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Abstract—Increasing integration of distributed solar photo-
voltaic (PV) into distribution networks could result in adverse
effects on grid operation. Traditional model-based control al-
gorithms require accurate model information that is difficult
to acquire and thus are challenging to implement in practice.
This paper proposes a surrogate model-enabled grid visibility
scheme to empower deep reinforcement learning (DRL) approach
for distribution network voltage regulation using PV inverters
with minimal system knowledge. In contrast to existing DRL
methods, this paper presents and corroborates the adverse impact
of missing load information on DRL performance and, based on
this finding, proposes a surrogate model methodology to impute
load information utilizing observable data. Additionally, a multi-
fidelity neural network is utilized to construct the DRL training
environment, chosen for its efficient data utilization and enhanced
robustness to data uncertainty. The feasibility and effectiveness of
the proposed algorithm are assessed by considering DRL testing
across varying degrees of observable load information and diverse
training environments on a realistic power system.

Index Terms—Reinforcement learning, active distribution sys-
tems, grid visibility, surrogate model, PV inverter.

I. INTRODUCTION

THE increasing penetrations of distributed energy re-
sources (DERs) in distribution systems have reduced

the energy burden and environmental impact; however, high
penetrations of PVs can have some adverse impacts, such as
voltage violations [1]. In recent years, several studies [2], [3]
have demonstrated that appropriate real power control and
reactive power compensation from smart inverters can impact
the PV hosting capacity. The smart inverter achieves voltage
regulation by curtailing the active power and/or by supplying
or absorbing the reactive power. Although smart inverters have
a fast response to voltage violations, the coordination between
smart inverters to achieve voltage regulation while reducing
active power curtailment needs further consideration.

To control smart inverters, there are many alternative meth-
ods based on volt-var control (VVC) [4]–[8]. Although these
methods have the advantage of fast response, the predefined
volt-var curves are only for each individual smart inverter, and
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they lack coordinated control. Considering the proliferation
of modern power system sizes, designing proper curves is
challenging. The optimal power flow-based approaches [9]–
[12] can improve system operation by enhancing collaboration
across PV inverters. To this end, approximated approaches
[10], mixed-integer nonlinear approaches [12], stochastic pro-
gramming approaches [11], and decentralized approaches [9]
have been proposed; however, these approaches assume that
system models and parameters are accurate, which is difficult
to achieve in practice.

As an alternative, data-driven control techniques using
machine learning have been promoted, especially deep rein-
forcement learning (DRL)-based approaches [13]–[21]. The
approach in [13] uses a multi-agent DRL to control switchable
capacitors, voltage regulators, and smart inverters to achieve
VVC optimization. Reference [14] proposes a soft actor-critic
(SAC)-based approach and compares it with traditional VVC
to prove that the DRL-based approach works better. A safe
off-policy DRL algorithm is proposed for solving the volt-var
control problem with voltage-regulating devices in [15]. In
[16], a two-timescale voltage control approach is proposed to
regulate the voltage in distribution networks by controlling the
on-off status of the capacitor units using a deep Q-network.
A graph convolution network-based DRL is proposed in [18]
to maintain voltage stability in different topologies. In our
previous works, [19] proposes a different approach to control
PV inverters under changing topology conditions by using a
multitask SAC. Although these DRL-based approaches can
make control decisions without requiring an accurate system
model when training is complete, power flow models or simu-
lators are still required to provide an environment that interacts
with the DRL. Once the power flow models or simulators are
involved in the training process, the methods cannot be treated
as fully data-driven because accurate system parameters and
topology are still required. To this end, reference [21] proposes
a model-free DRL-based approach with the assumption that
all load information is available in real time. This is not
practical as only partial loads are measured. In the reference
[22], the training environment is conceptualized utilizing a
Deep Neural Network (DNN), which serves as a surrogate
to the 123-node system. This methodology, while innovative,
encounters substantial challenges when applied to real-world,
large-scale systems due to the DNN’s dependency on extensive
datasets of genuine operational data to train and achieve an
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accurate surrogate model. Acquiring such comprehensive data
in reality proves to be a formidable task, often limited by
practical constraints and the availability of data. Consequently,
employing a surrogate model to substitute for large systems
as a training environment presents a significant challenge, as
the precision of these models is contingent upon the volume
and quality of data used for training, which is not readily
obtainable in many real-world scenarios.

This paper addresses the aforementioned challenges and
develops a visibility-enhanced DRL algorithm for voltage
control with only partially observed distribution system load
information. The main contributions are:

• Surrogate model-assisted training for reducing the data
requirement:The adoption of a multi-fidelity neural net-
work model is proposed to serve as a virtual training
environment for DRL algorithms. This model leverages a
limited dataset of high-fidelity, real-time operational data
complemented by a substantial volume of low-fidelity
data.

• Innovative visibility enabled DRL control: Since partial
load information will negatively impact DRL control, we
construct a visibility enhancement module to infer the
unknown load information using partially known load
information, voltage information.The estimated load in-
formation will be used as an additional DRL observation
to improve the control performance.

• SAC-enabled coordinated control: A new reward function
design is proposed to balance voltage violation and active
power curtailment. Compared to other DRL methods,
SAC exhibits superior resilience, especially in the testing
phase where it effectively manages data uncertainty in
test cases, resulting in notable robustness and proficiency
in dealing with uncertain scenarios.

II. PROBLEM STATEMENT

A. Modeling Three-Phase Unbalanced Distribution System

Assume a distribution system has b buses denoted by
B:=1, .., b; n nodes denoted by the set N :=1, .., n ; m branches
by the set M:=1, ..,m.

N = B ⊙ ϕ, (1)
where ϕ = [Phase1, Phase2, Phase3] denotes the indicator
of whether a bus is a 1-phase or 3-phase bus. For each
area/region, there are E nodes denoted by the set E ⊆ N ,
which represent that there is an installed voltage sensor. For
node i ∈ E , define vti as the voltage magnitude at t moment.
There are H nodes represented by the set H ⊆ N that have
PVs with smart inverters. For i ∈ H, let the PV set points as
xt
i := (P t

i , Q
t
i) at time instant t. Assume L nodes denoted

by the set L ⊆ N have load demand PLt
i, QLt

i. Given
the restricted access to user load data because of customer
premises and hardware considerations, two types of load nodes
are anticipated to be present in this system. Let ˙PLt

i,
˙QLt
i the

real and reactive power load on node i, which can be observed;
there are U nodes denoted by U ⊆ L that have unknown load
demand; ˆPLt

i, Q̂Lt
i are the loads not directly observed. The

power flow can be represented by

V t
i (I

t
i )

∗ = (P t
i − PLt

i) + j(Qt
i −QLt

i),∀i ∈ H, (2)

V t
i (I

t
i )

∗ = −PLt
i − jQLt

i,∀i ∈ N/H, (3)

Throughout the operation of the distribution grid, the nodes
equipped with voltage sensors need to be regulated within a
predefined secure range. Any nodes of E with higher than
1.05 p.u. or lower than 0.95 p.u. will be counted as voltage
violation nodes (VVN). Nvvn stands for the total number of
VVNs. Formally, we have

0.95 ⩽ |V t
i | ⩽ 1.05,∀i ∈ N/Nvvn, (4)

V t
n ⩽ 0.95 or V t

n ⩾ 1.05,∀n ∈ Nvvn, (5)

B. Coordinated PV Inverter Control for Voltage Regulation

The coordinated PV control aims to optimize specific ob-
jectives by regulating the active and reactive power outputs
of the PV inverters while respecting the system operation
requirements. Fig. 1 illustrates the operational region of PVs.
Assume that the PV systems are deployed at nodes H ⊆ N .
The objective of minimizing the PV real power curtailment is

f t
i (p

t
i) = cP,i × P t

i ,∀i ∈ H (6)
where cP,i represents the constant reward coefficient; and P t

i

is the real power generated by the ith PV inverter at time t.
For each PV inverter, the power set point, rgti := (P t

i , Q
t
i),

is constrained to be rgti ∈ RE
t
i for ∀i ∈ H. The feasible

region, REti, is determined by the apparent power capacity
and the time-varying solar irradiance, µt. Following California
Rule 21 on PV interconnection [23], the full extent of the
reactive power capability range is defined as 30% of the
nameplate apparent power rating. Then, the region REti can
thus be defined as:

REti = {P t
i + jQt

i | 0 ≤ P t
i ≤ P t

i,max, (7a)

P t
i,max = µt × Si, (7b)

−0.3Si ≤ Qt
i ≤ 0.3Si, (7c)

Qt
i
2
+ P t

i
2 ≤ St

i
2
, } (7d)

where P t
i,max is the maximum real power of the ith PV

inverter at time t; and Si is the nameplate apparent power
rating of the ith PV inverter.

Fig. 1. PV inverter operation regions.
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C. Data-Driven Surrogate Models for DRL Training and
Execution with Limited Grid Information

This paper aims to build a fully data-driven DRL training
and execution framework. It contains two surrogate models,
i.e., the observation complementary surrogate model (obs-sur)
to enhance grid visibility with partial load information and the
training environment surrogate model (train-sur) with a limited
number of historical measurements. Considering the important
impacts of the missing load information, { ˆPLt

i, Q̂Lt
i} on DRL

decision-making, the purpose of obs-sur is to capture the
relationship between the invisible load information and the
observable information of the system via fobs : Xobs → yI .
In this surrogate model, Xobs represents the visible system
information, including the partial active and reactive load
power, the voltage profile, and the PV generation information.
yI is the invisible active and reactive power injection of the
load. The train-sur is used to provide a virtual environment for
the DRL training. This surrogate model is supposed to have
the ability to capture the relationship among the load power
information, the PV active and reactive power information,
and the node voltage profile, which can be represented by
the mapping function ftrain : X → Yv . For the training
environment surrogate model, X is the load active and reactive
power, and the PV active and reactive power set points.
Yv represents all the node voltages that are expected to be
regulated.

This paper proposes a multi-fidelity learning framework that
allows fusing the low-fidelity model information with a limited
number of high-fidelity data for high-fidelity probabilistic
voltage predictive analysis. Because both low- and high-
fidelity data describe the true system behaviors, they should
have correlations, which can be expressed as [24], [25]:

yH = F (yL) + δ(x) (8)
where x is a vector that denotes the model inputs, such as
uncertain PV injections and load; yL and yH represent the
low- and high-fidelity data, respectively. The low-fidelity data
come from inaccurate distribution system model simulations,
and numerous data can be generated; the high-fidelity data
come from field sensors, such as supervisory control and
data acquisition (SCADA) systems and smart meters; F (·)
and δ(x) are the nonlinear correlation function and additive
correlation term, respectively.

D. Formulation of Markov Decision Process

The coordinated control of the PV active and reactive power
set points and the battery energy storage system actions to
regulate the voltage and reduce the peak load demand is
formulated as an MDP. The MDP comprises the environment,
the agents, the observation, the action, and the reward, which
are described as follows:

• Environment: An active distribution network, including
the time-varying load shape. The PV real and reactive
power set points will be the input and the output is the
voltage of each node, which can be formulated as the
following equation:

g(P t
i , Q

t
i, PLt

i, QLt
i, )→ V t

m,m ∈ E (9)

In this paper, the load shape and the PV set points will
be fed into the pre-trained surrogate model during the
training process instead of the simulation software during
the testing process, and the voltages are obtained as the
output of the surrogate model.

• Agent: The central controller of the system. The agent is
responsible for controlling the PV inverter set points. In
the MDP, the agent makes the decision, At, based on the
observation, St, at the tth time step.

• Observation: The information observed by the agent.
In this MDP, the agent will observe the time, T , the
PV maximum generation, P t

i,max, the maximum reactive
power capacity, Qt

i,max, and the load and EV informa-
tion, PLt

i, QLt
i, consists of load from visible part and

prediction data from obs-sur. The set, St, including this
information, will be used for the agent to make the
decision At.

• Action: The action set, At, includes all PV inverter set
points. For each PV inverter, i ∈ H, the action is defined
as (αPV,P (i, t), αPV,Q(i, t)), where αPV,P (i, t) ∈ (0, 1)
and αPV,Q(i, t) ∈ (−1, 1). The PV set points in Eq.
(5) can be calculated by the following equation: P t

i =
αPV,P (i, t)× P t

i,max, Q
t
i = αPV,Q(i, t)× 0.3St

i .
• Reward: Rt is obtained after the action, At, is executed

under the condition of St. Considering the different
control strategies required for different time periods, two
new reward functions are proposed for training:

R = −γ
n∑

i=1

vi,violation − εPct (10a)

vi,violation = (1−min(δ − |1− vti |, 0))2 − 1, (10b)

Pct = 1−
∑

i∈H P t
i∑

i∈H P t
i,max

, (10c)

where γ is the penalty coefficient of the voltage violation;
ε is the penalty coefficient of the PV active power
curtailment according to the PV set points; δ is the
threshold used to optimize the voltage barrier function,
and Pct is the PV active power generation rate used to
punish the curtailment.

Fig. 2. Overall framework of the proposed scheme.
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III. PROPOSED GRID VISIBILITY ENHANCED DRL
CONTROL METHOD

A. Surrogate Model for Data Imputation

With the increasing size of the grid, there are increasing
loads in the system. Among the loads, some are not observable
(not measured); however, such information is very important
because the output of the environment and the decision-making
of the DRL largely rely on the full information of the system,
especially the power injections and the voltage magnitudes
at every node. Missing or insufficient information can have
negative effects on the DRL training and execution results
[26]. To this end, we propose a surrogate model to impute the
missing information, mainly the load injection. This surrogate
model with enhanced visibility aims to assist the DRL in the
absence of load information. The load and voltage information
from other buses is used to infer the missing data:

NNim : {Pk, Vk} → {Puk, Vuk} (11)
where NNim is the neural network for data imputation; Pk and
Vk are visible load and voltage information, whereas Puk, Vuk

are invisible load and voltage to be estimated.
Theoretically, we can derive unknown load values inversely

based on power flow equations and known variables, such as
load and voltage. Further, the inference of the load shape
from load shapes at other buses is possible based on the
assumption that loads at geographically close locations have
similar patterns or load shapes. The neural networks will
learn from both mathematical mapping relationships and load
shapes from other buses to produce and impute missing load
data. In this paper, deep neural networks are used to impute
missing information. It contains multiple layers with each layer
fulfilling the nonlinear transformation. Take the l-th layer as
an example:

NN l
im : δl(ωlx+ bl) (12)

where the weights, ωt, and bias, bt, are trainable variables, and
δt is the activation function. Dropout and skip connections
are introduced to enhance the model generalization and to
mitigate the gradient diffusion issue. In this paper, the mean
square error (MSE) with L-2 regularization is chosen as the
loss function:

Lim =
∑

MSE(NN l
im) + λ

∑
ω2
i (13)

B. Surrogate Model for Training Environment

The environment mentioned in Section II needs to provide
the necessary information, including voltage magnitudes, to
train the DRL agent for the coordinate control. In most existing
DRL-based voltage regulation approaches, the environment is
substituted by the simulation software. The environment for
the DRL agent can be represented by the mapping function,
f : X → Y , where X and Y refer to the uncertain
power injections and the voltage magnitudes, respectively;
however, the large number of system parameters required by
the simulation software to build the environment is contrary to
the initial concept of using DRL with little prior knowledge.
Based on this assumption, a multi-fidelity learning neural
network (NN)-based surrogate model is proposed as a reduced-
order model of the simulation software, i.e., NN :x→ y. The

multi-fidelity learning framework fuses the low-fidelity model
information with high-fidelity data [27]. Because low-fidelity
data and high-fidelity data are generated from the same system,
a mapping relationship is assumed between them [27]:

yH = F(yL,x) (14)
where yL and yH , respectively, represent the low- and high-
fidelity data; and F includes additive, linear, and nonlinear
correlations. The low-fidelity data can be massively generated
by inaccurate distribution system model simulations, whereas
the high-fidelity data come from field sensors, such as SCADA
and smart meters.

The multi-fidelity learning framework consists of low-
fidelity model construction and high-fidelity model calibration:

NNL : xL → ŷL, NNH : {xH , ŷL} → yH , (15)
where xL and xH denote the low- and high-fidelity inputs
because the input noise is also considered; ŷL represents
the output from the low-fidelity model, and yH is the high-
fidelity output. The multi-fidelity learning structure can be
easily extended to T fidelities by stacking correction models
hierarchically:

yt
L = F t(yt−1

L ,xt−1
L ), t = 2, . . . , T (16)

where F t means the approximate model at t fidelity. Corre-
spondingly, the multi-fidelity neural network is constructed as:

y = F(x) = FT ◦ FT−1 ◦ · · · F1(x) (17)
The MSE over all fidelity models with L-2 regularization is
employed as the loss function:

LMF =

T∑
t=1

MSE(NN t
MF ) + λ

∑
ω2
i (18)

By leveraging the low-fidelity model and the high-fidelity
data, the auto-regressive neural networks provide accurate
simulation results for the DRL control.

C. SAC-Based DRL Control

DRL is the method of experimenting with different strate-
gies through trial and error to achieve higher rewards.
Throughout this process, the neural network of the agent is
continuously updated by adjusting the coefficients and weights
along the gradients of the high reward. As an advanced DRL
approach, actor-critic-based reinforcement learning consists of
one actor-network and one critic network. The actor takes the
observation as the input and outputs the action accordingly,
whereas the critic takes the environment observation along
with the actor’s action as the input and makes an assessment
of the action, providing direction on how to adjust. As the
iteration proceeds, the actions given by the actor will receive
increasingly higher rewards, and the critic’s state value esti-
mation will become more accurate. In contrast to other DRL
methods, actor-critic-based methods exhibit rapid convergence
and high performance. In this paper, the agent is trained
and updated using the off-policy SAC algorithm [28]. The
actor-network in the SAC outputs an action by following a
policy whose purpose is to maximize the sum of the reward,
R(St, At), and the entropy of the policy, H(π(· | st)).

There are three networks in the proposed SAC-based ap-
proach: two soft Q-functions networks parameterized by θ and
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Fig. 3. Proposed two surrogate models enhanced DRL control framework.

a policy function network, π, parameterized by ϕ. The actor-
network is a policy equation shown as follows:

J (π) = argmax E[
∞∑
t=0

ωt(R(st, at)+α×H(π(· | st))], (19)

where ω is the future discount coefficient; and α is a temper-
ature parameter that indicates the entropy’s contribution to the
reward. α will initially be designed as a large value to obtain
higher entropy rewards by increasing the exploration space
of action. As the training proceeds, α will gradually decrease
and shrink the exploration breadth, eventually approaching the
optimal policy. The critic network estimates the state value of
the Q-function as:
y(St, Rt, St+1) = r+ω(Q(St+1, At+1−αlogπθ(At+1 | St+1)),

(20)
The SAC algorithm relies on an experience replay buffer to
update with enhancing sample efficiency. After the reward
is obtained by the executed action, the replay buffer stores
the observation, the action, the reward, and the next step
observation as a transition. A batch of transitions, B =
{(St, At, St+1, Rt)}, will be randomly selected to update the
neural network. The actor-network updates the coefficient
using gradient ascent by the following:

∇ϕi
1

|B|
∑

((st))∈B

(min
i=1,2

Qθi(st, π(· | st))−

α log πθ(π(· | st) | st)), (21)
The critic network updates the Q-function using gradient
descent by following:

∇θi
1

|B|
∑

((st,at,st+1,rt))∈B

(Qθi(st, at)− y(st, rt, st+1))
2,

(22)
where the clipped double-Q method is used to obtain the
smaller Q-value between the two Q-approximators. Finally,
the gradient rule is applied to update the actor-network by
following:

ϕtarget,i ← ρϕtarget,i + (1− ρ)ϕi (23)
where ρ represents the learning rate for the actor-network.

The training process of coordinated control using DRL is
implemented via Algorithm 1.

Algorithm 1 Training process of coordinated PV inverter
control

1: Initialization all agent NN parameters ϕi, θi
2: Initialization episode reward list listeps
3: for episode = 1 to eps do
4: Initialization episode reward Reps = 0
5: for step = 1 to t do
6: Get St = {PLt

i, QLt
i, P

t
i,max, Q

t
i,max}

7: if episode ≤M then
8: Randomly generate At

9: else
10: Input St to agent and Output At

11: end if
12: Get αPV,P (j, t), αPV,Q(j, t) based on At;
13: Execute xt in train-sur model
14: Get vt, xt to calculate Rt

15: Let Reps = Reps +Rt

16: Store {st, At, st+1, Rt} in replay buffer
17: Randomly sample batch B = {(st, at, st+1, rt)}
18: Update crtic network θi by following (22)
19: Update actor network ϕi by following (21) (23)
20: end for
21: listeps append(Reps)
22: if Max(listeps) = Reps then
23: Store the agent NN parameters ϕi, θi
24: end if
25: end for

D. Surrogate Model-Assisted Training and Execution

The proposed method includes a parameter set required to
be optimized as Ψ = {NNim,F(x), ϕi, θi}, where {NNim

is the parameter of obs-sur, F(x) is the parameter of the
train-sur, and ϕi, θi are the parameters of the DRL agent.
The surrogate model for the data imputation obs-sur and the
surrogate model for the training environment train-sur will use
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the historical data to complete the training in advance. Then,
they will be integrated into the proposed framework, which can
assist the DRL in training with visibility to enhance using two
surrogate models. The DRL training procedures are include:

1) Visibility enhancement using obs-sur: The obs-sur is
first trained using historical data before the DRL training.
Once the obs-sur training is finished, the parameters of obs-
sur, NNim, will be stored. After the training begins, NNim
is downloaded and loaded into the local network. At the be-
ginning of each time step, the system will be operated without
any control of PV. The observed information—including ˙PLt

i,
˙QLt
i, P

t
i , Qt

i, V
t
i —will be used to predict the unknown load

information, ˆPLt
i, Q̂Lt

i. The observed load information, ˙PLt
i,

˙QLt
i, and the predicted load information, pred ˆPLt

i, Q̂Lt
i, will

form a set of PLt
i, QLt

i used to help the DRL make decisions
and apply control strategies.

2) DRL training using train-sur: After the full visible
load information, PLt

i, QLt
i, is obtained, the observation

set, St = PLt
i, QLt

i, P t
i,max, Qt

i,max, will be sent to the
DRL agent to make action At. Most existing approaches rely
on an accurate model to build a virtual power system in
the simulation software. Unlike the simulation software, our
proposed surrogate model needs only a few high-fidelity data
and low-fidelity data. These data can be easily obtained from
the historical data set compared with the model information
and line parameters. Compared with existing approaches, the
action, At, will be executed in the environment provided by
train-sur instead of the simulation software. The surrogate
model will take At, St as the input and the voltages as the
output. The voltage and action At will be used to calculate the
reward based on the specially designed reward function and
update the DRL agent by following Algorithm 1. During this
process, the threshold, δ, mentioned in Section II can also be
used to offset the errors generated during the surrogate model
calculation of the voltage profile.

3) Implementation of the proposed method: When the
DRL agent training process is completed, the parameters of the
actor neural network, ϕi, and obs-sur neural network, NN im,
will be stored locally for execution. Only the obs-sur and
the actor-network of the DRL agent will be involved in the
execution process for the purpose of providing full observation
and control solutions. The algorithm implementation is shown
in Algorithm 2.

In Algorithm 2, at the beginning of each time step, there
is no control command given to the PV. The PV inverter
will generate the maximum amount of active power during
the daytime with solar irradiation and no active power during
the nighttime. During this process, no reactive power will be
generated or absorbed. The voltage profile of the system will
be obtained after the execution of the PV set points. Then,
the set of { ˙PLt

i,
˙QLt
i, P

t
i,max} will be fed into the obs-sur

to predict the unobservable load information. The output of
the obs-sur { ˙PLt

i,
˙QLt
i} combined with the known load data

is considered full load information. The maximum PV active
power generation with full load information will be treated
as the observation of the DRL agent. The DRL agent will
follow the policy At=π(st) to make the action decision. The

PV set points in the action set will be sent to the PV inverters
and executed. The neural networks in the surrogate mode are
very fast in computation and operation, thus guaranteeing a
real-time response.

Algorithm 2 Execution process of coordinated PV inverter
control

1: Create the neural networks of the DRL agent and obs-sur
2: Load the parameter ϕi in the neural network of the DRL
3: Load the parameter NN im in the neural network of obs-

sur
4: for step = 1 to t do
5: if P t

i,max ̸= 0 then
6: PV execute P t

i,max

7: else
8: PV has no action
9: end if

10: Obtain voltage profile, vti
11: Input { ˙PLt

i,
˙QLt
i, P

t
i,max, v

t
i} in obs-sur with the pa-

rameter NN im

12: Obs-sur predicts the invisible load { ˆPLt
i, Q̂Lt

i}
13: let {PLt

i, QLt
i} = { ˙PLt

i,
˙QLt
i,

ˆPLt
i, Q̂Lt

i}
14: Get St = {PLt

i, QLt
i, P

t
i,max, Q

t
i,max}

15: DRL actor network Output At by following At=π(st)
16: Get xt = αPV,P (j, t), αPV,Q(j, t) based on At

17: PV execute xt in system
18: end for

IV. TESTING RESULTS

The comparative experiments are conducted using a realistic
759-node model located in Western Colorado, as illustrated in
Fig. 4. This system comprises a total of 623 buses, among
which 68 buses are equipped with 3-phase capability. We
compare our method with the traditional VVC by following
the voltage-reactive power curve in [23]. Additionally, we
employ a different visibility DRL agent for comparison, to
demonstrate the effectiveness of our framework. For the test
system, a total of 112 PV units are used for active power
generation and the exchange of reactive power to regulate
the voltage in the system. The system includes a total of
159 loads; 59 are observable, and the remaining 100 are
unobservable. The peak load on the system is 2.61 MW,
and the installed PV systems have a capacity of 1.12 MW;
the PV systems are integrated into the power grid at a level
of 43% penetration. The substation will be responsible for
supplying the remaining electricity. To train the two surrogate
models and the DRL agent, the solar radiance data and the
historical data pertaining to load and voltage are used. The
aforementioned data are divided into a training set and a test
set, respectively, which are recorded at 5-minute intervals.
The surrogate model for the data imputation is trained using
5 × 103 sets of historical data that include the input data,
˙PLt
i,

˙QLt
i, P

t
i,max, v

t
i , and the output data, ˆPLt

i, Q̂Lt
i. The

unobservable load is considered not immediately visible, but it
can be obtained through calculations and retroactive analysis
of historical data. The parameters of NNim are obtained and
stored. The surrogate model for the training environment is
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trained using 103 high-fidelity data collected during accurate
model operation and 105 low-fidelity data generated by an
inaccurate model in the simulation software. High-fidelity data
refers to OpenDSS simulation results without model error
while low-fidelity data is obtained from OpenDSS simulation
with Gaussian noises on both input and output. The input noise
is Gaussian noise with a zero mean and a standard deviation
equals to 20% of the original load values. Similarly, the output
noise follows a Gaussian distribution with a mean of zero
and a standard deviation of 0.01% of the voltage values. The
imprecise load shape information, combined with the solar
irradiance data gathered from field measurements in Denver,
PLt

i, QLt
i, P

t
i,max, Q

t
i,max, will be input into the simulation

software. In this process, the voltage profile, vti , is calculated
by following the power flow model in the software under the
condition that the PV units operate with random set points. The
collection of the data mentioned here will constitute the low-
fidelity data set and will be used to update the train-sur. The
parameters of the train-sur will be stored for the DRL training.
The hyperparameters are shown in Table.I. OpenDSS is used to
execute the power flow, and the training of the proposed DRL
method is implemented in Python with PyTorch. A workstation
with an NVIDIA GeForce RTX 3090 GPU and Intel Core i9-
12900KF is used for the simulation.

TABLE I
DRL PARAMETER SETTING

Parameters Values

Batch size for updating NN 32
Replay buffer size 48000

Discount factor 0
Soft update coefficient 0.001

Target policy smoothing coefficient 0.2
Learning rate for actor network 0.001
Learning rate for critic network 0.002

����������

���������������

�����������������

��

Fig. 4. The realistic 759-node distribution system in western Colorado.

A. Reward Function Configuration and Pre-training

The design of the reward function is crucial for the suc-
cessful training of DRL. The trade-off between minimizing
voltage violations and minimizing active power curtailment is

inherent. When the value of γ is set too high, DRL will focus
on voltage control, leading to a significant amount of active
power curtailment. Conversely, if ϵ is set too high, the DRL
will prioritize increasing PV generation, which may result in
increased voltage violations.

TABLE II
REWARD TESTING

ratio of γ and ϵ VVN Curtailment

40 13 11.6%
20 13 5.68%
10 22 2.13%
1 24 1.84%

Therefore, γ and ϵ as individual parameters do not have
physical significance. Instead, the ratio between γ and ϵ has
a greater impact on DRL training. The primary objective of
this work is to ensure voltage stability in the power system,
followed by the reduction of PV curtailment. Based on this
principle, we trained normal SAC using different reward
function using 1-day data and test result is shown in Table.II.
we observed that when the ratio is set too high, beyond a
certain threshold, further increases in curtailment do not lead
to a reduction in violations. Consequently, we selected a final
ratio of 20:1 for training both the proposed method and the
comparison method.

To further demonstrate the stability and replicability of our
training environment, we conducted multiple training sessions
using the same surrogate model across various training plat-
forms. The results are illustrated in the Fig.5. The training
processes of four agents are depicted. The training process
includes both exploration and exploitation phases. Before 400
steps, due to different random seeds and learning processes,
the episode rewards during the exploration phase vary. How-
ever, as the training episodes increase, the rewards of all
four agents gradually converge to the same range. Therefore,
we believe that as long as the hyper-parameters and training
environment are consistent, our proposed method is replicable.

Fig. 5. DRL Agents Training Process
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B. Performance Evaluation of the Visibility-Enhancement Sur-
rogate Model

The obs-sur that has been trained is implemented during
both the training and testing stages. During the testing stage,
the data of load and solar irradiance are collected at a 1-
hour time resolution, resulting in a total of 24 steps. Fig.
6 show comparisons between the actual load data and the
predicted load information using obs-sur in the test process.
The trend of the total load variation during the testing phase,
comprising both real and predicted data, is illustrated in Fig.
6. The horizontal axis represents time in hours, ranging from
0 to 24 hours, which indicates a full day’s cycle. The vertical
axis on the left shows the Load Power in kilowatts (kW)
for individual predictions and real values, while the vertical
axis on the right represents the Total Power in kilowatt-hours
(kWh), demonstrating the cumulative load.

In the 24-hour prediction window, the actual data exhibited
a peak load of 32.048 kW, while the surrogate model predicted
a slightly higher load of 32.810 kW, resulting in an error
margin of 2.38%. Throughout these 24 steps, the real total
load amounted to 5103 kWh, and the predicted total load was
5135 kWh, yielding a minor discrepancy of 0.64%. The overall
mean absolute error (MAE) for the prediction stood at 0.092.
These figures demonstrate that the obs-sur model provides
highly accurate predictions, implying that it offers precise
observational data for decision-making in DRL frameworks.

Fig. 6. Total load prediction in the test process.

TABLE III
LOAD PREDICTION INFORMATION

Data Time step Max [kW] Min [kW] MAE Total load [kWh]

Real data 24 32.048 0 0.092 5103.2
Obs-sur 32.810 -0.303 5135.8

C. Performance Evaluation of the Training Environment Sur-
rogate Model

To better demonstrate the efficiency of multi-fidelity net-
works in data utilization, a control group was established
to highlight the advantage of the networks. The terms of
LF, HF, and HLF represent training scenarios involving large
amounts of low fidelity data, small quantities of high fidelity
data, and a combination of both, respectively, for conventional

Fig. 7. Surrogate Model Prediction Voltage Comparison

neural network training. The MF model indicates the use
of a MF neural network with the same data as the HLF
model. The testing phase was based on baseline scenario,
involving 112 PV inverters where the active power fluctuates
with changes in sunlight and reactive power remains zero, and
159 load nodes with both active and reactive power inputs.
This data was used to predict the voltage at 759 nodes using
a surrogate model, over a 24-hour period with hourly time
steps. Voltage violation issues were only observed when solar
intensity reached a certain threshold, thus Fig.7 shows the
voltage prediction result from 9AM to 4PM. Considering that
most node voltages remain within normal ranges at all times,
the graph under the 1.05 p.u. voltage threshold (red line) is
stacked. Table.IV presents a comparison in terms of the mean
absolute error (MAE), maximum and minimum voltages, and
the number of voltage violations. Models using limited high
fidelity data performed the worst, failing to provide reliable
voltage violation information. In contrast, the HLF model
yielded more accurate predictions with an MAE reduced to
0.0011, but due to the direct combination of high and low
fidelity data, the HLF model sometimes under performed
compared to the LF model. From the perspective of MAE, the
MF-model slightly outperforms other models. This is primarily
because the voltages of the 759 nodes are largely concentrated,
leading to a dilution of the prediction error for specific nodes.
Additional details are evident in Fig.7, particularly at 11 AM
and 1 PM. Although all models exhibit some level of error, the
MF model (represented by green squares) aligns most closely
with the actual values (indicated by red circles). Moreover,
at other times, the MF model provides predictions that are
closest to the actual voltage distribution, including the most
accurate forecasts of maximum and minimum voltage values.
Consequently, compared to other models, MF demonstrates
superior data utilization efficiency and offers a more accurate
predictive environment for subsequent DRL training.

TABLE IV
VOLTAGE PREDICTION INFORMATION

Data Max p.u. Min p.u. MAE VVN

Real 1.099 0.976 - 95
HF-Model 1.045 0.975 0.0022 0

HLF-Model 1.083 0.975 0.0011 78
LF-Model 1.084 0.975 0.0010 80
MF-Model 1.091 0.975 0.0005 82
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D. Voltage Control Performance Evaluation

Upon completing the training process employing two sur-
rogate models, a comparative analysis is conducted using 1
day’s data in a 1-hour resolution to assess the performance of
the proposed methodology. The benchmark methods evaluated
in this comparison encompass: 1) Non-control: All PV units
generate as much active power as possible, and no reactive
power will be produced or absorbed. 2) Autonomous volt-var
control: Each PV unit will deliver a reactive power response
adhering to the Category A curve as delineated in the IEEE
1547-2018 standard [23]. A deadband is incorporated with the
voltage magnitude range defined as [0.98,1.02]. Two distinct
configurations are employed: VVC-watt priority and VVC-var
priority. In the VVC-watt priority scheme, the reactive power
set points are set to be the value requested by the volt-var
curve, which is limited by each inverter’s capacity. Conversely,
in the VVC-var priority approach, the active power generation
is curtailed until the desired reactive power set points are
attained; 3) DDPG-Full & DDPG-Sur: Both the full obser-
vation deep deterministic policy gradient (DDPG) DRL agent
and its low observation counterpart, DDPG-Sur, are trained
using a precise model in simulation software and an obs-sur
environment, respectively. During training and testing, they
can access the active and reactive power setpoints for all 159
load nodes. 4) SAC-Full: The SAC-based DRL agent with full
observation is trained in a simulation software that employs
a precise model. Throughout the training and testing phases,
information including 159 load active and reactive power set
points can be observed. 5) SAC-Low: The SAC-based DRL
agent with low observation is trained in simulation software
that employs a precise model. Throughout the training and
testing phases, information including 59 load active and reac-
tive power set points can be observed. 6) SAC-Surrogate: The
SAC-based agent, enhanced with low observation capabilities
in the obs-sur environment, is provided with the active and
reactive power setpoints for all 159 load nodes. Subsequent
training is conducted within surrogate model environments as
LF, HF, and HLF, and the agents trained in these respective
environments are denoted as SAC-LF, SAC-HF, and SAC-
HLF. Table V includes the experimental results and the settings
for the training environment and observation. The methods
of non-control, volt-var control, and surrogate model-assisted
training do not rely on a real simulation environment for
training. Similarly, the observation settings are divided into
”full” and ”part,” representing the ability to observe the entire
system’s load conditions and the ability to observe only part
of the load conditions, respectively. Table V shows that the
absence of control will lead to serious voltage violations, as
indicated by the maximum voltage of 1.082 p.u. During the
entire test, a total of 71 voltage violation nodes are recorded,
and the use of VVC-watt priority is proved to be of limited
effectiveness in voltage control. This is because VVC-watt
prioritizes the regulation of reactive power while ensuring
a steady output of active power, thus leaving little capacity
for voltage regulation. As a result, the maximum voltage is
reduced to 1.063 p.u., leading to a decrease in the total number
of violation nodes to 30. VVC-var priority, which adjusts the

TABLE V
COMPARISON RESULT FOR DIFFERENT APPROACHES.

Method Max p.u. Min p.u. VVN Curt env obs

Non-control 1.082 0.976 71 - % -
VVC-watt 1.063 0.976 30 - % Full
VVC-var 1.059 0.975 18 3.45% % Full

DDPG-Full 1.062 0.961 7 34.6% ✓ Full
DDPG-Sur 1.064 0.962 5 43.1% % Part
SAC-Full 1.051 0.963 1 5.42% ✓ Full
SAC-Low 1.062 0.975 21 5.73% ✓ Part
SAC-LF 1.066 0.963 11 3.83% % Part
SAC-HF 1.088 0.976 82 0.46% % Part

SAC-HLF 1.066 0.966 11 3.88% % Part
Proposed 1.055 0.972 6 4.26% % Part

reactive power to the desired level before generating the active
power, further decreases the maximum voltage violation to
1.059 at curtailment of 3.45%. Despite this improvement, 18
voltage violation nodes remain unresolved.

In contrast to traditional VVC methods, DDPG-Full and
DDPG-Sur succeeded in reducing the number of VVN to
7 and 5, respectively. However, achieving these outcomes
required substantial curtailments of 34.6% and 43.1%, which
are significantly high. The approach of using SAC trained in
a real environment, with complete load observation, yields
substantial improvements in voltage control. Specifically, the
maximum voltage violation has been reduced to 1.051 p.u.,
and the total number of violations is reduced to 1 with 5.42%
curtailment. Note that when the number of observable loads
is decreased, the performance of SAC-Low is poor, leading to
a maximum voltage violation of 1.062 p.u. and a total of 21
violation nodes. This decline in performance is accompanied
by an increased curtailment of 5.73%. When the training envi-
ronment transitions from real simulation software to surrogate
models, the result will be influenced by different surrogate
models. Due to the HF-model employing only a minimal
amount of high-fidelity data, it is evident from Table.IV that
the HF-model is incapable of predicting any voltage violations.
Consequently, within the HF-model environment, the DRL
disregards voltage violation issues, aiming to minimize curtail-
ment as much as possibile, resulting in 82 VVNs. In contrast,
both the LF-model and the HLF-model provide similar voltage
prediction training environment, leading to 11 occurrences of
voltage violations during testing, with curtailment rates of
3.83% and 3.88%, respectively. However, when training DRL
with the proposed MF-model, the performance of the proposed
SAC and the SAC trained in the real environment (SAC-full)
are most aligned, exhibiting only six voltage violation points
and a curtailment rate of 4.26%. Considering that the proposed
method does not utilize any real-world data and relies entirely
on information provided by two surrogate models, this perfor-
mance is exceptionally commendable. The Table.VI provides
voltage statistics across different phases. It is observed that
in the non-controlled baseline scenario, voltage violations
primarily occur in phases 2 and 3, with phase 3 experiencing
the most severe violations. In contrast, the SAC-Full approach,
which is informed by real-world environments and complete
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Fig. 8. Voltage comparison results during the test process.

TABLE VI
COMPARISON OF VOLTAGE FOR DIFFERENT PHASES

Phase 1 Phase 2 Phase 3

Baseline Max 1.039 1.068 1.082
Min 1.031 0.976 0.991

SAC-Full Max 1.049 1.051 1.044
Min 1.013 0.974 0.963

Proposed Max 1.045 1.055 1.053
Min 1.014 0.974 0.972

observational data, completely eliminates voltage violations in
phase 3, with only a minor violation of 1.051 p.u. remaining
in phase 2. The proposed method, despite operating under the
least favorable conditions with model-free training, manages
to control the maximum voltage violations in phases 2 and 3
to 1.055 and 1.053 p.u., respectively.

Fig. 9. The number of VVNs for different approaches.

The trend and the comparative analysis of the effectiveness
of different control methods during the test day are illustrated
in Fig. 9. Specifically, the SAC-Full demonstrated an almost
impeccable adherence to voltage limits, with a singular inci-
dent of violation observed over the 24-hour periods. In con-
trast, the SAC-Low showed a more varied pattern of breaches,
albeit relatively minor, with occurrences ranging from one to
five violation in a few periods, highlighting its less consistent

control over voltage thresholds. The proposed approach with
violation recorded in only three steps, and even then, the
instances were limited to a maximum of four violation in
the most challenging period. This starkly contrasts with the
non-control situation, which experienced a significant surge
in violation, particularly in the middle of the day, where the
numbers soared to as high as 18. The traditional VVC-Var and
VVC-Watt methods exhibited intermediate performance. The
VVC-Var method demonstrated a moderate level of control,
with violation peaking at six in certain periods but otherwise
maintaining a low profile. Similarly, the VVC-Watt method
showed a balanced performance, with its violation numbers
mirroring those of VVC-Var in some periods but also peaking
at 14 in a single period, indicating occasional challenges in
voltage regulation.

Fig. 8 displays the voltage distribution at each hour from
9 a.m.–2 p.m. At 10 a.m., the non-control results in the
highest voltage level, exceeding 1.08 p.u., whereas all other
control methods effectively reduce the voltage to less than
1.07 p.u. Notably, our proposed method demonstrates superior
performance, with the highest voltage level recorded at 1.055
p.u.; however, SAC-Low exhibits instability starting at 10
a.m. As solar radiation intensity decreases over time, the
maximum voltage also gradually decreases, with no voltage
violations observed after 2 p.m. except for in the SAC-Low.
Although the use of large curtailment by DDPG to reduce the
number of VVNs is not ideal, the surrogate model provided
the agents with a training environment highly similar to the
real-world scenario, leading to very similar performance and
results between DDPG-Full and DDPG-Sur. Overall, SAC-
Full and the proposed approach exhibit the best performance,
achieving a commendable balance between reducing curtail-
ment and controlling voltage. In some extreme cases, they
also demonstrate superior adaptability compared to traditional
methods, further meeting the requirements for voltage control.
In terms of operational efficiency, our system includes two key
components: the obs-sur and the train-sur, along with the DRL
agent. The obs-sur is responsible for predicting unobservable
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values from observable ones and providing these predictions
to the DRL agent for decision-making. Our tests indicate that
this process requires an average of 0.003 seconds per step.
Conversely, the train-sur component serves as the training
environment for the DRL agent. It significantly enhances
efficiency with a neural network output time of just 0.00087
seconds per step, which is substantially faster compared to
the 0.013 seconds per step required by OpenDSS. During
the execution phase, the DRL agent makes decisions within
0.001 seconds after receiving the state information from obs-
sur. Combining this with the processing time of obs-sur, the
total decision-making duration is kept under 0.004 seconds.
Given these results, we assert that the efficiency and speed of
our proposed method qualify it for real-time applications. The
proposed approach, as a purely data-driven method, is better
suited to meet the needs of real-world power systems.

V. CONCLUSION

In this paper, a new surrogate model-enhanced DRL con-
trol framework is proposed. Initially, the neural network is
established to map the relationships among the voltage, the
visible load, and the invisible load, and it is used to predict
the behavior of the invisible loads. Subsequently, we lever-
age the data efficiency of multi-fidelity neural networks to
create a training environment for DRL that requires reduced
amounts of accurate data. The proposed framework ultimately
implements a data-driven DRL mode that offers a promising
approach to address the challenges associated with voltage
control. Comparative results demonstrate that: 1) DRL without
sufficient observation will degrade performance and stability.
2) In the proposed multi-fidelity surrogate model, DRL trained
in a high-precision environment can achieve performance
results similar to those trained in real-world environments.
3) Surrogate model-assisted DRL achieves the best control
performances as compared to other methods. Future work will
focus on enhancing the training efficiency of the surrogate
model to handle larger-scale distributed systems. Additionally,
when dealing with vast systems, we plan to regionalize the
system and use multiple surrogate model-DRL agent configu-
rations to ensure the scalability of our proposed method.
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