𝑤𝑅𝑠𝑤))

𝜕𝑡
= −∇. ((

𝜌𝑔

𝜇𝑔
𝑘 𝑘𝑟𝑔 +

𝜌𝑤

𝜇𝑤
𝑘 𝑘𝑟𝑤𝑅𝑠𝑤) (∇pg + 𝛾𝑔∇z)) + 𝑞𝑔

where, 𝜑 is porosity. 𝜌𝑤, 𝜇𝑤, 𝛾𝑤 , and 𝑆𝑤 are density, viscosity, specific gravity, and saturation (for water). 𝑘 and 

𝑘𝑟𝑤 are permeability and relative permeability. ∇pw and ∇z are pressure and elevation. 𝑞𝑤 is 

injection/production rate. 𝑅𝑠𝑤 is gas solubility in water.



PVT Properties and Relative Permeability

Numerical Model - Materials
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• The model used for the calculations of PVT properties is the Peng-Robinson 
Equation of State. The properties calculated for CO2 as a function of pressure at 
100 °C are given in Figure 1.

• Relative permeability is estimated using Corey’s model, as given in Figure 2.

Figure 1: CO2 PVT properties estimated using Peng-Robinson model. Figure 2: Relative 

permeability calculations. 



Goal: IBDP Real Reservoir

WSE/WFA IBDP Data Loading
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Eclipse Simulator – Mesh & Permeability

Simulation setup on WSE platform from Eclipse simulator cases of IBDP

• Mesh construction of IBDP site

• 100 cases of (permeability and porosity)

CO2 injection

Pressure 

Sensor



Benchmark Test with t-Navigator
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t-Navigator
Mesh Size of 

(10 x 10 x 10)

WSE/WFA

Mesh Size of 

(10 x 10 x 10)

Consistent simulation setup on t-Navigator and 

WSE/WFA code

• dx = dy = dz = 30 ft

• Q_gas = 10,000 scf/day
• T_res = 100 °C
• Permeability = 100 md

• Phi = 0.2 (porosity)

• Sw_if = 0.1 (minimum water saturation)

• Sw_if = 0 (minimum gas saturation)



Scalability Study on Neocortex sdf WSE
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Mesh Size of 

(400 x 400 x 124)
Simulation setup on WSE/WFA code

• dx = dy = dz = 30 ft

• Q_gas = 10,000 scf/day
• T_res = 100 °C
• Permeability = 100 md

• Phi = 0.2 (porosity)

• Sw_if = 0.1 (minimum water saturation)

• Sw_if = 0 (minimum gas saturation)

• (nx,ny,nz) = (100,100,124), (200, 

200,124), (300,300,124), (400,400,124)

CO2 Plume evolution 

animation (50~1000 days)



Preliminary Result Using Stand-Alone Code Toward WSE/WFA Implementation

Comparison Study with IBDP Experiment 
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• 100 days CO2 injection data

• Uniform permeability and 
porosity

• Converting stand-alone version 
into WSE/WFA



1. compile the code
python ../build_and_test.py -st 1; python -m 
WFA.tests.TwoPhasePythonSolver_GasWater_Mina23May24_v4_WFA_v4 -hin 
hardware_test -mg bench.img -ts32 1

2. submit job to Neocortex sdf-1
sbatch --nodelist=sdf-1 neocortex_slurm_script_bash -c hardware_test -o 
Pn_array_wse,Sw_array_wse

3. security copy for post-processing
scp hkimd@bridges2.psc.edu:/jet/home/hkimd/hardware_test_ckpt_Sw_array_wse .

Running on Neocortex sdf WSE
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• Preliminary results
1. Developed proof-of-concept WFA code of two-phase CO2 and brine model

2. Benchmarked results against t-Navigator outcomes

3. Tested scalability on Neocortex sdf wafer engine

4. Tested preliminary case based on IBDP CO2 storage dataset

• Next work
1. Development of pre-conditioner for linear solver on WSE/WFA

2. Benchmark study using t-Navigator on Joule3 CPUs/GPUs

3. Validation study based on legacy IBDP experiment/simulation

Summary & Next Work
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• Petroleum reservoir simulation – basic concepts, Khalid Aziz, 2005

• Redlich, Otto; Kwong, J. N. S. (1949). "On The Thermodynamics of Solutions". Chem. Rev. 
44 (1): 233–244. doi:10.1021/cr60137a013. PMID 18125401. 

• Kamil Rocki, Dirk Van Essendelfty, Ilya Sharapov, Robert Schreiber, Michael Morrison, 
Vladimir Kibardin, Andrey Portnoy, Jean Francois Dietikeryz, Madhava Syamlaly and 
Michael James: Fast Stencil-Code Computation on a Wafer-Scale Processor. 
arXiv:2010.03660v1 [cs.DC] 7 Oct 2020

• Area of Review and Corrective Action Plan for ADM CCS #2 Oct2016, IL-115-6A-0001, 
Attachment B
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VISIT US AT:  www.NETL.DOE.gov
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