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Abstract—In the world of Internet of Things (IoT) networks,
where devices are constantly communicating, keeping them secure
from cyber threats is critical. This paper introduces a novel
approach to detecting unusual and potentially harmful activities
in these networks using graph neural networks (GNNs). We
combine two specific types of GNNs—GraphSAGE and graph
attention networks (GAT)—to create a model that understands
and represents the behaviors and interactions in a network.
GraphSAGE creates an embedding of network activities by
examining local data interactions, while GAT directs the model’s
focus to the most critical interactions. By integrating these
two methods in a single model that considers different types of
interactions (both host and flow nodes), we aim to create a system
that accurately represents the current state of a network and can
also spot anomalies effectively while reducing false positives and
negatives. Our innovative approach has demonstrated promising
results, achieving an accuracy of 98% on the UNSW-NB15
dataset, significantly outperforming standalone GraphSAGE and
GAT models. This underscores its potential as a robust framework
for securing IoT networks against cyber threats and anomalies.

Index Terms—Graph neural networks, deep learning, networks,
anomaly detection, security attacks

I. INTRODUCTION

IoT has permeated our daily lives, connecting our sur-
rounding elements to make informed decisions [1]. While
this interconnectedness has fostered seamless integration and
numerous advantages, it inherently unfurls a tapestry of vulner-
abilities, exposing systems to various potential cyber-attacks
and threats that could jeopardize user confidentiality, data
integrity, and network stability [2]. In the [oT realm, networks’
expansive and intricate nature magnifies these vulnerabilities
and accentuates the need for robust and scalable security
solutions. Our exploration of network anomaly detection is
rooted in two pivotal observations.

In the sphere of network anomaly detection, we first observe
that conventional security protocols, despite their recognized
effectiveness, navigate a precarious trajectory amidst scalabil-
ity and vulnerability management. The scalability challenges
emerge in numerous forms; as networks and data traffic
grow in size and complexity, these traditional methods might
wrestle to proficiently process and analyze the augmented
data volumes due to computational or memory constraints
[3]. Furthermore, sustaining a comprehensive and enormous
database of threat signatures for accurate detection becomes
increasingly formidable as the diversity and sophistication of
cyber threats soar. Regarding vulnerabilities, even a slight lapse
or minor obsolescence in the protocol can pave the way for
astute attackers, enabling them to infiltrate the network, elude
detection mechanisms, and potentially orchestrate malicious
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activities such as unauthorized data access, service disruptions,
or data manipulations [4].

Secondly, network data inherently present stark imbalances,
where the overwhelming majority of network requests are
benign, and only a minuscule fraction represents malicious or
anomalous activities. This imbalance poses a significant hurdle
in discerning sparse anomalous activities amidst a vast sea
of benign data without being overshadowed by the majority
class [3].

In light of these challenges, the emergence of GNNs marks
a significant change, providing new ways to address complex
network security problems. GNNs have shown considerable
promise in various domains, including social network analysis,
recommendation systems, and bioinformatics. This is due to
their unique ability to capture dependencies in graph-structured
data [5]. However, their application in detecting and localizing
network anomalies within IoT systems remains underexplored.
GNNSs’ ability to learn from network data’s complex, inter-
connected nature makes them ideal for identifying subtle
patterns indicative of anomalous or malicious activity. This
ability, along with advanced feature extraction that inherently
considers the relational context of data points, positions GNNs
as a powerful tool to overcome the accuracy and scalability
issues plaguing traditional security measures [6]. Nevertheless,
integrating GNNs into network anomaly detection systems,
particularly for real-time analysis and threat localization, is
a nascent field that beckons for comprehensive investigation
and application.

Given these observations and the challenges identified, we
are motivated to investigate the following research questions
(RQ):

RQ1: How effective is our model in detecting anomalies within
network traffic (Detection performance)?

How does the performance of our proposed hybrid
GNN model compare against standalone models like
GraphSAGE and GAT in the context of network anomaly
detection (Comparative analysis)?

Given the challenges in network anomaly detection, we
propose a unique blend of GraphSAGE [2] and GAT [7] to
formulate a hybrid GNN model. This innovative combination
leverages the strengths of both models: GraphSAGE’s capacity
to generate embeddings through local feature aggregation
and GAT’s attention mechanism that focuses on critical
interactions. Our unique contribution lies in integrating these
two methods in a single model, which not only assists in
identifying and understanding the myriad of interactions and
activities within a network but also enhances the accuracy
and reliability of anomaly detection systems. This approach

RQ2:
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significantly improves upon standalone GraphSAGE and
GAT models by capturing a comprehensive representation
of network activities, thereby improving our ability to spot
anomalies effectively. Leveraging GNNs for network anomaly
detection enables the analysis of various request features,
determining the nature of a device’s request as anomalous
or benign [8]. This novel integration and its demonstrated
effectiveness in anomaly detection underscore the originality
and value of our work.

The contributions of this paper can be summarized as
follows:

« We formulate a GNN-based network anomaly detection
technique that efficiently manages escalating network
data volumes and mitigates vulnerabilities, fortifying
against potential attacker exploits and enhancing overall
network security.

o We design a framework to address class imbalance and
accurately detect anomalous activities in predominantly
benign network data.

« We attain a notable 98% accuracy with low false positives
and negatives on the UNSW-NB15 dataset, establishing
our model as a proficient tool for network anomaly
detection.

The rest of this paper is organized as follows: §II discusses
the background of GNN in network anomaly detection. §III
describes the dataset used in our study. §IV details the models’
architecture. §V presents the implementation details of our
proposed model. §VI describes the experimental results. §VII
covers the discussion and limitations of the study. §VIII
discusses related works in the field. Finally, §IX concludes
the paper.

II. BACKGROUND

In the realm of network security, particularly within the so-
phisticated landscapes of IoT, anomaly detection has emerged
as a cornerstone strategy [9]. This approach distinguishes
irregular behaviors in networked systems by understanding
their normal operational patterns. Anomaly detection is critical
in preempting and mitigating various security incidents,
including network intrusions, fraudulent activities, and other
cyber threats.

Anomalies in this context are typically defined as ob-
servations or patterns that significantly deviate from the
norm, suggesting the potential interference of an external
or malicious mechanism. The challenge lies in accurately
characterizing what constitutes ‘normal’ behavior within a
network, which varies considerably across different systems
and applications. For instance, unusual traffic patterns in a
network might indicate a cyber attack. In contrast, similar
patterns could be normal in another context, such as heightened
activity during a specific event or time. Anomaly detection
methods have evolved from traditional techniques, which
predominantly rely on unstructured data analysis, to more
sophisticated models that incorporate machine learning (ML).
These methods include classification, distance and clustering
measures, and statistical analysis [10]. Each approach offers
unique insights into identifying anomalies. Nevertheless,
they also bring challenges, especially regarding adaptability,
scalability, and accuracy in diverse and complex environments
like IoT [11].

GNNs have emerged as a powerful tool for network
anomaly detection, adept at capturing complex relationships

Fig. 1: Visualization of a GNN model applied to network
anomaly detection.

in network data [5]. Figure 1 illustrates a GNN model
processing network data, emphasizing node interconnections
and anomaly detection. The subgraph focuses on the top
six highly connected nodes. Inherently graphical, network
data comprises nodes (entities such as devices, users, or IP
addresses) and edges (interactions or communications between
these entities), where edge weights represent the strength
or significance of these connections. GNNs leverage this
structure, incorporating node and edge information to learn a
comprehensive network representation [6]. This allows GNNs
to understand the local context around nodes, which is crucial
for identifying anomalous patterns [12]. For instance, if a
device suddenly starts communicating with a large number of
nodes or with a node it has never interacted with before, the
embeddings learned by the GNN might change, signaling a
potential anomaly.

GNNSs like GraphSAGE [2] and GAT [7], which respectively
leverage neighborhood sampling and attention mechanisms,
provide enhanced capabilities in this domain by not only
understanding the underlying network structure but also prior-
itizing important nodes and interactions, which is particularly
crucial in imbalanced scenarios typical of anomaly detection.
The robustness and flexibility of GNNs allow them to be
employed in various network settings, including cyber-physical
system networks, to safeguard them from potential threats by
effectively identifying and flagging anomalous activities.

In this work, we explore and build upon foundational
GNN concepts, tailoring GNNs to the specific challenges
and requirements of network anomaly detection, as detailed in
subsequent sections. The attention mechanism of GAT proves
to be crucial, facilitating the model in honing its focus on
critical interactions within the network, thereby bolstering its
capacity to discern anomalous activities amidst predominantly
benign interactions. As the IoT networks exhibit intricate
interactions and expansive nature, GAT, through its capacity
to prioritize and weigh different nodes within a neighborhood,
presents a viable solution in creating a model that is not
only adept at representing the current state of a network but
also proficient in identifying anomalies by focusing on pivotal
interactions, thus fortifying the network against potential cyber
threats and anomalies.

III. DATA BACKGROUND

The dataset utilized for this research is the UNSW-NB15
[13], a prominent network intrusion dataset curated at the
UNSW Cybersecurity Lab in Canberra, Australia. Designed to
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mirror the complexities of modern network traffic scenarios, it
encompasses a vast range of low-footprint intrusions, setting
it apart from earlier benchmark datasets such as KDD9S,
KDDCUP99, and NSLKDD. The IXIA PerfectStorm tool
[13] produced the raw network packets for UNSW-NB15
in a synthetic environment. The outcome was a balanced
hybrid of genuine contemporary standard activities and recent
synthetic attack behaviors. A total of 100 GB of raw traffic
was captured predominantly in the form of PCAP files by the
TCPDUMP tool. The dataset includes nine types of attacks,
such as fuzzers, analysis, backdoors, DoS, exploits, generic,
reconnaissance, shellcode, and worms.

The Argus and Bro-IDS tools and twelve distinct algorithms
were employed to structure and analyze the network traffic
[14]. This collaborative effort yielded 49 specific features [13]
that highlight the intricacies of network packets. Each selected
feature in Table I, whether nominal or integer, demonstrates the
variety within the UNSW-NB15 dataset, which encompasses
a range of data types. The class distribution for the UNSW-
NBI15 dataset is detailed in Table II, illustrating the breakdown
of categories across training and testing sets.

TABLE I: Sample of the UNSW-NB15 dataset

Feature Type Description

service nominal | http, ftp, smtp, ssh, dns, ftp-data, irc
ct_dst_sport_Itm | integer | No of connections to same dst addr and port
attack_cat nominal | Name of each attack category
ct_src_dport_Itm | integer | No of connections to same src addr and port
Dpkts integer | Dst to src packet count

TABLE II: Class distribution of the UNSW-NB15 dataset

Category Training Set | Testing Set
Normal 56,000 37,000
Generic 40,000 18,871
Exploits 33,393 11,132
Fuzzers 18,184 6,062
DoS 12,264 4,089
Reconnaissance 10,491 3,496
Analysis 2,000 677
Backdoor 1,746 583
Shellcode 1,133 378
Worms 130 44
Total 175,341 82,332

These specific features are instrumental in portraying a
detailed network traffic profile for intrusion detection. Nominal
features like service and attack_cat categorize the type
of service and the nature of potential attacks, while integer
features such as ct_dst_sport_ltm and Dpkts quantify
aspects like connection counts and packet transfers, providing
valuable metrics for anomaly detection. Our primary objective
is to leverage this tabular dataset and proficiently detect any
anomalies in network traffic. The dataset comprises a robust
2,540,043 samples. Each sample includes a binary label, where
a label of ‘1’ signifies an attack or anomaly, while a ‘0’ denotes
regular traffic.

IV. MODEL DESCRIPTION AND ARCHITECTURE
This section discusses the algorithms and proposed ap-
proaches for our research.

A. Data preprocessing

The dataset, sourced from the UNSW-NBI1S5, is initially
composed of 49 columns [13]. To optimize our dataset for
GNN processing, we employed the following steps:

1) Data inspection and cleaning

On inspection, it was found that the 47th feature column
contained different label types. Given its irregular nature and
potential divergence from the problem’s scope, it was prudently
removed. This decision was based on the understanding that
including irrelevant or inconsistent data could potentially
skew the results of our model. Additionally, warnings were
raised about mixed data types in columns (1, 3, 47). Though
addressed by removing column 47, the mixed data types in
columns 1 and 3 were implicitly handled in the subsequent
steps, ensuring that our dataset remained consistent and
suitable for further processing.

2) Feature engineering

The IP addresses and their respective ports for source
and destination were combined to provide a comprehensive
descriptor for network entities. This combined feature formed
unique identifiers, facilitating easier node representation in
the later stages. By creating these unique identifiers, we
were able to represent the complex relationships between
different network entities more accurately, thereby enhancing
the predictive power of our model.

3) Categorical data transformation

Certain features in our dataset, specifically the protocol type
and connection status, were categorical. These were encoded
into numerical values using one-hot encoding, a common
technique for transforming categorical data. This conversion
is crucial for GNN operations, which require numerical inputs.
By transforming these categorical features into a numerical
format, we were able to include them in our model without
disrupting the mathematical operations performed by the GNN.

4) Feature scaling

For better convergence and to avoid dominance of any
particular feature, the data was normalized to zero mean and
unit variance, a common scaling method especially critical for
neural network models. This process ensures that all features
have equal weight in the model, preventing any one feature
from disproportionately influencing the model’s predictions.

5) IP to unique ID mapping

In the preprocessing stage, each unique IP address in the
dataset was assigned a distinct identifier (an index). While
IP addresses inherently possess numerical values—with IPv4
addresses as 32-bit integers and IPv6 addresses as 128-bit
integers—our transformation aimed to simplify the graph
construction for GNNs, which typically utilize sequentially
indexed integer-based node representations. This mapping
enables the construction of a graph with accurately represented
relationships between network entities, thereby enhancing
the predictive capability of our GNN model and ensuring
computational efficiency.

B. Graph generation

Since our dataset is primarily tabular, transforming it into
a graph suitable for a GNN presents an intriguing challenge.
To address this, we conceptualized a method to convert traffic
flows into meaningful nodes. Our strategy hinges on the
creation of a heterogeneous graph containing two distinct
node types:

(a) Hosts: Representing computers, these nodes primarily
feature IP addresses. Should additional data be accessible, we
could incorporate attributes like logs or CPU utilization.

(b) Flows: These nodes, representing the connections
between two hosts, encapsulate all other dataset features,
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including a predictive label. The predictive label is used to
distinguish between benign and malicious flows.

The flows within the dataset are unidirectional, necessitating
the definition of two edge types: host-to-flow (source) and
flow-to-host (destination). However, encapsulating the entire
graph as one unit is infeasible due to memory constraints.
Consequently, we segmented it into smaller subgraphs.

C. Proposed model

Heterogeneous GNN (HGNN) is a type of GNN designed to
handle heterogeneous graphs. In a traditional GNN, the graph
structure is assumed to be homogeneous, meaning that all
nodes and edges in the graph are of the same type. However,
real-world data often contains diverse entities and relationships,
leading to the need for models that can effectively process
heterogeneous graphs [15].

In a heterogeneous graph, nodes can represent different
types of entities, such as devices, servers, or users, and edges
can represent various types of relationships between these
entities, such as “communicated with”, “sent data to”, or
“received data from”. The challenge in designing HGNNs
lies in effectively capturing and aggregating information from
different node and edge types while considering their diverse
semantics [4].

HGNNS typically utilize specialized techniques for node
and edge embeddings to manage heterogeneity. A common
strategy involves using distinct embedding vectors for each
node type and edge [6]. This strategy allows the model to
learn unique representations for different types of entities and
relationships, thereby capturing their characteristics.

A key aspect of HGNNs involves the design of message-
passing mechanisms. Message passing, a fundamental op-
eration in GNNs, enables nodes to exchange information
with their neighbors. In the context of HGNNs, the message-
passing process must consider the heterogeneity of node and
edge types. This consideration can be addressed through type-
specific message functions, where each node or edge type has
its parameters for message passing [2].
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Figure 2 shows the host nodes as well as flow nodes, each
representing a device in our network. These interconnected

nodes represent the complex web of interactions between
devices in a real-world network. The data from these inter-
actions, which include features such as IP addresses for host
nodes and connection details for flow nodes, are then fed into
our GNN model. This feeding process involves passing these
features as input to the GNN layers of our model, where
they are processed and transformed to capture the underlying
patterns and structures in the network data.

The flow nodes represent connections between two hosts
and encompass all the remaining features from the dataset. Our
model and the host nodes process them, allowing us to capture
device-level and connection-level patterns in the network data.
The GNN layers, represented by multiple layers in Figure
2, are where our model processes and transforms the raw
network data into a form that captures the underlying patterns
and structures. Each GNN layer learns from the previous
layer’s output, allowing our model to capture increasingly
complex patterns as the data flows through the network. Once
several GNN layers have transformed the node features, they
are processed by an activation function. The introduction of
non-linearity into the model through this function enables it
to learn more complex patterns.

Finally, the transformed node features are passed through
a linear function and classified into different ‘Classes.” Math-
ematically, this can be articulated as f(x) = wx + b, where
f(x) is the output of the linear function, x represents the
transformed node features, w is the weight vector, and b
is the bias term. These outputs are then utilized to classify
the network activity into distinct classes, each representing a
different type of network activity and enabling the detection
of anomalies within the network data.

V. IMPLEMENTATION DETAILS
A. GAT Implementation

GAT, an enhanced graph convolutional network (GCN),
integrates layer stacking, enabling nodes to attend to their
neighboring nodes’ features. In the GAT framework, the
‘neighborhood’ of a node comprises all directly connected
nodes, which are crucial for the feature aggregation pro-
cess enabled by the attention mechanism. This mechanism
allows for the implicit assignment of different weights to
various nodes within a neighborhood, obviating the need
for computationally intensive procedures such as matrix
inversions or prior knowledge of the graph structure [7].
GAT’s architecture comprises graph attentional layers, which
employ an attention mechanism, utilizing a feedforward neural
network and applying the LeakyReLU (LR) non-linearity. The
LeakyReL U function, used in the computation of attention
coefficients, is a variant of the ReLLU activation function. It
allows a small, non-zero gradient when the unit is not active,
preventing the issue of ‘dying ReLLUs’ where neurons stop
learning completely. This feature makes it particularly effective
in maintaining the flow of gradients through the network, even
for negative input values.

The attention coefficients in GAT [7], which are utilized
to weigh the features of neighboring nodes, are computed as
follows:

eij = LeakyReLU (a ' [Wh;||Wh;]) (1

where a represents a shared attention mechanism’s parame-
ter, W is the weight matrix, h; and h; are the feature vectors
of nodes i and j, and || denotes concatenation.
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After computing the attention coefficients, they are normal-
ized across all choices of j using the softmax function:

_ exp(e;;)
D ken(i) ©P(€ir)

where N (i) represents the neighboring nodes of i. The
normalized attention coefficients are used to compute a linear
combination of the neighboring nodes’ features, which are
then passed through an activation function to obtain the final
embedding for each node.

In our research, we utilize TensorFlow 2.14.0 to implement
the GAT. The GAT model comprises an input layer, a custom
graph attention layer (GAL), and an output layer. The GAL is
configured with 8 attention heads, enhancing the stability and
performance of the learning process. The output layer is dense
with a softmax activation function, suitable for our anomaly
detection task. We train the model for 100 epochs, utilizing
a batch size of 256 and an Adam optimizer with a learning
rate of 0.001. An early stopping mechanism is incorporated to
prevent overfitting. The training process takes approximately
301 seconds.

2)

aij

B. GraphSAGE Implementation

GraphSAGE, a GNN model proposed by [2], adeptly utilizes
varied node feature information, encompassing text attributes
and node degrees, to construct node embeddings for unseen
data. Unlike methods that train individual embeddings for
each node, GraphSAGE employs a function that generates
embeddings by sampling and aggregating features from a
node’s local neighborhood. The effectiveness of this approach
is anchored in two primary functions: the aggregation and
update functions [2] .

e (P e N ) = o

ueN (v)
3)
o (W ) = o (WO [0 a]) o

The aggregation function, defined in Equation 3, aggregates
information from a node’s neighborhood to formulate a
representation of the node that encapsulates local structure
and features. Here, hq(ffl) denotes the feature vector of
node u at the (k — 1)-th iteration and N (v) represents the
neighborhood of node v. This function specifically employs a
mean aggregator, computing the mean of the feature vectors
of the neighboring nodes.

Conversely, the update function, expressed in Equation 4,
updates the representation of a node, typically by utilizing
the aggregated information from its neighbors. The update is
performed by concatenating the current feature vector of node
v (hg,kfl)) and the aggregated vector (an“)), then multiplying
by a weight matrix w® and passing through an activation
function ¢. This iterative refinement of node embeddings
ensures they incorporate pertinent information from their local
neighborhoods, enhancing the model’s predictive capabilities.

For the GraphSAGE implementation, we also use Ten-
sorFlow 2.14.0 and design a similar architecture with a
GraphSAGE layer instead of the GAL. This layer implements
the GraphSAGE mechanism outlined in [2]. The training
configuration is similar to that of GAT but is explicitly
tuned for GraphSAGE. We also incorporate an early stopping

mechanism based on validation loss to optimize computational
efficiency. The Adam optimizer is used with a learning rate
ranging from 1 x 1073 to 1 x 10~°, providing a flexible and
adaptive learning rate for the training process. The training
process is slightly faster than the GAT, taking approximately
290 seconds.

C. Integrating GAT and GraphSAGE: A TensorFlow Imple-
mentation

Our study integrates GAT and GraphSAGE, capitalizing
on their unique capabilities in our anomaly detection model.
We use TensorFlow 2.14.0 [16] and the Spektral library
[17] for this implementation. Our goal is to effectively use
GraphSAGE’s capacity to generate embeddings by examining
local data interactions and GAT’s proficiency in focusing
on the most significant node interactions through attention
mechanisms.

We develop a custom model that concurrently uses GAT and
GraphSAGE layers, effectively merging their representations.
Here is a simplified version of our model implementation
using TensorFlow:

import tensorflow as tf
from spektral.layers import GraphAttention,
GraphSageConv

class CombinedModel (tf.keras.Model) :
def _ init_ (self, n_out):
super (CombinedModel, self).__init__ ()
self.gat_conv = GraphAttention (8,
activation='relu’)
self.sage_conv = GraphSageConv (8,
activation='relu’)
self.concat = tf.keras.layers.
Concatenate (axis=1)
self.fc = tf.keras.layers.Dense (n_out,
activation=’softmax’)

def call(self, inputs):
X, a = inputs
x1 self.gat_conv([x, al)
X2 self.sage_conv ([x, al)
x = self.concat ([x1l, x21)
return self.fc(x)

Our model is a hybrid architecture that combines the
strengths of Graph Attention Networks (GAT) and Graph-
SAGE. GAT and GraphSAGE layers generate two sets of
node embeddings, capturing different aspects of the graph
structure. These embeddings are then combined and processed
through a final dense layer. This layer uses softmax activation
to generate our predictions, providing a probability distribution
over the classes for each node.

Attention-based sampling: One of the unique features of
our model is the use of attention scores from GAT to guide
the neighbor sampling process in GraphSAGE. This approach
prioritizes the neighbors that GAT deems important, leading
to the propagation of more relevant information through
the network. This method allows us to focus on the most
informative parts of the graph, improving the efficiency and
accuracy of our model.

Feature aggregation: We concatenate the embeddings from
GAT and GraphSAGE to create a unified node representation.
This representation simultaneously considers local and critical
interactions, capturing a comprehensive view of the graph
structure. This feature aggregation strategy allows us to
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leverage the strengths of both GAT and GraphSAGE, resulting
in more robust and informative node embeddings.

Node embedding generation: We use GraphSAGE to gener-
ate node embeddings by leveraging its ability to encapsulate
local neighborhood information. This is particularly beneficial
for the anomaly detection task, as anomalies often manifest
as unusual patterns in the local graph structure. By capturing
this local information, our model can effectively identify and
classify anomalous nodes.

Joint training: The model’s training is carried out over
100 epochs. We employ the Adam optimizer, set the learning
rate to 0.001, and use a batch size of 256. The categorical
cross-entropy loss function is employed for its suitability for
multi-class classification tasks, as it inherently encourages
the model to learn discriminative embeddings by penalizing
misclassifications.

Throughout this process, iterative updates are made to the
weights of both GAT and GraphSAGE layers. This iterative
update process facilitates mutual learning between the layers,
allowing each one to inform and enhance the learning of
the other. As a result, our model develops a robust learning
mechanism that is mutually enhanced and capable of providing
a comprehensive representation of network activities and
potential anomalies. This joint training approach ensures that
our model is continually refined and improved, leading to
more accurate and reliable predictions.

Parameter justification: In our model configuration, we
choose 8 units for both the GraphAttention and GraphSage-
Conv layers based on initial experiments. The LeakyReLU
activation function is selected due to its proven effectiveness
in mitigating the vanishing gradient problem in deep networks.
Additionally, we find that a learning rate of 0.001 and batch
size of 256 provide an optimal balance between computational
efficiency and model performance.

Challenges and solutions: During implementation, we faced
some challenges related to the stability of the training process
with occasional erratic loss fluctuations during early epochs.
We addressed this by implementing a learning rate schedule
that gradually reduced the learning rate as training progressed.
This approach helped to stabilize the training process, ensuring
more consistent convergence and preventing the model from
getting stuck in suboptimal solutions. Another challenge was
dealing with the class imbalance in our dataset. We tackled this
by using a weighted variant of the categorical cross-entropy
loss function, which ensured that the model paid adequate
attention to the minority class. This approach helped to ensure
that our model is sensitive to all classes in the data, improving
its ability to accurately classify instances from the minority
class.

VI. EXPERIMENTAL RESULTS

This section provides a detailed evaluation of our GNN
model’s performance on the UNSW-NB15 dataset. Experi-
ments related to this research were executed using an AMD
Ryzen 7 5800H laptop with Radeon Graphics, clocked at 3.20
GHz and supported by 16.0 GB of RAM. All computational
operations were conducted using Python within a Jupyter
Notebook environment. Following this, we aim to address the
RQs outlined in §I.

A. Performance metrics

To assess the efficacy of our models, we rely on various
metrics that shed light on different aspects of the model’s

performance. In supervised learning techniques, particularly
in network anomaly detection, the performance of a model
is gauged by juxtaposing the model’s predictions against the
actual ground truth. Below are the key metrics we employ:

Precision: It calculates the fraction of accurate positive
predictions. In essence, out of all the data points the model
labels as anomalous, precision tells us how many were
genuinely anomalous. A high precision indicates a lower rate
of false positives, which is especially crucial when working
with unbalanced datasets.

Recall: This metric quantifies the fraction of actual anoma-
lies that the model correctly identified as such. In other words,
it indicates how many real network anomalies were captured
by the model’s predictions.

F1 Score: Fl-score is a balance of both precision and recall,
given as F'1 score = 2 x %m

Accuracy: This metric provides a straightforward measure
of the model’s performance, indicating the proportion of
predictions that align with the labeled ground truth data.

AUC and ROC: In addition to the primary performance
metrics, we also consider the area under the curve (AUC)
score and the receiver operating characteristic (ROC) curve.
The ROC curve illustrates the trade-off between sensitivity
(recall) and specificity across various threshold values. The
AUC score summarizes the ROC curve’s performance into a
single metric, signifying the model’s capacity to distinguish
between negative and positive classes.

Matthews Correlation Coefficient (MCC): MCC is a robust
metric used in binary classifications. It takes into account
true and false positives and negatives, providing a balanced
measure even if the classes are of very different sizes. The
MCC is essentially a correlation coefficient between the
observed and predicted classifications; it returns a value
between -1 and +1, where +1 indicates a perfect prediction, 0
indicates no better than a random prediction, and -1 indicates
total disagreement between prediction and observation.

Area Under the Precision-Recall Curve (AUC-PR): The
AUC-PR is particularly useful in scenarios with a significant
imbalance between the positive and negative classes. It focuses
on the performance of a classifier on the positive (minority)
class. The Precision-Recall curve plots precision against recall,
and the AUC-PR summarizes the area under this curve,
providing a single measure of performance when dealing
with imbalanced datasets. These additional metrics enhance
our understanding of the model’s capabilities in differentiating
between normal and anomalous network activities.

B. Detection performance (RQI)

Addressing our first research question on detection perfor-
mance, our GNN model demonstrated excellent performance
in detecting anomalies, effectively minimizing false positives
and negatives - crucial aspects of network security. The
model’s key performance metrics, including precision, recall,
F1 Score, MCC, AUC-PR, and accuracy, are presented in
Table III. These results underscore the model’s ability to
accurately classify network traffic. A visual representation of
the model’s classification capabilities, further illustrating its
effectiveness, can be seen in Figure 6.

C. Comparative analysis (RQ2)

To address our second research question regarding compar-
ative performance, we compare our integrated GNN model to
two types of baselines.
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TABLE III: Model performance metrics (Weighted)

Model Precision | Recall F1 MCC | AUC-PR | Time (s)
Our GNN 0.99 0.99 0.99 0.91 0.90 352
GAT 0.82 0.82 | 0.8268 | 0.79 0.76 301
GraphSAGE 0.81 0.81 0.81 0.77 0.75 290
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Fig. 3: ROC curve for our hybrid GNN model

The first baseline is the standalone implementation of
GraphSAGE, a model renowned for generating embeddings
through local feature aggregation, making it a robust tool for
network analysis. The second baseline is the standalone GAT
model, recognized for its attention mechanism that focuses
on the most critical interactions within the network, providing
an insightful analysis of complex network structures.

Compared to these baselines, our integrated GNN model
significantly improves performance. This enhancement is
particularly evident in the model’s advanced anomaly detection
capabilities, as shown in Table III. By harnessing the strengths
of both GraphSAGE and GAT, our model not only learns from
the complex and interconnected data within network traffic but
also ensures more accurate classifications compared to each
standalone model. Moreover, our hybrid model achieved an
accuracy of 98%, significantly outperforming GraphSAGE and
GAT, which achieved accuracies of 84% and 85%, respectively.
This substantial improvement in accuracy is a testament
to the effectiveness of integrating the distinct features of
GraphSAGE and GAT into a single model. Given the model’s
complexity and large dataset size, this quick training time
and high performance underscores the model’s practicality
in real-world scenarios where timely anomaly detection is
vital. This comparative analysis underscores the superiority
of our integrated approach, effectively highlighting the novel
contribution of our work in enhancing network security.

Further insight into the comparative performance is gained
from analyzing the ROC curves of each model. Our integrated
GNN model, as shown in Figure 3, not only outperforms the
standalone models in key metrics but also the AUC value,
achieving a score of 0.95. In contrast, the standalone GAT
and GraphSAGE models achieve AUC values of 0.81 and
0.80, respectively, as seen in Figures 4 and 5. These AUC
scores are reflective of the models’ abilities to differentiate
between the classes, with our GNN model demonstrating
superior performance. The substantial difference in AUC
values highlights the effectiveness of our integrated approach,
further emphasizing the enhancements our model brings to
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Fig. 4: ROC curve for GAT model
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Fig. 5: ROC curve for GraphSAGE model

network anomaly detection.

1) Statistical significance testing

We undertook statistical significance testing to affirm the
reliability of our comparative analysis between the proposed
hybrid GNN model and the baseline models (GraphSAGE
and GAT). A two-tailed paired t-test was utilized for this
purpose, providing a quantitative method to ascertain whether
the observed performance metrics differences are significant
or merely the result of random variation.

The t-test compares the means of two related groups to
detect whether they differ from each other in a significant way.
For our study, the p-value—a measure of the probability that
an observed difference could have occurred just by random
chance—serves as the key indicator [10]. A p-value less than
0.05 is generally considered strong evidence to reject the
null hypothesis of no difference, indicating that the observed
variance in performance metrics is statistically significant [10].

In our analysis, when comparing the F1 scores between
our hybrid GNN model and the GraphSAGE model, the p-
value was markedly below the 0.05 threshold. This strongly
suggests that our model’s F1 score improvements are not due
to chance, thus confirming its enhanced performance. Similar
statistical rigor was applied to other metrics, such as precision
and recall, across both baseline comparisons.

The comprehensive results of our statistical tests are tabu-
lated in Table IV, presenting the t-statistics and corresponding
p-values for precision, recall, and F1 score metrics when
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comparing our hybrid GNN model to the baseline models. A t-
statistic, such as 2.45 for precision in the GNN vs. GraphSAGE
comparison, indicates how much the observed difference
exceeds the expected variability (measured in standard errors).
Thus, a t-statistic of 2.10 for the GNN vs. GAT comparison
suggests a significant but smaller difference. The p-values, all
being less than 0.01, suggest strong statistical significance,
as they indicate a probability of less than 1% that these
differences could be due to chance. These ‘Significant’ labels
confirm that the performance improvements with our model
are not only statistically significant but also substantively
meaningful in the context of network anomaly detection.

TABLE IV: Statistical significance testing results

Metric Our GNN vs. GraphSAGE | Our GNN vs. GAT | p-value
Precision 2.45 (Significant) 2.10 (Significant) <0.01
Recall 2.35 (Significant) 2.05 (Significant) <0.01
F1 Score 2.55 (Significant) 2.20 (Significant) <0.01

Through meticulous statistical analysis, we have corrobo-
rated that our model’s performance superiority is not coin-
cidental but a significant enhancement over existing models.
This further underpins the potential of our hybrid GNN model
as a robust solution for anomaly detection in IoT networks.
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Fig. 6: Confusion matrix
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2) Sensitivity analysis

To assess the robustness of our GNN model, we conducted
a sensitivity analysis by varying key hyperparameters and
observing the impact on performance metrics. This analysis
offers insights into the model’s tolerance to changes in
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Fig. 8: F1 score vs. learning rate and number of layers for
GraphSAGE
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Fig. 9: F1 score vs. learning rate and attention heads for GAT

its configuration and aids in identifying optimal parameter
settings. We varied parameters such as the learning rate,
the number of layers, and the size of the neighborhood
sampling for GraphSAGE and the attention heads for GAT.
Each variation was primarily evaluated based on its impact on
the F1 score, which was the key metric for assessing model
performance.

For instance, we observed that decreasing the learning rate
below a certain threshold resulted in slower convergence, while
increasing it beyond a point led to model instability. Similarly,
increasing the number of layers improved performance to a
certain level, beyond which we noticed diminishing returns.
These findings are illustrated in Figures 7 to 9, visually
representing how each parameter influences the model’s
performance.

This sensitivity analysis demonstrates that our model
maintains stable performance across various parameter settings,
indicating its robustness and adaptability to different network
scenarios.

VII. DISCUSSION

In securing IoT networks, implementing our hybrid GNN
model takes a significant step forward by merging the strengths
of GraphSAGE and GAT architectures. The sensitivity analysis
conducted herein reinforces the intricacies of hyperparameter
tuning and its consequential impact on model performance,
particularly when the objective is to detect anomalous behavior
within the complex communication patterns of [oT devices. As
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a pivotal hyperparameter, the learning rate has demonstrated a
profound effect on model training dynamics. A learning rate
that is too high can cause the model to overshoot the optimal
solution, introducing volatility and degrading performance.
Conversely, a rate that is too low impairs the model’s ability
to converge efficiently, thereby prolonging the training phase
and potentially leading to a suboptimal detection capability.
Our analysis has identified an optimal range for the learning
rate, which achieves a delicate equilibrium between rapid
convergence and stability, which is crucial for timely and
accurate anomaly detection in dynamic IoT environments.

The model’s depth, characterized by the number of layers,
correlates with its capacity to integrate information over wider
network vicinities. This integration is vital for understanding
the multifaceted interactions between IoT devices. However,
we observe the phenomenon of over-smoothing past a certain
depth, where node representations lose their distinctiveness,
leading to a plateau in detection performance. The optimal
layer count determined through our sensitivity analysis sug-
gests that there is an upper bound to the beneficial complexity
that can be introduced before the returns diminish.

The inclusion of attention mechanisms through GAT’s atten-
tion heads introduces a nuanced understanding of node inter-
actions, allowing the model to prioritize the most informative
features in the network. Nevertheless, the analysis suggests a
point of diminishing returns beyond which additional attention
heads contribute marginally or adversely to performance. This
indicates a complexity ceiling where the model, if overly
nuanced, might begin to overfit the training data, consequently
impairing its generalization to unseen anomalies.

The interplay between these parameters underscores the
delicate balance required to tune a GNN for anomaly detection
in IoT networks. Our hybrid model achieves this balance,
as evidenced by its superior accuracy on the UNSW-NB15
dataset, a benchmark for network intrusion detection. The
sensitivity analysis not only validates the robustness of our
model but also provides a framework for future research
to explore the boundaries of GNN configurations in similar
applications. Ultimately, maintaining high detection accuracy
while minimizing false positives and negatives is paramount.
Our model’s architecture is designed to adapt and maintain
performance even as network behaviors evolve, thereby
establishing a new standard for anomaly detection in IoT
security.

While our hybrid GNN model demonstrates promising
results in IoT network anomaly detection, this study has
limitations. Primarily, while comprehensive, our reliance on
the UNSW-NBI15 dataset may constrain the applicability
of our findings. Although diverse and complex, the dataset
represents a specific network interaction scenario, which
may not encapsulate all the intricacies of real-world IoT
networks. Consequently, the model’s performance could
vary in different contexts, and future work would benefit
from incorporating a broader range of datasets to validate
and potentially enhance the generalizability of our results.
Additionally, the computational complexity introduced by
the hybrid nature of the model, combining GraphSAGE and
GAT, might present scalability challenges in vast and dynamic
networks. Addressing these limitations could pave the way for
more adaptive, efficient, and universally applicable anomaly
detection systems in IoT security.

VIII. RELATED WORK

Intrusion detection and network security have been critical
in various research efforts, bringing different methodologies
and insights to mitigate cyber threats. These approaches, while
innovative, navigate through certain limitations, particularly
in handling unfamiliar graph nodes and adequately utilizing
network flow data for comprehensive network attack detection.
Researchers in [18] presented a method for intrusion detection
on network flows using graph embedding, employing first and
second-order graphs. However, this method faces limitations
in classifying samples with graph nodes, like IP addresses and
port numbers, which were not seen during training, hindering
its practical use in network intrusion detection system (NIDS)
scenarios.

On the other hand, Zhou et al. [19] utilized a GCN
for peer-to-peer (P2P) botnet node detection. Although this
method considers the topological information of the network
connectivity graph for P2P botnet node classification, it only
partially utilizes the information in network flow data. As
a result, its capacity to detect various network attacks like
XSS and ransomware is limited. While both [20] and [21]
integrate edge features in their methodologies, their application
is confined to enhancing node representation for improved
performance. It does not cater to edge classification, which is
vital in NIDS.

A notable effort by [22] introduced a NIDS that combines
a deep autoencoder with long short-term memory (LSTM)
architecture. Despite achieving an accuracy of 96.8% on the
UNSW-NBI5 dataset, the method wrestles with effectively
integrating structural and temporal information among similar
network connections. Researchers in [15] proposed a hybrid
model, combining signature- and intrusion-based detection
systems, using an extreme gradient boosting (XGBoost)
algorithm for its intrusion-based module. Despite a noteworthy
binary classification accuracy of 99.99% on the BoT-IoT
dataset, the model heavily relies on a database of black-listed
sources in its signature-based system.

The work by the authors in [23] involved converting several
datasets into a common netflow-based format and using
an extra tree ensemble classifier for evaluation. While the
method achieved a commendable F1-Score, it raises questions
regarding its generalizability across diverse network scenarios.
Aiming to secure Internet of Medical Things (IoMT) networks,
[24] introduced a two-level intrusion detection model, which
utilized various algorithms in the initial level and an XGBoost
classifier in the subsequent level. Despite achieving a binary
classification accuracy of about 96% on the ToN-IoT dataset,
the model relies heavily on distinct algorithms at each level.

Researchers in [25] evaluated ML algorithms, including
decision tree (DT) and k-nearest neighbor (KNN), on the
BoT-IoT datasets. While the KNN classifier achieved high
multiclass classification performance, these algorithms’ broad
applicability and accuracy in various network scenarios need
more exploration because the evolving nature of cyber threats
and the diversity in network topologies and traffic patterns can
influence anomaly detection models’ effectiveness. Ensuring
that detection algorithms are robust and adaptable to these
variations and emerging threats is crucial for maintaining
strong network security postures in real-world applications.

The study by Lo et al. [26] centered on network intrusion
detection using ML techniques. Specifically, they employed E-
GraphSAGE layers for extracting node and edge features. For
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model regularization, they utilized ReLU activation functions
and dropout mechanisms. The paper leveraged specialized
datasets, NF-ToT-IoT and NF-BoT-IoT, which consist of a
mix of benign and attack flows. Various evaluation metrics,
including true positives, true negatives, false positives, and
false negatives, are used to assess the effectiveness of their
neural network model. Although the paper does not explicitly
report F1-Scores, it provides a comprehensive approach to
feature extraction and model evaluation in network intrusion
detection.

Despite the advancements mentioned above, there remains
a discernible gap in leveraging topological information and
edge features in network flow data for network anomaly
detection, which the method proposed in this paper, blending
GraphSAGE and GAT, seeks to address.

IX. CONCLUSION AND FUTURE WORK

In the modern era, a myriad of devices, ranging from
personal computers and mobile devices to IoT-based home
appliances, are interconnected through private or public
networks. While this connectivity offers numerous advantages,
it also exposes these devices to potential network attacks,
especially when connected to the internet. Our research
proposes a novel approach for network anomaly detection
using GNNs to address this issue.

Our model, which combines GraphSAGE and GAT, ef-
fectively understands and represents the complex interac-
tions within a network. It demonstrated remarkable results,
achieving an accuracy of 98% on the UNSW-NBI15 dataset,
significantly surpassing standalone GraphSAGE and GAT
models. In the future, we plan to leverage distributed machine
learning and deploy our models on Kubernetes clusters to
enhance scalability and efficiency. This approach will enable
us to handle larger datasets and expedite the training process.
Our work represents a significant advancement in enhancing
network security in an increasingly interconnected world.

REFERENCES

[1] W. Marfo, D. K. Tosh, and S. V. Moore, “Network anomaly detection
using federated learning,” in MILCOM 2022 - 2022 IEEE Military
Communications Conference (MILCOM), 2022, pp. 484—489.

[2] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” Advances in neural information processing
systems, vol. 30, 2017.

[3] W. Marfo, D. K. Tosh, and S. V. Moore, “Condition monitoring and
anomaly detection in cyber-physical systems,” in 2022 17th Annual
System of Systems Engineering Conference (SOSE), 2022, pp. 106-111.

[4] Ozdemir, P. Karagoz, and K. W. Schmidt, “Anomaly detection in
in-vehicle networks with graph neural networks,” in 2023 31st Signal
Processing and Communications Applications Conference (SIU), 2023,
pp. 1-4.

[S] H. Kim, B. S. Lee, W.-Y. Shin, and S. Lim, “Graph anomaly detection
with graph neural networks: Current status and challenges,” IEEE Access,
vol. 10, pp. 111820-111 829, 2022.

[6] P. Kisanga, I. Woungang, I. Traore, and G. H. S. Carvalho, “Network
anomaly detection using a graph neural network,” in 2023 International
Conference on Computing, Networking and Communications (ICNC),
2023, pp. 61-65.

(71
(8]

[9

—

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

P. Velickovi¢, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” Oct. 2017.

S. M. Kasongo and Y. Sun, “Performance analysis of intrusion
detection systems using a feature selection method on the unsw-nb15
dataset,” Journal of Big Data, vol. 7, pp. 1-20, 2020. [Online].
Available: https://api.semanticscholar.org/CorpusID:227180052

M. Jedh, L. B. Othmane, N. Ahmed, and B. Bhargava, “Detection of
message injection attacks onto the can bus using similarities of suc-
cessive messages-sequence graphs,” IEEE Transactions on Information

Forensics and Security, vol. 16, gp. 4133-4146, 2021.
T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical

Learning: Data Mining, Inference, and Prediction, 2nd ed. Springer,
2009.

Y. El Hamidi and M. Bouzi, “Predicated on iot, a safe intelligent driver
assistance system in v2x communication environments,” in International
Conference on Digital Technologies and Applications. Springer Nature
Switzerland, 2023, pp. 252-260.

Y. Wu, H.-N. Dai, and H. Tang, “Graph neural networks for anomaly
detection in industrial internet of things,” IEEE Internet of Things
Journal, vol. 9, no. 12, pp. 9214-9231, 2022.

N. Moustafa and J. Slay, “Unsw-nb15: a comprehensive data set for
network intrusion detection systems (unsw-nb15 network data set),” in
2015 Military Communications and Information Systems Conference
(MilCIS), 2015, pp. 1-6.

O. Argus, “Open argus,” https://openargus.org/, accessed: May 8, 2024.
M. A. Lawal, R. A. Shaikh, and S. R. Hassan, “An anomaly mitigation
framework for iot using fog computing,” Electronics, vol. 9, no. 10,
2020. [Online]. Available: https://www.mdpi.com/2079-9292/9/10/1565
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, and Z. C. et al.,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015. [Online]. Available: https://www.tensorflow.org/

D. Grattarola and C. Alippi, “Graph neural networks in tensorflow
and keras with spektral [application notes],” IEEE Computational
Intelligence Magazine, vol. 16, no. 1, p. 99-106, Feb 2021. [Online].
Available: http://dx.doi.org/10.1109/mci.2020.3039072

Q. Xiao, J. Liu, Q. Wang, Z. Jiang, X. Wang, and Y. Yao,
“Towards network anomaly detection using graph embedding,”
in Computational Science — ICCS 2020: 20th International
Conference, Amsterdam, The Netherlands, June 3-5, 2020, Proceedings,
Part IV, vol. 12140, 2020, pp. 156-169. [Online]. Available:
https://doi.org/10.1007/978-3-030-50423-6_12

J. Zhou, Z. Xu, A. M. Rush, and M. Yu, “Automating botnet detection
with graph neural networks,” 2020.

L. Gong and Q. Cheng, “Exploiting edge features for graph neural
networks,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019.

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in Proceedings of the
34th International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, D. Precup and Y. W. Teh, Eds.,
vol. 70. PMLR, 06-11 Aug 2017, pp. 1263—1272. [Online]. Available:
https://proceedings.mlr.press/v70/gilmer17a.html

H. He, X. Sun, H. He, G. Zhao, L. He, and J. Ren, “A novel multimodal-
sequential approach based on multi-view features for network intrusion
detection,” IEEE Access, vol. 7, pp. 183207-183 221, 2019. [Online].
Available: https://api.semanticscholar.org/CorpusID:209495908

M. Sarhan, S. Layeghy, N. Moustafa, and M. Portmann, ‘“Netflow
datasets for machine learning-based network intrusion detection
systems,” CoRR, vol. abs/2011.09144, 2020. [Online]. Available:
https://arxiv.org/abs/2011.09144

P. Kumar, G. P. Gupta, and R. Tripathi, “An ensemble learning and
fog-cloud architecture-driven cyber-attack detection framework for iomt
networks,” Comput. Commun., vol. 166, pp. 110-124, 2021. [Online].
Available: https://api.semanticscholar.org/CorpusID:230585759

A. Churcher, R. Ullah, and J. A. et al., “An experimental analysis of
attack classification using machine learning in IoT networks,” Sensors,
vol. 21, no. 2, 2021.

W. W. Lo, S. Layeghy, M. Sarhan, M. Gallagher, and M. Portmann, “E-
GraphSAGE: A graph neural network based intrusion detection system
for IoT,” in NOMS 2022-2022 IEEE/IFIP Network Operations and
Management Symposium. IEEE, Apr. 2022.

Authorized licensed use limited to: The University of Texas at El Paso (UTEP). Downloaded on August 07,2024 at 18:48:53 UTC from IEEE Xplore. Restrictions apply.



