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Motivation from Recent 

Simulation Work

Conclusions

Flexible Models: Machine 

Learning Force Fields (MLFFs)

▪ Training set “ingredients”:

▪ Energy, Forces from DFT

▪ Ab initio molecular dynamics simulations (300 K, 450 K)

▪ Changes in system volume

▪ Adsorption of CO2

▪ SNAP Potential + Lennard-Jones (LJ) + Coulomb

▪ Charges assigned by density derived electrostatic and 

chemical method (DDEC)

▪ Lennard-Jones from universal force field (UFF)

Benchmarking MLFF Predictions

Machine Learned Force Field Modeling of Metal Organic Frameworks for 

CO2 Direct Air Capture

▪ Calculates energies and forces using machine learning models 

fit to reproduce the results of density functional theory (DFT) 

calculations

▪ Better fits than analytical models

▪ Faster than quantum mechanical simulations

An initial screening of a database of anion pillared metal organic 

frameworks (MOFs)1 for CO2 heat of adsorption as a function of 

pore limiting diameter (PLD).

The optimal linker (pyrazine) and the CO2 adsorption site in one of the 

best performing MOFs, TIFSIX-3-Zn.

▪ Using classical force fields, four MOFs have been identified 

for further study using MLFF methods

Predicted High Performing MOFs 

for Direct Air Capture (DAC)

A comparison of energies vs. optimized cell volumes for an empty TIFSIX_3_Zn MOF. 

▪ Good performances for force predictions for MLFF potential

▪ Next step: benchmark force macroscopic properties using new MLFF

▪ CO2 adsorption isotherms

Model Fitting Results 

▪ Five MOFs were selected for further study due to high CO2 uptake

▪ MLFFs are being benchmarked for predictions of MOF structure

▪ Future work will mainly focus on:

▪ CO2 uptake in all MOFs in this set

▪ The effect of humidity (co-adsorption with H2O)

▪ CO2 adsorption depends on the fluorine-fluorine distances in the pore

▪ Rigid force fields overpredict adsorption in SIFSIX2 and TIFSIX3 MOFs 

▪ Ab initio molecular dynamics (AIMD): flexible Si-F bonds affect the fluorine-

fluorine distances

▪ This makes TIFSIX and SIFSIX ideal test cases for flexible MLFFs

MOF

Rank

CO2 Heat of 

Adsorption

(kJ/mol)

Linker
Fluorine 

Group

Metal

Center

1 57.5 Pyrazine TiF6 Cu

2 56.5 Pyrazine SiF6 Cu

3 52.4 Pyrazine TiF6 Ni

4 50.5 Pyrazine TiF6 Zn

A description of the workflow for training MLFFs based on the results of 

ab initio calculations.

▪ Linker type influenced heat of adsorption more than metal

▪ Best performing MOFs had CO2 adsorption sites at the center of 

4 fluorine groups

Sample Volume Changes

Expanded MOF Optimized MOF Compressed MOF

Configurations Energy R2 Force R2

Empty MOF 0.99 0.98

CO2 – Loaded MOF 0.99 0.97
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Disclaimer

Sample CO2 Adsorption

Lower Energy CO2 Higher Energy CO2

Property

TIFSIX_3_Ni

Experimental Value

(If Available)
DFT Prediction* MLFF Prediction

Unit Cell Volume (Å3) 1,526 1,552 1,552

Density (g/cm3) 1.65 1.62 1.62

∆Eads,CO2 (kJ/mol) N/A -60.1 -59.8

Performance metrics for energies and forces predicted for the MOF, 

TIFSIX_3_Zn compared to DFT data for testing data.

F-F diagonal 

The fluorine-fluorine diagonal distance in the pores of TIFSIX_3_Zn as a function of time in 

an AIMD run.

▪

*Unit cell optimization data was included in training data.
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