Machine Learned Force Field Modeling of Metal Organic Frameworks for
CO, Direct Air Capture
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Motivation from Recent
Simulation Work
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An initial screening of a database of anion pillared metal organic
frameworks (MOFs)! for CO, heat of adsorption as a function of
pore limiting diameter (PLD).

The optimal linker (pyrazine) and the CO, adsorption site in one of the
best performing MOFs, TIFSIX-3-Zn.

= Linker type influenced heat of adsorption more than metal
= Best performing MOFs had CO, adsorption sites at the center of
4 fluorine groups

Predicted High Performing MOFs
for Direct Air Capture (DAC)

» Using classical force fields, four MOFs have been identified
for further study using MLFF methods

MOF CO, Heat of . Fluorine Metal
Rank Adsorption Linker Group Center
(kJ/mol)
1 57.5 Pyrazine TiF, Cu
2 56.5 Pyrazine SiF, Cu
3 52.4 Pyrazine TiF, NI
4 50.5 Pyrazine TiF, Zn

Flexible Models: Machine
Learning Force Fields (MLFFs)

» Calculates energies and forces using machine learning models
fit to reproduce the results of density functional theory (DFT)
calculations

= Better fits than analytical models
» Faster than quantum mechanical simulations
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A description of the workflow for training MLFFs based on the results of
ab initio calculations.

* Training set “ingredients”:
* Energy, Forces from DFT
* Ab Initio molecular dynamics simulations (300 K, 450 K)
» Changes in system volume
= Adsorption of CO,
= SNAP Potential + Lennard-Jones (LJ) + Coulomb
» Charges assigned by density derived electrostatic and
chemical method (DDEC)
* Lennard-Jones from universal force field (UFF)

Benchmarking MLFF Predictions

= CO, adsorption depends on the fluorine-fluorine distances in the pore
= Rigid force fields overpredict adsorption in SIFSIX? and TIFSIX3® MOFs
= Ab Initio molecular dynamics (AIMD): flexible Si-F bonds affect the fluorine-
fluorine distances
* This makes TIFSIX and SIFSIX ideal test cases for flexible MLFFs
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The fluorine-fluorine diagonal distance in the pores of TIFSIX 3 Zn as a function of time in
an AIMD run.
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A comparison of energies vs. optimized cell volumes for an empty TIFSIX_3 Zn MOF.

TIErS?)Qi;ti/Ni EXp(?erZ?I?AI\e/TIUG DFT Prediction* MLFF Prediction
Unit Cell Volume (A3) 1,526 1,552 1,552
Density (g/cm?3) 1.65 1.62 1.62
Aan,S_rCO2 (kJ/mol) N/A -60.1 -59.8

*Unit cell optimization data was included in training data.
» Good performances for force predictions for MLFF potential
* Next step: benchmark force macroscopic properties using new MLFF
= CO, adsorption isotherms

Model Fitting Results

Configurations Energy R? Force R?
Empty MOF 0.99 0.98
CO, — Loaded MOF 0.99 0.97

Performance metrics for energies and forces predicted for the MOF,
TIFSIX_ 3 Zn compared to DFT data for testing data.

Conclusions

* Five MOFs were selected for further study due to high CO,, uptake
* MLFFs are being benchmarked for predictions of MOF structure
» Future work will mainly focus on:

= CO, uptake in all MOFs in this set

» The effect of humidity (co-adsorption with H,O)
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