

Morphological and Crystallographic Controls of Replacement of Calcite and Aragonite by Cerussite and Otavite

YoungJae Kim¹, Aniket Tekawade², Sang Soo Lee¹, and Paul Fenter^{1,*}

¹Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA

²Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, USA

* Corresponding author: E-mail: fenter@anl.gov

Abstract

8 Mineral replacement reactions are essential solid-fluid interactions in natural and industrial processes
9 including metasomatism, diagenesis, and metamorphism, and sequestration of metal toxins from polluted
10 water. Here, we explore the morphological evolution of aragonite and calcite (polymorphs of CaCO_3)
11 during their replacement by cerussite (PbCO_3 , an isomorph of aragonite) and otavite (CdCO_3 , an
12 isomorph of calcite) in acidic aqueous solutions (with initial pH 3 to 4). Observations using scanning
13 electron and synchrotron-based transmission X-ray microscopies reveal the formation of pseudomorphic
14 shells (~5 to 10 μm thick) of cerussite and otavite when Pb^{2+} is reacted with either calcite or aragonite and
15 when Cd^{2+} is reacted with aragonite. The formation of pore space at the substrate-precipitate interface and
16 within the precipitate is found to be key in promoting chemical exchange between the dissolving phase
17 and the solution. In contrast, minimal reactivity is observed when Cd^{2+} is reacted with calcite. These
18 results demonstrate that the lack of substrate-precipitate epitaxy (either because of inconsistent
19 symmetries or due to large lattice constant mismatch) is a critical factor that enables replacement of
20 primary CaCO_3 minerals by Pb- or Cd-bearing secondary minerals while the presence of epitaxial
21 relationships inhibit those reactions. When calcite and aragonite coexist, the replacement of aragonite by
22 cerussite and otavite occurs preferentially over calcite. We postulate that the relative reactivity of calcite
23 and aragonite to Pb^{2+} and Cd^{2+} can be determined by interplay between morphological and
24 crystallographic properties of CaCO_3 materials as well as solution chemistry. Our results demonstrate that

25 coupled dissolution-precipitation processes of carbonate minerals play an important role in controlling
26 mobility and bioavailability of lead and cadmium in environments where acidic metal-contaminated water
27 interacts with carbonate-rich rocks and soils.

28

29 *Keywords:* mineral replacement, calcite, aragonite, cerussite, otavite, transmission X-ray microscopy

30

31 **1. Introduction**

32 Calcite and aragonite are the two most common polymorphs of calcium carbonate minerals (CaCO_3)
33 in nature. Calcite is the most stable form of CaCO_3 under ambient conditions while aragonite is the high-
34 pressure polymorph of CaCO_3 . Both calcite and aragonite commonly form as a main constituent in coral
35 reefs and shells in marine environments (Checa et al., 2007; Gillikin et al., 2005; Keith et al., 1964).
36 Because their mineral-water interfaces are highly reactive to dissolved ions, calcite and aragonite play an
37 important role in controlling the fate of various metal ions, in natural and engineered settings, through
38 processes including adsorption, incorporation, and precipitation (Callagon et al., 2014; Davis et al., 1987;
39 Elzinga et al., 2006; Kang et al., 2014; Rouff et al., 2004; Sturchio et al., 1997; Zavarin et al., 2005).

40 Mineral replacement reactions can occur via a coupled dissolution-precipitation process in which a
41 substrate phase dissolves in contact with fluid and is replaced by a more stable precipitate. These
42 reactions are essential in many natural and industrial processes including chemical weathering,
43 metasomatism, diagenesis, metamorphism, and sequestration of metal toxins from polluted water (Putnis,
44 2002, 2009; Ruiz-Agudo et al., 2014). A key feature of a mineral replacement reaction is the preservation
45 of the original dimensions of the substrate phase (i.e., pseudomorphism). The shape preservation indicates
46 that the reaction front migrates from the external surfaces of the original mineral into the interior of the
47 substrate crystal. The structure, composition, and morphology of the replaced crystal are known to be
48 controlled by various factors including the difference in solubility between the substrate and the

49 precipitate, the relative rates of the dissolution and precipitation reactions (Putnis, 2002, 2009; Ruiz-
50 Agudo et al., 2014), and the development of porosity in the precipitating phase that promotes chemical
51 exchange between the dissolving phase and the solution.

52 Replacement reactions typically occur under far-from-equilibrium conditions that maintain sustained
53 disequilibria in which the reactant solid phase remains undersaturated while the product solid phase
54 becomes supersaturated. These conditions can dramatically influence reaction mechanisms and pathways
55 in elemental transport under geochemically relevant conditions. For example, the highly acidic fluids in
56 acid mine drainage sites contain large amounts of heavy metal ions (e.g., Pb^{2+} , Hg^{2+} , Cd^{2+}) (Li et al.,
57 2009), which can react with carbonate minerals that commonly exist in mine tailings as well as
58 contaminated soils and sediments. The pseudomorphic replacement of sparingly-soluble CaCO_3 minerals
59 by less-soluble secondary minerals containing these metals (e.g., $\text{CaCO}_3 + \text{Pb}^{2+} \rightarrow \text{PbCO}_3 + \text{Ca}^{2+}$) can
60 inhibit the geochemical transport and biological availability of these metal toxins (Abdilla et al., 2022;
61 Yuan et al., 2016). The same mechanism may also be relevant to geomechanical phenomena, such as the
62 sequestration of CO_2 through the coupled dissolution of mafic silicate minerals in CO_2 -saturated injection
63 waters and precipitation of carbonate minerals (e.g., CarbFix). As such, understanding the controls over
64 the reactivity of carbonate minerals under conditions of disequilibria (e.g., acidic pH) is broadly
65 important. The current study focuses on the reactivity of calcite and aragonite in acidic pH solutions in the
66 presence of two common toxic metal ions: Pb^{2+} and Cd^{2+} . Both of these metals are constituent elements of
67 relatively insoluble carbonate minerals, but their different crystal structures allow the crystallographic
68 controls over these reactions to be isolated. Furthermore, the facile reactivity of carbonate minerals at
69 ambient conditions makes them well suited for systematic measurements to identify the relevant chemical
70 and crystallographic controls over these reactions.

71 Systematic investigations on the interfacial reactivity of calcite and aragonite in acidic metal-rich
72 fluids have been reported recently. For example, in acidic Pb^{2+} containing solutions, replacement of
73 calcite and aragonite by cerussite (PbCO_3) can proceed through coupled dissolution-precipitation

74 processes, while maintaining the overall carbonate grain morphology (Kim et al., 2021; Yuan et al., 2018;
75 Yuan et al., 2016). This combination drives dissolution of calcite and aragonite (having solubility
76 products, $K_{sp} = a_{Ca^{2+}} \cdot a_{CO_3^{2-}} = 10^{-8.48}$ and $10^{-8.34}$, respectively, where a represents the ion activity at
77 equilibrium; Plummer and Busenberg (1982)) followed by precipitation of cerussite having a significantly
78 lower solubility (i.e., $K_{sp} = a_{Pb^{2+}} \cdot a_{CO_3^{2-}} = 10^{-13.76}$; Xiong (2015)). It is proposed that the growth rates and
79 modes of cerussite on dissolving calcite and aragonite can be controlled by spatial distribution of solution
80 pH and ion concentrations, which determine the (local) saturation index of the precipitate (Kim et al.,
81 2021; Yuan et al., 2016). In addition, previous studies have compared Pb uptake by calcite vs. aragonite in
82 replacement reactions that form cerussite as the final product (Di Lorenzo et al., 2019; Gamsjäger et al.,
83 1984; Godelitsas et al., 2003; Kim et al., 2021; Miyake et al., 1988). However, there are some significant
84 discrepancies among these studies. Gamsjäger et al. (1984) reported batch experiment results showing
85 that Pb^{2+} uptake by aragonite occurs to greater extents and at faster rates than that by calcite. In contrast,
86 observations made by Di Lorenzo et al. (2019) revealed a lower reactivity of aragonite to Pb^{2+} compared
87 to that of calcite, from batch experiment combined with scanning electron microscopy (SEM), and
88 suggested that the surface passivation of aragonite by cerussite could occur because the precipitate and
89 substrate phases are isostructural (orthorhombic, 2/m2/m2/m). Our previous observations indicated that
90 the relative reactivity of calcite and aragonite in acidic Pb^{2+} containing solution may be determined by
91 morphological features of these polymorphs, which control the local saturation index of cerussite near the
92 $CaCO_3$ substrate (Kim et al., 2021). In turn, these previous studies highlight the need for a systematic
93 investigation of various factors that control the reactivity of calcium carbonate polymorphs with heavy
94 metals in acidic aqueous solutions.

95 Similar considerations can be applied to the reaction of calcium carbonate with acidic solutions
96 containing Cd^{2+} . Since otavite ($CdCO_3$) has a lower solubility ($K_{sp} = a_{Cd^{2+}} \cdot a_{CO_3^{2-}} = 10^{-12.24}$; Rai et al.
97 (1991)) than calcite and aragonite, it is expected that its growth can be induced by dissolution of $CaCO_3$
98 in acidic Cd^{2+} containing solutions, in analogy to what is observed with Pb^{2+} . One important difference

99 when otavite grows on a calcite substrate, however, is the close structural match between otavite and
100 calcite. Otavite has the same crystal structure as calcite (trigonal, $\bar{3}2/m$) with only a small lattice misfit
101 to the calcite lattice spacing (ranging from 1 to 3 % with respect to the surface lattice spacings in the
102 calcite and otavite (104) planes). Consequently, otavite can be expected to grow as a continuous epitaxial
103 film that is coherently strained to the calcite substrate. Growth of a continuous film may inhibit the
104 progress of the coupled dissolution-precipitation reactions (Pérez-Garrido et al., 2007; Prieto et al., 2003;
105 Xu et al., 2014) that require the dissolution of the substrate as a source of carbonate ions.

106 Relevant to the understanding of replacement reactions of calcite by otavite are previous observations
107 of otavite growth on calcite in otavite-supersaturated solutions. Atomic force microscopy (AFM) and
108 synchrotron X-ray reflectivity (XR) studies have demonstrated that otavite films grow as coherently
109 strained films on the calcite (104) plane, consistent with the expectation from the crystallographic
110 similarity between two solid phases (Chiarello and Sturchio, 1994; Chiarello et al., 1997; Pérez-Garrido et
111 al., 2007; Xu et al., 2014). The thickness of these otavite films ranged from a few to tens of nm depending
112 on the initial saturation index of the reacting solution with respect to otavite. When grown from solutions
113 that were supersaturated with respect to otavite, it was found that the otavite film morphology evolved as
114 would be expected for an epitaxially strained layer, including the growth of a coherently strained otavite
115 film for thicknesses below the critical thickness (e.g., 3 and 15 nm for the calcite and dolomite (104)
116 surfaces, respectively), followed by the development of a strain-relieved film (presumably due to a
117 combination of dislocations and the development of a morphologically rough film) (Callagon et al., 2017;
118 Chiarello and Sturchio, 1994; Chiarello et al., 1997; La Plante et al., 2018).

119 Significantly less is known about the reaction mechanisms of aragonite with dissolved Cd^{2+} than
120 those of calcite with dissolved Cd^{2+} . Prieto et al. (2003) reported a significantly higher Cd uptake by
121 aragonite from aqueous CdCl_2 solutions compared to that by calcite. Cubillas et al. (2005) found that in
122 the presence of dissolved Cd^{2+} , the dissolution rates of calcite were lower than that of aragonite, which
123 induced a greater extent of Cd precipitation by aragonite than calcite. In both studies, the differences in

124 Cd sorption were attributed to different growth modes of otavite on the substrate minerals. These findings
125 from previous studies were mainly based on batch sorption experiments combined with microscopic
126 observations made using SEM to contrast the final product of otavite grown on aragonite with no discrete
127 otavite crystals found on the calcite surface. As demonstrated from our previous study (Kim et al., 2021),
128 SEM is useful in visualizing external morphologies of the product phase upon mineral replacement but
129 does not provide direct insights into the product-substrate interfaces. Although there is some consensus
130 that Cd uptake by aragonite can occur via mineral replacement (i.e., similar to Pb uptake by calcite and
131 aragonite), this insight has not yet been supported by direct observations of the morphological
132 relationships between the host phase and the secondary mineral.

133 Here, we explore the morphological evolution of calcite and aragonite prepared in three different
134 forms (i.e., single crystals, crushed minerals, and mixed crystals) during reaction with dissolved Pb^{2+} or
135 Cd^{2+} to understand the morphological and crystallographic controls over the replacement of calcium
136 carbonate polymorphs by cerussite and otavite. In these measurements, the reactivity of these calcium
137 carbonate polymorphs is observed in acidic conditions (initial pH = 2.7 to 4.0) that maintain a continued
138 undersaturation of the calcium carbonate substrate while the product phase nucleates and grows, thereby
139 ensuring a sustained disequilibrium. A unique aspect of our approach is that we compare the different
140 reaction modes leading to the formation of cerussite and otavite by combining observations of changes to
141 the *external* morphology of calcite and aragonite by SEM with parallel observations of the *internal*
142 structure of replaced calcite and aragonite crystals using synchrotron transmission X-ray microscopy
143 (TXM). As demonstrated in our previous studies (Kim et al., 2021; Yuan et al., 2016), TXM imaging
144 enables direct observations of the product-substrate interface formed during mineral replacement.

145 This approach has led to multiple new insights into the reaction process. For example, TXM images
146 of aragonite replaced by otavite are the first to provide direct evidence that this replacement reaction is
147 enabled by reactant (Cd^{2+}) transport through pore spaces within the otavite product and between the
148 otavite and aragonite phases. These morphological and chemical observations also reveal that the

149 outcomes of these replacement reactions (including dissolution and growth rates and patterns) depend on
150 the crystal structure and initial morphologies of calcium carbonate polymorphs. This suite of
151 measurements allows us to make direct comparisons of four reaction systems having host minerals and
152 reaction products with either the same or different crystal symmetry groups (i.e., minerals having the
153 calcite and aragonite crystal structures, respectively) and to explore the role of lattice strain when they are
154 isostructural (i.e., small lattice mismatch between calcite and otavite vs. the large lattice mismatch
155 between aragonite and cerussite). The results show that the lack of epitaxial relationships between the
156 reactant and the product (either due to different crystal symmetry groups, for calcite–cerussite or otavite–
157 aragonite, or due to significant lattice mismatch for isostructural minerals, for aragonite–cerussite) is a
158 critical factor that enables mineral replacement reactions to penetrate into the substrate phase, while the
159 presence of true epitaxial relationship inhibits those reactions (e.g., for calcite–otavite). Our results also
160 show how the interfacial reactivity of calcite and aragonite with Pb^{2+} and Cd^{2+} is influenced by the
161 dissolution rate of calcium carbonate. These results are compared with previous observations of mineral
162 replacement reactions.

163

164 2. METHODS

165 Synopsis of experiment

166 Calcite and aragonite have moderate solubilities and distinct crystal structures (trigonal and
167 orthorhombic, respectively). We reacted calcite and aragonite crystals in acidic Pb^{2+} and Cd^{2+} aqueous
168 solutions to induce replacement of these polymorphs by $PbCO_3$ (cerussite, an isomorph of aragonite) and
169 $CdCO_3$ (otavite, an isomorph of calcite), which are much less soluble in water than the $CaCO_3$
170 polymorphs. The initial solutions (at the initial pH of 2.7–4.0) were undersaturated with respect to both
171 the $CaCO_3$ minerals and the secondary phases. The growth of the new phase, if observed, was initiated at
172 the $CaCO_3$ -water interface where the local concentration of carbonate was sufficiently high to induce the
173 precipitation of cerussite and aragonite. All observations were made at room temperature.

174 The four replacement reactions (i.e., the combination of two mineral substrates, calcite and aragonite,
175 and two metal ions, Pb^{2+} and Cd^{2+}) represent transformations between the dissolving and precipitating
176 phases with the same or distinct crystal structures, and with large vs. small lattice constant differences for
177 isostructural phases (i.e., aragonite by cerussite and calcite by otavite, respectively). The lattice spacing
178 differences between aragonite and cerussite are 4–7 % (with respect to the aragonite (001), (010), and
179 (110) planes; Supporting materials) and those between calcite and otavite are 1–3 % (with respect to the
180 calcite (104) plane), respectively. In comparison, the replacement of calcite by cerussite, and aragonite by
181 otavite, involves phases with distinct crystal structures. Therefore, comparing morphological
182 characteristics of these four replacement reactions offers direct insights into how the mineral replacement
183 reactions are controlled by crystallographic relationship and lattice mismatch between the substrates and
184 precipitates.

185 **Minerals and reagents**

186 Calcium carbonate polymorphs were prepared in three different ways. 1) Individual crystals of calcite
187 and aragonite were co-grown on Kapton films using the ammonium diffusion method (Hu et al., 2012;
188 Ihli et al., 2013). 2) Aggregates of calcite and aragonite were prepared by mixing carbonate- and calcium-
189 containing solutions at 70 °C (Wray and Daniels, 1957) . 3) Powder specimens of calcium carbonate were
190 prepared by crushing and sieving natural calcium carbonate minerals, i.e., calcite (Chihuahua, Mexico)
191 and aragonite (Ivanpah Mt., California, USA), to obtain particles in size ranging from 47 to 53 μm
192 (similar to the crystals grown by the ammonium diffusion method). These prepared CaCO_3 samples were
193 reacted with acidic Pb^{2+} - or Cd^{2+} -containing solutions. $\text{Pb}(\text{II})$ and $\text{Cd}(\text{II})$ stock solutions were prepared
194 using Milli-Q® water (resistivity $\geq 18.2 \text{ M}\Omega\cdot\text{cm}$; TOC $< 5 \text{ ppb}$), lead nitrate ($\text{Pb}(\text{NO}_3)_2$, Sigma Aldrich;
195 purity of $\geq 99 \text{ %}$), and cadmium chloride hemipentahydrate ($\text{CdCl}_2 \cdot 2\frac{1}{2}\text{H}_2\text{O}$, Mallinckrodt; purity of 99-
196 100 %).

197 **Reaction protocols**

198 Mineral replacement reactions for individual crystals, aggregates, and powder specimen of calcite and
199 aragonite were performed in a fluid cell containing CaCO_3 crystals in contact with a static solution with
200 1–5 mM Pb(II)/1–10 mM Cd(II), an initial pH of 2.7–4.0, and a solid mass to solution volume ratio of
201 0.1–0.37 g/L. As calcite and aragonite were undersaturated in this initial solution, the dissolution of
202 CaCO_3 minerals occurred at increasing solution pH and (bi)carbonate concentrations. We focused on
203 conditions and reaction times where the CaCO_3 phases remain undersaturated throughout the reaction
204 period.

205 For reaction of aragonite with Pb^{2+} and Cd^{2+} and calcite with Pb^{2+} , the final Pb- and Cd-containing
206 solutions, after reaction for 16 to 24 h, displayed the pH ranging from 4.2 to 4.8 and from 5.5 to 6.0,
207 respectively, with total dissolved carbonate concentrations of 1–4 mM. The saturation index (SI) of
208 cerussite ranged from –1.2 to 0.5 and that of otavite from 0.6 to 2.1. These indicate that the solution
209 chemistry evolved as the dissolution of the CaCO_3 phase continued during reaction, from undersaturation
210 with respect to cerussite and otavite to supersaturation with respect to both of these phases during the
211 reaction. A different behavior is observed for reactions of calcite with Cd^{2+} : the final solution pH was 5.5
212 to 6.0 and the total dissolved carbonate concentration was only 20 μM . This low carbonate concentration
213 suggests the inhibited dissolution of calcite. The SI of otavite in the final solution ranged from –1.2 to
214 0.0, indicating that the solution was undersaturated or in equilibrium with respect to otavite.

215 After the desired reaction time, the samples were gently rinsed with ethanol and air-dried. These
216 reacted CaCO_3 samples were imaged using a Phenom scanning electron microscope (SEM) with energy
217 dispersive X-ray spectroscopy (EDS) (Thermo Fisher Scientific) and transmission X-ray microscopy
218 (TXM). The secondary phases were identified using X-ray diffraction (XRD).

219 **Transmission X-ray Microscopy (TXM)**

220 Synchrotron X-ray nano-tomography measurements were performed at beamline 32-ID-C at the
221 Advanced Photon Source (APS) in Argonne National Laboratory (ANL). The incident X-ray photon

222 energy was 8 keV and a field of view of $51 \times 51 \mu\text{m}^2$ was used. The sample was imaged in 721 projection
223 directions within a rotation angle of 180°. The exposure time was 0.5 to 1 s per image and the spatial
224 resolution of the image was 49 nm. The projection data was reconstructed using Tomopy (De Carlo et al.,
225 2014; Gürsoy et al., 2014; Pelt et al., 2016). The acquired images were further processed using an open-
226 source 3D image segmentation code, CTSegNet developed by Tekawade et al. (2021) that uses deep
227 learning to automate the classification of pixels into specific phases (e.g., background, cerussite/otavite,
228 and calcite/aragonite). CTSegNet applies multiple passes of an encoder-decoder 2D convolutional neural
229 network (CNN) onto orthogonal axes of a 3D reconstructed grayscale volume to produce an ensemble
230 voted mask that captures 3D information about pixel intensity variation in the different phases. The
231 segmented images were analyzed and visualized using 3DSlicer (www.slicer.org; Fedorov et al. (2012))
232 and Paraview (Ayachit, 2015).

233 **X-ray diffraction (XRD)**

234 Silicon “zero-background” sample holders (MTI corporation; www.mtiixl.com) were used for XRD.
235 Samples were transferred to the holders in a form of isopropyl alcohol slurry and then dried in air for 30-
236 60 min. XRD patterns were obtained using a Bruker D8 Advance diffractometer with a step size of 0.008°
237 20. Cu K α radiation ($\lambda = 0.15418 \text{ nm}$) was used and the measurement time was 1 s per step.

238

239 **3. RESULTS**

240 **3.1. Replacement reactions of calcite and aragonite in acidic Pb²⁺ and Cd²⁺ solutions**

241 Powder specimens of calcium carbonate polymorphs before and after reaction in acidic Pb²⁺- or Cd²⁺-
242 containing solutions (initial pH = 2.7; 5 mM [Pb²⁺]_{initial} or 5 mM [Cd²⁺]_{initial}, respectively) for 16 hr were
243 examined using XRD and SEM. The XRD measurement confirms that the mineral specimens used for the
244 replacement reactions consisted of calcite and aragonite, respectively (Fig. 1) without any evidence for
245 secondary phases. Cerussite was identified as the main product of reaction of calcite and aragonite with
246 acidic Pb²⁺-containing solution (Fig. 1). The rod-shaped cerussite crystals grown on both calcite and

247 aragonite were observed by SEM (Fig. 2 A and B). The formation of cerussite is consistent with previous
248 studies of calcium carbonate mineral evolution in the presence of dissolved Pb²⁺ (Di Lorenzo et al., 2019;
249 Gamsjäger et al., 1984; Yuan et al., 2018; Yuan et al., 2016).

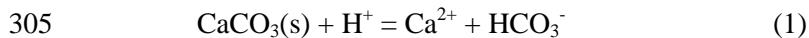
250 The main product from the reaction of aragonite with acidic Cd²⁺-containing solution was Cd-rich
251 Cd_xCa_(1-x)CO₃ solid solution (hereafter referred to as otavite) (Fig. 1A). The otavite crystals that formed
252 on aragonite were sub micrometers to few micrometers in size and rhombohedral in shape (Fig. 2C).
253 Unlike the other three reaction systems, in reaction of calcite with Cd²⁺, no discrete secondary particles
254 were observed by SEM (Fig. 2D) nor identified by XRD (Fig. 1B). We did, however, detect very small
255 EDS signals from Cd²⁺ on the calcite grains, corresponding to 0.03 to 0.11 at.% (Fig. S.1) suggesting that
256 an interface-limited reaction may occur on these surfaces. Since EDS is not a surface-specific technique,
257 the Cd content of surface precipitates, if formed, might be higher than this concentration range.

258

259 3.2 Morphological evolution during mineral replacement

260 Morphological changes of calcite, aragonite, and calcite/aragonite mixture during replacement reaction in
261 acidic Pb- and Cd-containing solutions were imaged using SEM (Fig. 3). Before the reaction, the
262 aragonite starting material occurred in aggregates less than 150 µm in size but with spiky morphologies
263 (Fig. 3A and C). Pristine calcite starting material was grown as individual euhedral crystals, 30 to 80 µm
264 in size (Fig. 3B and D).

265 The surfaces of aragonite crystals reacted in 1 mM [Pb²⁺]_{initial} solution at pH 3.0 are gradually covered
266 by cerussite, which appears as bright phases in the SEM images (Fig. 3A). While this morphological
267 change occurred within the first hour (Fig. 3A), aragonite crystals barely changed in size and external
268 morphology after additional reaction times (Fig. S.2). Calcite crystals reacted in a solution having the
269 same solution composition decreased in size throughout the reaction and developed spatially modulated
270 surface morphologies (Fig. 3B), due to the dissolution of the calcite surface in the presence of dissolved


271 Pb^{2+} (Yuan et al., 2018). After 6 hr of reaction, the formation of cerussite was observed near the contact of
272 the calcite crystal on the Kapton support similar to the observations in the previous study (Yuan et al.,
273 2018; Yuan et al., 2016). This behavior can be contrasted with that occurring in Cd-containing solutions.
274 In a solution with 10 mM $[\text{Cd}]_{\text{initial}}$ at pH 4.0, the precipitation of otavite on the aragonite substrate
275 gradually proceeded within first 3 hr (Fig. 3C) and there were little changes in size and external
276 morphology afterward (Fig. S.2), leading to reacted structures that appeared morphologically similar to
277 that observed in Pb-containing solutions. In contrast to this, calcite crystals reacted with the same Cd-
278 containing solution showed minimal changes after reaction for 12 hr (Fig. 3D) and no evidence of the
279 formation of otavite as a discrete phase. These results showed that the growth process of cerussite on
280 dissolving aragonite was generally similar to that of otavite on aragonite, but that the growth of cerussite
281 was significantly faster. The behavior of calcite was distinct from aragonite. The presence of Pb^{2+} altered
282 the dissolution process of calcite (Yuan et al., 2019), and the nucleation of cerussite on calcite occurred at
283 slower rates than that on aragonite. In contrast, the present of Cd^{2+} appeared to inhibit or slow the
284 dissolution of calcite under these conditions.

285 Aragonite/calcite mixtures were reacted with Pb^{2+} and Cd^{2+} to further examine relative reactivities of
286 these calcium carbonate polymorphs with dissolved lead and cadmium ions (Fig. 4). In these mixtures,
287 aragonite had a rod-shaped morphology, which indicates that these crystals grew along the c-axis of the
288 aragonite structure (Wang and Han, 2014; Zeng et al., 2018). In acidic Pb^{2+} containing solution,
289 replacement by cerussite began at the tips of aragonite crystals and gradually proceeded over the body of
290 these crystals for the first 2 hr. In some cases, the core aragonite was fully dissolved, leaving
291 pseudomorphic shells of cerussite after reaction for 4 hr (Fig. 4A). During this morphological evolution,
292 cerussite replacing aragonite crystals grew dominantly along the c-axis of the substrate structure (Fig. 4).
293 In reaction with dissolved Cd^{2+} , sub-micrometer-sized otavite crystals grew on rod-shaped aragonite
294 crystals, covering the entire aragonite surfaces within the first 4 hr. In the same acidic Pb- and Cd-
295 containing solutions, calcite showed rounded edges by dissolution but replacement by lead and cadmium

296 carbonate was rare (Fig. 4). Overall, these results show that precipitation of cerussite and otavite
297 preferentially occurred on aragonite over calcite when aragonite and calcite coexist.

298 **3.3 pH evolution during mineral replacement.**

299 The nature of these replacement reactions was further constrained by the solution chemistry monitored as
300 the reaction progressed. To this end, the solution pH was measured as a function of time during reaction
301 of calcite and aragonite powder with dilute hydrochloric acid (at initial pH = 2.7) in the absence and
302 presence of Pb²⁺ or Cd²⁺ (5 mM [Pb²⁺]_{initial} or 5 mM [Cd²⁺]_{initial}, respectively) (Fig. S.3). In the Pb²⁺- and
303 Cd²⁺-free systems, the solution pH increased with time up to 7.6 after 24 hr. This increasing pH is
304 expected from the dissolution as,

306 When calcite and aragonite were reacted with solutions containing Pb²⁺, the pH stabilized after 10 min of
307 reaction at 4.6 to 4.8. We postulate that this observation reflects a balance between CaCO₃ dissolution
308 (Eq. 1) and PbCO₃ precipitation as

310 In reaction of aragonite with Cd²⁺-containing solution, pH increased to 6.4 during the first 1 hr,
311 followed by a gradual decrease down to pH 6.0 after 24 hr of reaction. The initial increase is consistent
312 with those observed in the Cd²⁺-free solution while the subsequent decrease likely reflects the delayed
313 onset of otavite precipitation. When calcite was reacted with Cd²⁺, pH increased from 2.7 to 5.2 during
314 the first 10 min, followed by a gradual increase to 5.7 until 24 hr. Notably, the initial increase was slower
315 than that in Cd²⁺-free solution. While this behavior appears qualitatively similar to that for Pb reacting
316 with calcite and aragonite (where replacement reactions occur readily), the lack of any significant
317 replacement reactions in the Cd/calcite systems (i.e., with no calcite dissolution observed by SEM (Fig.
318 3D) and no otavite precipitation identified by XRD (Fig. 1B)) indicates that the slow pH evolution is due
319 to the inhibited reactivity at the calcite surfaces. That is, interactions of Cd with the reactive sites of

320 calcite (e.g., via sorption on step and kink sites or the formation of a continuous film, see Section 4.1 for
321 detailed discussion) passivate the surfaces, resulting in a decrease in dissolution rate and limited
322 replacement of calcite by otavite.

323 **3.4 Internal structures of replaced crystals of calcite and aragonite**

324 The internal structures of CaCO_3 minerals after the reaction with acidic Pb- and Cd-containing solutions
325 were examined using TXM (Fig. 5). In these TXM images, the brightness indicates the density of the
326 materials such that lead and cadmium carbonate appear brightest, while calcium carbonate has
327 intermediate contrast, and air is the darkest. These phases consisting of reacted CaCO_3 minerals were
328 segmented and visualized in three dimensions (Fig. 6). Replacement of aragonite and calcite by cerussite
329 began at the external surfaces of the crystals and propagated inward (Fig. 5 A and B). The cerussite layers
330 on these substrates were typically ~5 to 10 μm thick. Otavite initially nucleated on the external surface of
331 aragonite. Replacement of aragonite by otavite resulted in similar morphologies with the formation of a
332 thick product and the presence of pores between the otavite and aragonite phases (Figs. 5D). In contrast,
333 Cd-reacted calcite crystals remained visually unchanged (Fig. 5E), which indicates that the formation of
334 otavite either did not occur or was limited to a thin layer on the external surface of calcite. In
335 aragonite/calcite mixtures reacted with Pb^{2+} and Cd^{2+} , the cerussite and otavite layers on the aragonite
336 substrate were sub micrometers to few micrometers thick (Fig. 5C and F).

337 These segmented images of the internal structure of the reacted CaCO_3 minerals provide direct
338 evidence for the important role of porosity in the replacement reactions. Specifically, we observe pores
339 separating the reactant and the product phases for all cases in which a replacement reaction was observed
340 in process (i.e., with both reactant and product phases present). For example, pores are ~100 nm wide at
341 the boundaries between the cerussite precipitate and the CaCO_3 substrate (Fig. 5A to C; Fig. 6A and B),
342 consistent with a previous study (Kim et al., 2021; Yuan et al., 2016). Similar pores were observed
343 between otavite and aragonite phases (Figs. 5F and CD). Additional pores developed within the
344 precipitate phases, most notably for cerussite on dissolving calcite (Fig. 6A). These pore spaces can act as

345 fluid channels during the reactions, facilitating chemical exchange between the substrate and bulk
346 solution.

347

348 **4. DISCUSSION**

349 **4.1. Formation of porosity upon the mineral replacement of calcite and aragonite**

350 Our SEM and TXM imaging results (Fig. 2 to 5) show similarities and differences among structural
351 outcomes from the four replacement reactions under the equivalent conditions in terms of initial pH and
352 metal concentrations. Under the disequilibrium conditions of the present study (mainly driven by acidic
353 pH), pseudomorphic replacement by cerussite (an isomorph of aragonite) and otavite (an isomorph of
354 calcite) were observed when calcite and aragonite were reacted with Pb^{2+} and aragonite with Cd^{2+} (Figs. 2
355 to 4). One key feature found in these pseudomorphic replacement reactions was the formation of pores
356 between the substrate and precipitate (~ 100 nm in thickness) (Figs. 5 and 6). Through these pores,
357 chemical exchange is facilitated between the dissolving CaCO_3 mineral, the precipitating
358 cerussite/otavite, and the bulk solution. The development of porosity plays a key role in promoting the
359 advancement of a reaction front from the mineral-water interface to the internal structure of a crystal. In
360 turn, these morphological features (both external and internal ones) observed in replaced CaCO_3 crystals
361 define the reaction mechanisms addressed in this study as pseudomorphic replacement (which satisfies
362 the definition described in Putnis (2009)). Here, we propose a conceptual model to demonstrate how the
363 formation of porosity upon the mineral replacement of calcium carbonate can be controlled by the
364 crystallographic relationship between the dissolving and the precipitating minerals and the differences in
365 the molar volumes of these solid phases.

366 We conclude that the growth mode of the precipitate is a critical factor in controlling the development
367 of porosity upon mineral replacement. Otavite has the same crystal structure as calcite (trigonal, $\bar{3}2/m$)
368 with small lattice spacing misfit with respect to the calcite (1 to 3 % with respect to the lattice spacing of
369 the calcite and otavite (104) planes). Previous studies have observed the epitaxial growth of otavite on

370 calcite with epitaxy mainly due to the crystallographic matching between otavite and calcite (Chiarello
371 and Sturchio, 1994; Chiarello et al., 1997; La Plante et al., 2018; Pérez-Garrido et al., 2007; Xu et al.,
372 2014). It has been postulated that these epitaxial layers may prevent calcite from further dissolution and
373 thus stop the coupled dissolution-precipitation (Pérez-Garrido et al., 2007; Prieto et al., 2003; Xu et al.,
374 2014).

375 The important role of epitaxy in inhibiting a replacement reaction is highlighted by comparing the
376 extended replacement of aragonite with Pb^{2+} to the limited reaction of calcite with Cd^{2+} under equivalent
377 conditions (Figure 2 to 5). Although cerussite and aragonite also have the same crystal structure, there is
378 a larger lattice misfit between these two minerals, ranging from 4 to 7%. These differences can be
379 characterized through the estimation of the “critical thickness” of the precipitating phase (La Plante et al.,
380 2018; Matthews and Blakeslee, 1974), corresponding to the maximum thickness of an epitaxially
381 registered film that can form before the development of dislocations (see Supporting materials for
382 details). Ultimately, this estimation provides a way to evaluate the structural relationships that the
383 precipitate can maintain with the substrate and the expected growth mode. The estimated critical
384 thickness for otavite on calcite is ~ 3 nm, indicating that it can be physically stable as a continuous film up
385 to that thickness. In contrast, the critical thickness for cerussite on aragonite is ~ 0 nm, indicating that
386 continuous cerussite films on aragonite interface are not stable. This might suggest, for example, that the
387 initial cerussite product would tend to grow as isolated islands to minimize contact between cerussite and
388 aragonite. As a result, a portion of the aragonite surface will remain uncoated and exposed to solution
389 during these reactions, which will allow the replacement reaction to continue. This calculation is fully
390 consistent with the observations of pores at the cerussite/aragonite interface as seen in our previous (Kim
391 et al., 2021) and present studies. In contrast, the larger critical thickness of otavite coatings on calcite,
392 which enables a continuous film to form up to thicknesses of ~ 10 molecular-layers, implies that the
393 calcite surface will not be exposed to solution after an initial reaction period. This would significantly

394 inhibit the transport of reactants to and from the interface since it would be necessary to occur through
395 solid-state diffusion rather than dissolution/precipitation at the mineral-aqueous solution interface.

396 Among the substrate-precipitate crystallographic relationships examined in this study, replacement of
397 calcite by cerussite and of aragonite by otavite are ones in which the substrate and precipitate phases have
398 distinct crystal structures. Our TXM image data of these two replacement reactions reveal that the
399 substrate surfaces do not become fully passivated by the growth of the precipitates (Figure 5 and 6). We
400 postulate that the incomplete passivation by precipitates is mainly due to their structural inconsistencies
401 with the substrate. Initially, cerussite and otavite can nucleate, as discrete phases, on the substrate when
402 fresh aragonite crystals are reacted in acidic Cd²⁺- and Pb²⁺-containing solution and when fresh calcite
403 crystals are reacted in acidic Pb²⁺-containing solution (Fig. 3). These nuclei can eventually cover the
404 external surface of the CaCO₃ substrate. But unlike the case for otavite on calcite, the structural
405 heterogeneity of the precipitated layer (i.e., different shapes and orientations of distinct nuclei) enables
406 reactant transport by solution through the pores and grain boundaries (Fig. 6). The chemical exchange is
407 initiated at the mineral-water interface and continues throughout the reaction as the initial pore space at
408 the interface evolves into internal gaps between the substrate and precipitate (Figs. 5 and 6).

409 Under our experimental conditions, we found no evidence for either the generation of porosity or the
410 formation of otavite layers on the calcite substrate reacted with Cd²⁺. In acidic Cd²⁺-containing solution,
411 calcite replacement by otavite can be limited by multiple processes at the calcite-water interface. Initially,
412 the solution is undersaturated with respect to otavite and the dissolution of calcite becomes the source of
413 carbonate in the solution. The dissolution rate of calcite would decrease upon Cd²⁺ adsorption on the
414 surface (Cubillas et al., 2005; Hay et al., 2003; Pérez-Garrido et al., 2007). If the (local) saturation index
415 of otavite becomes sufficiently high (e.g., through the dissolution of neighboring carbonate crystals), the
416 nucleation of otavite could occur in the form of two-dimensional epitaxial layers or three-dimensional
417 islands (Pérez-Garrido et al., 2007; Riechers and Kerisit, 2018; Xu et al., 2014) on top of a calcite surface.

418 But the formation of a continuous otavite layer on the calcite surface might be expected to significantly
419 inhibit calcite dissolution, and therefore prevent further replacement reaction.

420 Upon the mineral dissolution-precipitation reaction, the difference in molar volume between the
421 reactant and product is another key variable in controlling the formation of pores (Putnis, 2002, 2009).
422 When the common elements or ions (e.g., carbonate in our case) are preserved, decrease in molar volume
423 by the replacement reaction can cause the formation of pores within the solid phase. This is the case
424 expected for replacement of calcite and aragonite by otavite: the molar volume of otavite ($V_{m, otavite} = 34.3$
425 $\text{cm}^3\text{mol}^{-1}$) is smaller than those of calcite and aragonite ($V_{m, calcite} = 36.9$ and $V_{m, aragonite} = 37.3 \text{ cm}^3\text{mol}^{-1}$).
426 The molar volume of cerussite ($V_{m, cerussite} = 40.7 \text{ cm}^3\text{mol}^{-1}$) exceeds those of calcite and aragonite.
427 Therefore, if all dissolved carbonate species are completely deposited into the cerussite product, the total
428 volume of the solid phase would be increased as a result of the replacement reaction. During the
429 dissolution-precipitation reaction in acidic Pb-containing solutions, however, the net carbonate loss from
430 the substrate mineral by the reaction is equivalent to the sum of carbonate deposited in cerussite and
431 carbonate dissolved in solution. In our experimental conditions, only part of carbonate ions dissolved
432 from the substrate mineral is deposited into the precipitate mineral (this is most evident in the images in
433 Fig. 3C, which show calcite crystals decreasing in size before the nucleation of PbCO_3). Therefore, our
434 results indicate that the change in volume of the solid phase during the replacement is determined, at least
435 in part, by the relative amount of the dissolving and precipitating phases and their molar volume ratio. In
436 turn, the decrease in volume of the solid phase could contribute to the formation of pores upon the
437 simultaneous dissolution-precipitation processes. Our considerations on the molar volumes of carbonate
438 minerals are consistent with the concept that the formation of pore space upon mineral replacement is
439 controlled by the relative amounts of the substrate and precipitate phases, which depend on their relative
440 solubilities and the solid and fluid compositions (Putnis, 2002).

441 Our conceptual model described above demonstrates that the outcome of carbonate mineral
442 replacement under highly acidic conditions is explained well by the substrate-precipitate structural

443 relationship and the differences in molar volume between the substrate and the precipitate. We expect that
444 application of this model to carbonate replacement under different reaction conditions or to replacement
445 of other substrate minerals may require consideration of the interplay between the parameters involved in
446 this model as well as other factors that are not included in this model. For example, the surface
447 passivation of host phases by non-isostructural product phases may occur when the reaction involves
448 large positive molar volume change (Forjanes et al., 2020; Ruiz-Agudo et al., 2019). When replacement
449 reactions involve significant volume changes, resulting stresses may induce generation of cracks in parent
450 and product phases, which can act as reaction fronts in addition to pore space (Perdikouri et al., 2013; Xia
451 et al., 2009).

452

453 **4.2. Relative interfacial reactivities of calcite and aragonite to Pb^{2+} and Cd^{2+}**

454 In this study, three different samples of CaCO_3 polymorphs were prepared and reacted with dissolved
455 Pb^{2+} and Cd^{2+} . In the presence of Pb^{2+} , powder specimens of both calcite and aragonite underwent
456 extensive replacement by cerussite (Figs. 1 and 2), while preferential replacement of aragonite over
457 calcite occurred (with faster reaction rates) when individual CaCO_3 crystals and calcite/aragonite
458 aggregates were reacted with Pb^{2+} (Figs. 3 and 4). We conclude that these differences in reactivity
459 between calcite and aragonite with Pb^{2+} are largely determined by the morphological and crystallographic
460 features of the CaCO_3 polymorphs under these conditions. Because the area-normalized dissolution rate
461 constants of aragonite and calcite are approximately the same over the pH range examined in this study
462 (initial pH = 2.7 to 4) (Busenberg et al., 1986), the rates would be largely controlled by their specific
463 surface areas. Powder specimens of calcite and aragonite consist of particles with a similar range of size
464 fraction (47 to 53 μm) and therefore, likely had comparable specific surface areas. In samples of
465 individual CaCO_3 crystals and calcite/aragonite aggregates (Figs. 3 and 4), aragonite was of
466 polycrystalline aggregates and bundles of rod-shaped crystals, respectively, and therefore likely had a
467 larger surface area than calcite, which was in the form of single euhedral crystals. The faster net

468 dissolution of aragonite (i.e., due to increased surface area) would lead to locally higher carbonate
469 concentrations and thus higher (local) saturation indices of cerussite on aragonite than on calcite (Fig. 3A
470 and B; Fig. 4A).

471 Since aragonite and cerussite are isostructural (orthorhombic; 2/m2/m2/m), the isomorphism may be
472 an important factor in determining the reactivity of aragonite to Pb^{2+} relative to calcite. In
473 calcite/aragonite aggregates, rod-shaped crystals of aragonite suggest the preferential growth of aragonite
474 along the c-axis (Wang and Han, 2014; Zeng et al., 2018). Under the reaction conditions of this study,
475 cerussite replacing these aragonite crystals grew dominantly along the c-axis of aragonite (Fig. 4). That is,
476 this observed morphological evolution suggests that the aragonite substrate exerted some control over the
477 cerussite growth. This behavior of cerussite grown on dissolving aragonite is possible due to similar
478 crystal habits of the precipitate and the substrate phases that have the same crystal structures. This
479 crystallographic relationship between aragonite and cerussite may be a cause for the preferential growth
480 of cerussite on aragonite over calcite when these polymorphs coexist. Similar to the relative reactivities
481 observed here, Gamsjäger et al. (1984) observed that Pb^{2+} uptake by aragonite occurred to a greater extent
482 and at a faster rate than that by calcite. On the other hand, Di Lorenzo et al. (2019) reported a lower
483 reactivity of aragonite to Pb^{2+} than calcite and suggested that the surface passivation of aragonite by
484 cerussite may occur due to the isomorphism. We expect that the differences between their and our studies
485 originate from sensitivity to the different experimental conditions. For example, Di Lorenzo et al. (2019)
486 conducted reaction of $CaCO_3$ materials with Pb^{2+} with larger aragonite particles (66 to 250 μm), at less
487 acidic initial pH (= 4.3), and with longer reaction times (4 hr to 10 d) than this study, which induced thin
488 (typically, < 5 μm) layers of cerussite on aragonite grains. Overall, the relative reactivities of calcite and
489 aragonite to Pb^{2+} can vary depending on morphological and crystallographic properties of $CaCO_3$
490 materials as well as solution chemistry.

491 Our imaging data provide direct observations of the morphological relationship between the host
492 phases and the secondary minerals upon interaction of $CaCO_3$ minerals with dissolved Cd^{2+} (Figs. 2 to 4).

493 For all three CaCO_3 polymorphs, replacement of aragonite by otavite in acidic Cd^{2+} -containing solutions
494 occurred extensively whereas the formation of otavite on calcite was effectively inhibited (Fig. 3). These
495 observations suggest that the dissolution of calcite is much slower than aragonite in the presence of Cd^{2+} ,
496 which could be attributed to interfacial processes such as preferential adsorption of Cd^{2+} and epitaxial
497 growth of otavite on the calcite (104) surface as discussed in the previous section. Overall, our results
498 support the concept that aragonite is much more reactive to Cd^{2+} than calcite under acidic conditions
499 (initial pH 2.7 to 4.0 in this study), in good agreement with previous studies examining Cd uptake by
500 calcite and aragonite under less acidic conditions than this study (initial pH between 5 and 7; Miyake et
501 al. (1988); Pérez-Garrido et al. (2007)).

502

503 4.3. Comparison to other related systems

504 The present results reveal that the replacement reactions in carbonate minerals can be controlled by
505 lattice symmetry and epitaxy/strain. The behavior of calcite in Cd-containing solutions was distinct from
506 the other systems in that calcite rhombs remained essentially unchanged in solutions that were
507 undersaturated with respect to calcite. The mechanistic basiss for this behavior could not be distinguished
508 by our SEM and TXM measurements, indicating that any structural changes resulting from these
509 processes were substantially smaller than the spatial resolution of these imaging techniques (e.g., ~50 nm
510 for TXM). One possible explanation for the inhibition of a replacement reaction is a decreased dissolution
511 of calcite by passivation of their reactive sites. Cd sorption can occur preferentially on the step and kink
512 sites of the calcite surfaces, significantly decreasing surface dissolution rates. Previous AFM observations
513 of the changes in the dissolution pattern of calcite in the presence of Cd corroborate this interpretation
514 (Hay et al., 2003; Pérez-Garrido et al., 2007).

515 It is also possible that the decreased surface reactivity was due to the formation of a thin epitaxial
516 otavite film that would have the effect of passivating the calcite surfaces. It is known that otavite films
517 can grow from supersaturated solutions that have contained CO_3^{2-} (Callagon et al., 2017; La Plante et al.,

518 2018). In our case, the growth of otavite relied upon CO_3^{2-} derived from the dissolution of the substrate
519 (Eq. 1), which could be limited if its surface was coated by conformal otavite films. While the detailed
520 properties of these layers were not directly probed here (and will be the subject of subsequent ongoing
521 studies), this hypothesis is not without precedent. For example, the epitaxial growth of otavite and
522 rhodochrosite (MnCO_3) on calcite has been demonstrated to passivate the surface reactivity of calcite
523 (Pérez-Garrido et al., 2009; Pérez-Garrido et al., 2007). In a similar vein, observations of dolomite(104)
524 cleavage surfaces in dolomite supersaturated solutions showed the growth of a single epitaxial layer that
525 subsequently passivated the dolomite surface to further growth (Fenter et al., 2007). It was determined
526 that this layer was a Ca-rich $(\text{Ca},\text{Mg})\text{CO}_3$ solid-solution layer (presumably due to a higher kinetic lability
527 of the Ca aqua ion than the Mg aqua ion). Because Ca^{2+} is larger than Mg^{2+} , this film would be
528 compressively strained due to the epitaxial constraint with the dolomite substrate, limiting the growth of
529 the film into a thicker layer. This strain-limited growth observed for dolomite is fully consistent with the
530 present observations of inhibited growth in the Cd-calcite system.

531 It is interesting to compare and contrast the present results to another well-studied system in which
532 epitaxial relationships between the substrate and precipitate might influence the mineral replacement
533 reaction: the replacement of $\text{KBr}_{(s)}$ by $\text{K}(\text{Cl},\text{Br})_{(s)}$ (Putnis and Mezger, 2004). In the experimental system,
534 solid KBr was in contact with a solution that was saturated with respect to $\text{KCl}_{(s)}$ and undersaturated with
535 respect to $\text{KBr}_{(s)}$. The dissolution of $\text{KBr}_{(s)}$ was observed, coupled with the growth of $\text{K}(\text{Cl},\text{Br})_{(s)}$ while
536 retaining the initial crystal shape of the substrate. The substrate and the precipitate have the same crystal
537 structure, but with lattice spacing differences as large as $\sim 5\%$ (calculated for the $\text{KCl}_{(s)}$ and $\text{KBr}_{(s)}$ end
538 members). There are also differences between the $\text{K}(\text{Cl},\text{Br})/\text{KBr}$ vs. the carbonate systems. First, the KBr
539 and CaCO_3 replacement reactions occur via exchange between anions and between cations, respectively.
540 The KBr replacement reaction resulted in the formation of $\text{K}(\text{Cl}_x,\text{Br}_{1-x})$ solid solution phases (x is between
541 0 and 0.5) whose average composition varied depending on the reaction progress (i.e., higher x with an
542 increasing degree of replacement estimated by the film thickness) and evolved from the Br-rich phase

543 near the K(Cl,Br)/KBr interface toward the Cl-rich phase within the precipitate. In contrast, the CaCO_3
544 reactions involved the formation of either pure (i.e., PbCO_3 or CdCO_3) or close-to-end-member phases.
545 This difference in composition is explained by analysis of Lippmann diagrams of the K(Cl,Br)/KBr and
546 carbonate systems. Briefly here, the Lippmann diagram consists of solidus and solutus curves, which
547 represent the total solubility product as a function of the solid solution and aqueous solution composition
548 (Lippmann et al., 1980). This diagram is useful to describe the thermodynamic relationship between the
549 solid and aqueous solution phases at equilibrium. The Lippmann diagrams for the two systems reveals
550 much smaller variation in ΔG with x and thus higher compositional variability for the K(Cl,Br) /KBr
551 system than the carbonate systems (Callagon et al., 2017; Putnis and Mezger, 2004). The overall outcome
552 of the KBr reaction would be qualitatively similar to the cerussite/aragonite replacement reaction in which
553 the precipitate grew into the substrate as compared with the otavite/calcite system which appeared self-
554 limiting. The X-ray diffraction data reported by Putnis and Mezger (2004) showed that the K(Cl,Br) layer
555 was orientationally aligned with the KBr substrate. While those results do not directly probe the epitaxial
556 relationships at the K(Cl,Br)-KBr interface at the atomic level, the cross sectional SEM images suggest
557 that there is structural coherence and compositional zoning across the K(Cl,Br)-KBr interface at the nano
558 to microscale level. In addition, the K(Cl,Br) layer had micro-scale cracks, which probably served both as
559 conduits for reactant transport through the precipitate and as a buffer for strain relief within the precipitate
560 layer. These features are similar to our results of the carbonate reactions in which a number of pores were
561 observed within the precipitate layers. Our results from the cerussite/aragonite system also show
562 additional structural gaps at the substrate-precipitate interfaces. Similar structures were not observed in
563 the KBr/KCl study. These detailed comparisons reflect fundamental differences between the
564 K(Cl,Br)/KBr and the carbonate systems associated with the higher compositional flexibility of the
565 K(Cl,Br)-KBr system compared to otavite/calcite and cerussite/aragonite systems.
566

567 **Conclusions**

568 Systematic comparison among four reaction systems involving replacement of calcite and aragonite
569 by cerussite and otavite enables identification of morphological and crystallographic controls over nano-
570 to micron-scale details of the reactivity of carbonate minerals in acidic metal-containing aqueous solution.
571 In line with our previous studies investigating the internal structures of calcium carbonate polymorphs
572 replaced by cerussite (Kim et al., 2021; Yuan et al., 2016), the present study is the first to provide direct
573 observation on the precipitate-substrate relationship upon aragonite replacement by otavite. Overall, our
574 imaging data indicate that the substrate-precipitate crystallographic relationship can influence the
575 accessibility of fluid to the carbonate substrate and determine spatial extension of coupled dissolution-
576 precipitation processes. The lattice mismatch between the carbonate substrate and precipitate can allow
577 for development of pores at the substrate-precipitate boundaries, as demonstrated by replacement of
578 calcite and aragonite by cerussite and aragonite by otavite. If the lattice match induces the epitaxial
579 growth of the precipitate on the substrate mineral, the lack of porosity at the substrate-precipitate interface
580 can limit further dissolution of the substrate and thus halt the coupled dissolution-precipitation process.

581 We note that the precipitate-substrate structural relationship examined in this study may depend on
582 the compositional variation in the precipitate. For instance, Xu et al. (2017) demonstrated the formation of
583 epitaxial layers of $(\text{Mn},\text{Ca})\text{CO}_3$ solid solution upon calcite reaction with dissolved Mn^{2+} . They concluded
584 that the effective lattice mismatch between the precipitate and the substrate was smaller through Mn-Ca
585 intermixing compared to the nominal lattice mismatch between the two end-members calcite and
586 rhodochrosite (MnCO_3) (~10% with respect to the (104) surface). The majority of the previous studies
587 investigating aragonite reaction with Pb^{2+} have pointed out that Pb-dominant carbonate minerals such as
588 cerussite and hydrocerussite are the main products observed on dissolving aragonite. However, the
589 possibility for Pb-Ca intermixing in the product phase cannot be ruled out. Munemoto et al. (2014)
590 suggested that Pb sequestration may occur through two regimes: At relatively low Pb concentration
591 ($[\text{Pb}]_{\text{initial}} = 1\text{-}30 \mu\text{M}$), Pb was incorporated into the aragonite surface in the form of $(\text{Ca},\text{Pb})\text{CO}_3$ solid-

592 solution. Pb-dominant phases such as cerussite and hydrocerussite formed at higher concentrations
593 ($[\text{Pb}]_{\text{initial}} = 50\text{-}100 \mu\text{M}$). Future research should systematically examine what controls the formation of
594 $(\text{Ca},\text{Pb})\text{CO}_3$ solid solution vs. Pb-dominant phases in association with the dissolution of aragonite and
595 whether Ca-Pb intermixing may modify reaction mechanisms during carbonate mineral replacement.

596 The new findings obtained in this study enlarge our current understanding of the reactivity of CaCO_3
597 minerals with Pb^{2+} and Cd^{2+} in natural environments. Our results support the concept that the dissolution
598 of calcite and aragonite coupled with the precipitation of heavy metal-containing carbonates is critical for
599 metal sequestration in environments where acidic Pb^{2+} - or Cd^{2+} -contaminated water interacts with
600 carbonate-rich rocks and soils (e.g., acid mine drainage and mine tailings). Because the replacement
601 reactions observed here are relatively fast even under ambient conditions, carbonate minerals present in
602 these carbonate-bearing media are a potential sink for Pb and Cd by transformation to cerussite and
603 otavite.

604 **Acknowledgements**

605 The authors thank Drs. Brandon Fisher and Beihai Ma for help with XRD and Drs. Timothy T. Fister and
606 Rachel E. Koritala for assistance with SEM. We also thank Dalia Delgadillo for assistance in editing and
607 segmenting nano-tomography data. This work was supported by U.S. Department of Energy, Office of
608 Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division
609 (Geosciences Program) under Contract DE-AC02-06CH11357 to UChicago Argonne, LLC as operator of
610 Argonne National Laboratory. The X-ray data were collected at beamline 32-ID-C, Advanced Photon
611 Source, and we acknowledge the assistance of Drs. Vincent De Andrade and Viktor Nikitin. Use of the
612 Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of
613 Basic Energy Sciences. The submitted manuscript has been created by UChicago Argonne, LLC,
614 Operator of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office of
615 Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains
616 for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said
617 article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and
618 display publicly, by or on behalf of the Government.

619

620 **References**

621 Abdilla, B., Minahan, D.J., Gleghorn, J.P., Kim, Y., Lee, S.S., Fenter, P. and Sturchio, N.C. (2022) Emergent Behavior at the Calcite–Water Interface during Reactive Transport in a Simple Microfluidic Channel. *ACS Earth Space Chem.* 6, 861-870.

624 Ayachit, U. (2015) The paraview guide: a parallel visualization application. Kitware, Inc.

625 Busenberg, E., Plummer, L. and Mumpton, F. (1986) A comparative study of the dissolution and crystal growth kinetics of calcite and aragonite. *USGS Bull.* 1578, 139-168.

627 Callagon, E., Fenter, P., Nagy, K.L. and Sturchio, N.C. (2014) Incorporation of Pb at the calcite (104)–water interface. *Environ. Sci. Technol.* 48, 9263-9269.

629 Callagon, E.B.R., Lee, S.S., Eng, P.J., Laanait, N., Sturchio, N.C., Nagy, K.L. and Fenter, P. (2017) Heteroepitaxial growth of cadmium carbonate at dolomite and calcite surfaces: Mechanisms and rates. *Geochim. Cosmochim. Acta* 205, 360-380.

632 Checa, A.G., Jiménez-López, C., Rodríguez-Navarro, A. and Machado, J.P. (2007) Precipitation of
633 aragonite by calcitic bivalves in Mg-enriched marine waters. *Mar. Biol.* 150, 819-827.

634 Chiarello, R.P. and Sturchio, N.C. (1994) Epitaxial growth of otavite on calcite observed in situ by
635 synchrotron X-ray scattering. *Geochim. Cosmochim. Acta* 58, 5633-5638.

636 Chiarello, R.P., Sturchio, N.C., Grace, J.D., Geissbuhler, P., Sorensen, L.B., Cheng, L. and Xu, S. (1997)
637 Otavite-calcite solid-solution formation at the calcite-water interface studied in situ by synchrotron X-ray
638 scattering. *Geochim. Cosmochim. Acta* 61, 1467-1474.

639 Cubillas, P., Köhler, S., Prieto, M., Causserand, C. and Oelkers, E.H. (2005) How do mineral coatings
640 affect dissolution rates? An experimental study of coupled CaCO_3 dissolution— CdCO_3 precipitation.
641 *Geochim. Cosmochim. Acta* 69, 5459-5476.

642 Davis, J.A., Fuller, C.C. and Cook, A.D. (1987) A model for trace metal sorption processes at the calcite
643 surface: Adsorption of Cd^{2+} and subsequent solid solution formation. *Geochim. Cosmochim. Acta* 51,
644 1477-1490.

645 De Carlo, F., Gürsoy, D., Marone, F., Rivers, M., Parkinson, D.Y., Khan, F., Schwarz, N., Vine, D.J.,
646 Vogt, S. and Gleber, S.-C. (2014) Scientific data exchange: a schema for HDF5-based storage of raw and
647 analyzed data. *J. Synchrotron Radiat.* 21, 1224-1230.

648 Di Lorenzo, F., Ruiz-Agudo, C. and Churakov, S.V. (2019) The key effects of polymorphism during Pb^{II}
649 uptake by calcite and aragonite. *CrystEngComm* 21, 6145-6155.

650 Elzinga, E.J., Rouff, A.A. and Reeder, R.J. (2006) The long-term fate of Cu^{2+} , Zn^{2+} , and Pb^{2+} adsorption
651 complexes at the calcite surface: An X-ray absorption spectroscopy study. *Geochim. Cosmochim. Acta* 70, 2715-2725.

652 Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J.-C., Pujol, S., Bauer, C.,
653 Jennings, D., Fennessy, F. and Sonka, M. (2012) 3D Slicer as an image computing platform for the
654 Quantitative Imaging Network. *Magn. Reson. Imaging* 30, 1323-1341.

655 Fenter, P., Zhang, Z., Park, C., Sturchio, N., Hu, X. and Higgins, S. (2007) Structure and reactivity of the
656 dolomite (104)-water interface: New insights into the dolomite problem. *Geochim. Cosmochim. Acta* 71,
657 566-579.

658 Forjanes, P., Astilleros, J.M. and Fernández-Díaz, L. (2020) The formation of barite and celestite through
659 the replacement of gypsum. *Minerals* 10, 189.

660 Gamsjäger, H., Fluch, A. and Swinehart, J.H. (1984) The effect of potential aqueous pollutants on the
661 solubility of Pb^{+2} in cerussite—Calcite phase. *Monatsh. Chem.* 115, 251-259.

662 Gillikin, D.P., Lorrain, A., Navez, J., Taylor, J.W., André, L., Keppens, E., Baeyens, W. and Dehairs, F.
663 (2005) Strong biological controls on Sr/Ca ratios in aragonitic marine bivalve shells. *Geochem. Geophys.
664 Geosyst.* 6.

665 Godelitsas, A., Astilleros, J.M., Hallam, K., Harissopoulos, S. and Putnis, A. (2003) Interaction of
666 calcium carbonates with lead in aqueous solutions. *Environ. Sci. Technol.* 37, 3351-3360.

668 Gürsoy, D., De Carlo, F., Xiao, X. and Jacobsen, C. (2014) TomoPy: a framework for the analysis of
669 synchrotron tomographic data. *J. Synchrotron Radiat.* 21, 1188-1193.

670 Hay, M.B., Workman, R.K. and Manne, S. (2003) Mechanisms of metal ion sorption on calcite:
671 composition mapping by lateral force microscopy. *Langmuir* 19, 3727-3740.

672 Hu, Q., Zhang, J., Teng, H. and Becker, U. (2012) Growth process and crystallographic properties of
673 ammonia-induced vaterite. *Am. Mineral.* 97, 1437-1445.

674 Ihli, J., Bots, P., Kulak, A., Benning, L.G. and Meldrum, F.C. (2013) Elucidating Mechanisms of
675 Diffusion- Based Calcium Carbonate Synthesis Leads to Controlled Mesocrystal Formation. *Adv. Funct.*
676 *Mater.* 23, 1965-1973.

677 Kang, C.-H., Han, S.-H., Shin, Y., Oh, S.J. and So, J.-S. (2014) Bioremediation of Cd by microbially
678 induced calcite precipitation. *Appl. Biochem. Biotechnol.* 172, 2907-2915.

679 Keith, M., Anderson, G. and Eichler, R. (1964) Carbon and oxygen isotopic composition of mollusk
680 shells from marine and fresh-water environments. *Geochim. Cosmochim. Acta* 28, 1757-1786.

681 Kim, Y., Abdilla, B., Yuan, K., De Andrade, V., Sturchio, N.C., Lee, S.S. and Fenter, P. (2021)
682 Replacement of Calcium Carbonate Polymorphs by Cerussite. *ACS Earth Space Chem.*

683 La Plante, E.C., Eng, P.J., Lee, S.S., Sturchio, N.C., Nagy, K.L. and Fenter, P. (2018) Evolution of strain
684 in heteroepitaxial cadmium carbonate overgrowths on dolomite. *Cryst. Growth Des* 18, 2871-2882.

685 Li, Y.-T., Becquer, T., Dai, J., Quantin, C. and Benedetti, M.F. (2009) Ion activity and distribution of
686 heavy metals in acid mine drainage polluted subtropical soils. *Environ. Pollut.* 157, 1249-1257.

687 Lippmann, M., Yeates, D. and Albert, R. (1980) Deposition, retention, and clearance of inhaled particles.
688 *Occupational and Environmental Medicine* 37, 337-362.

689 Matthews, J. and Blakeslee, A. (1974) Defects in epitaxial multilayers: I. Misfit dislocations. *J. Cryst.*
690 *Growth* 27, 118-125.

691 Miyake, M., Komarneni, S. and Roy, R. (1988) Immobilization of Pb^{2+} , Cd^{2+} , Sr^{2+} and Ba^{2+} ions using
692 calcite and aragonite. *Cem. Concr. Res.* 18, 485-490.

693 Munemoto, T., Fukushi, K., Kanzaki, Y. and Murakami, T. (2014) Redistribution of Pb during
694 transformation of monohydrocalcite to aragonite. *Chem. Geol.* 387, 133-143.

695 Pelt, D.M., Gürsoy, D., Palenstijn, W.J., Sijbers, J., De Carlo, F. and Batenburg, K.J. (2016) Integration
696 of TomoPy and the ASTRA toolbox for advanced processing and reconstruction of tomographic
697 synchrotron data. *J. Synchrotron Radiat.* 23, 842-849.

698 Perdikouri, C., Piazolo, S., Kasiotis, A., Schmidt, B.C. and Putnis, A. (2013) Hydrothermal replacement
699 of aragonite by calcite: interplay between replacement, fracturing and growth. *Eur. J. Mineral.* 25, 123-
700 136.

701 Pérez-Garrido, C., Astilleros, J.M., Fernández-Díaz, L. and Prieto, M. (2009) In situ AFM study of the
702 interaction between calcite $\{1\ 0\ 1\ \bar{4}\}$ surfaces and supersaturated Mn^{2+} - CO_3^{2-} aqueous solutions. *J.*
703 *Cryst. Growth* 311, 4730-4739.

704 Pérez-Garrido, C., Fernández-Díaz, L., Pina, C.M. and Prieto, M. (2007) In situ AFM observations of the
705 interaction between calcite (101[–] 4) surfaces and Cd-bearing aqueous solutions. *Surf. Sci.* 601, 5499-
706 5509.

707 Plummer, L.N. and Busenberg, E. (1982) The solubilities of calcite, aragonite and vaterite in CO₂-H₂O
708 solutions between 0 and 90 C, and an evaluation of the aqueous model for the system CaCO₃-CO₂-H₂O.
709 *Geochim. Cosmochim. Acta* 46, 1011-1040.

710 Prieto, M., Cubillas, P. and Fernández-Gonzalez, Á. (2003) Uptake of dissolved Cd by biogenic and
711 abiogenic aragonite: a comparison with sorption onto calcite. *Geochim. Cosmochim. Acta* 67, 3859-3869.

712 Putnis, A. (2002) Mineral replacement reactions: from macroscopic observations to microscopic
713 mechanisms. *Mineral. Mag.* 66, 689-708.

714 Putnis, A. (2009) Mineral replacement reactions, *Reviews in mineralogy and geochemistry*, pp. 87-124.

715 Putnis, C.V. and Mezger, K. (2004) A mechanism of mineral replacement: isotope tracing in the model
716 system KCl-KBr-H₂O. *Geochim. Cosmochim. Acta* 68, 2839-2848.

717 Rai, D., Felmy, A. and Moore, D. (1991) Thermodynamic model for aqueous Cd²⁺- CO₃²⁻ ionic
718 interactions in high-ionic-strength carbonate solutions, and the solubility product of crystalline CdCO₃. *J.
719 Solution Chem.* 20, 1169-1187.

720 Riechers, S.L. and Kerisit, S.N. (2018) Anisotropic growth of otavite on calcite: Implications for
721 heteroepitaxial growth mechanisms. *Cryst. Growth Des* 18, 159-170.

722 Rouff, A.A., Elzinga, E.J., Reeder, R.J. and Fisher, N.S. (2004) X-ray absorption spectroscopic evidence
723 for the formation of Pb(II) inner-sphere adsorption complexes and precipitates at the calcite- water
724 interface. *Environ. Sci. Technol.* 38, 1700-1707.

725 Ruiz-Agudo, C., Álvarez-Lloret, P., Di Lorenzo, F., Gebauer, D. and Putnis, C.V. (2019) Baryte cohesive
726 layers formed on a (010) gypsum surface by a pseudomorphic replacement. *Eur. J. Mineral.* 31, 289-299.

727 Ruiz-Agudo, E., Putnis, C. and Putnis, A. (2014) Coupled dissolution and precipitation at mineral-fluid
728 interfaces. *Chem. Geol.* 383, 132-146.

729 Sturchio, N.C., Chiarello, R.P., Cheng, L., Lyman, P.F., Bedzyk, M.J., Qian, Y., You, H., Yee, D.,
730 Geissbuhler, P. and Sorensen, L.B. (1997) Lead adsorption at the calcite-water interface: Synchrotron X-
731 ray standing wave and X-ray reflectivity studies. *Geochim. Cosmochim. Acta* 61, 251-263.

732 Tekawade, A., Liu, Z., Kenesei, P., Bicer, T., De Carlo, F., Kettimuthu, R. and Foster, I. (2021) 3d
733 Autoencoders For Feature Extraction In X-Ray Tomography, 2021 IEEE International Conference on
734 Image Processing (ICIP). IEEE, pp. 3477-3481.

735 Wang, H. and Han, Y. (2014) A compromise between competing forces dominating the diversity of
736 aragonite structures. *CrystEngComm* 16, 1971-1977.

737 Wray, J.L. and Daniels, F. (1957) Precipitation of calcite and aragonite. *J. Am. Chem. Soc.* 79, 2031-
738 2034.

739 Xia, F., Brugger, J., Chen, G., Ngothai, Y., O'Neill, B., Putnis, A. and Pring, A. (2009) Mechanism and
740 kinetics of pseudomorphic mineral replacement reactions: A case study of the replacement of pentlandite
741 by violarite. *Geochim. Cosmochim. Acta* 73, 1945-1969.

742 Xiong, Y. (2015) Experimental determination of lead carbonate solubility at high ionic strengths: a Pitzer
743 model description. *Monatshefte für Chemie-Chemical Monthly* 146, 1433-1443.

744 Xu, M., Kovarik, L., Arey, B.W., Felmy, A.R., Rosso, K.M. and Kerisit, S. (2014) Kinetics and
745 mechanisms of cadmium carbonate heteroepitaxial growth at the calcite (101[−] 4) surface. *Geochim.*
746 *Cosmochim. Acta* 134, 221-233.

747 Xu, M., Riechers, S.L., Ilton, E.S., Du, Y., Kovarik, L., Varga, T., Arey, B.W., Qafoku, O. and Kerisit, S.
748 (2017) Manganese-calcium intermixing facilitates heteroepitaxial growth at the 101[−] 4 calcite-water
749 interface. *Chem. Geol.* 470, 152-163.

750 Yuan, K., De Andrade, V., Feng, Z., Sturchio, N.C., Lee, S.S. and Fenter, P. (2018) Pb²⁺-Calcite
751 Interactions under Far-from-Equilibrium Conditions: Formation of Micropyramids and Pseudomorphic
752 Growth of Cerussite. *J. Phys. Chem. C* 122, 2238-2247.

753 Yuan, K., Lee, S.S., De Andrade, V., Sturchio, N.C. and Fenter, P. (2016) Replacement of calcite
754 (CaCO₃) by cerussite (PbCO₃). *Environ. Sci. Technol.* 50, 12984-12991.

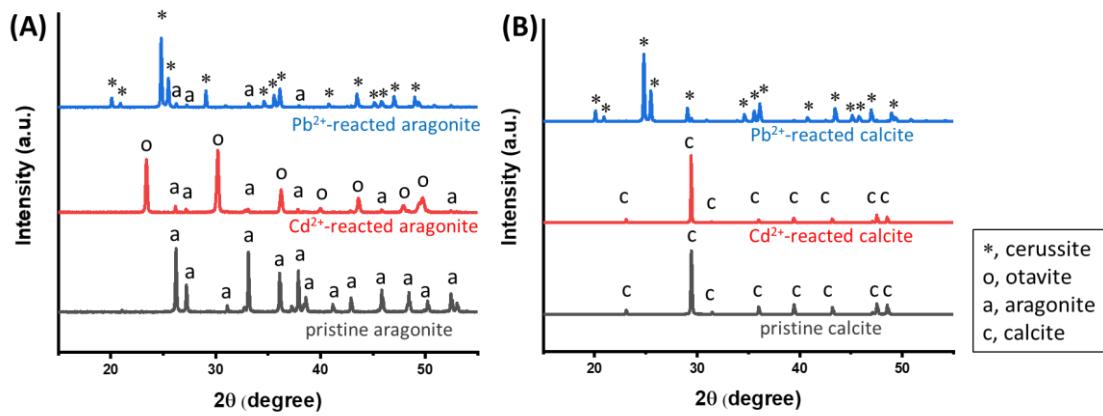
755 Yuan, K., Starchenko, V., Lee, S.S., De Andrade, V., Gursoy, D., Sturchio, N.C. and Fenter, P. (2019)
756 Mapping three-dimensional dissolution rates of calcite microcrystals: Effects of surface curvature and
757 dissolved metal ions. *ACS Earth Space Chem.* 3, 833-843.

758 Zavarin, M., Roberts, S., Hakem, N., Sawvel, A. and Kersting, A. (2005) Eu (III), Sm (III), Np (V), Pu
759 (V), and Pu (IV) Sorption to Calcite. *Radiochim. Acta* 93, 93-102.

760 Zeng, M., Kim, Y.-Y., Anduix-Canto, C., Frontera, C., Laundy, D., Kapur, N., Christenson, H.K. and
761 Meldrum, F.C. (2018) Confinement generates single-crystal aragonite rods at room temperature. *Proc.*
762 *Natl. Acad. Sci.* 115, 7670-7675.

763

764


765

766

767

768

769

770

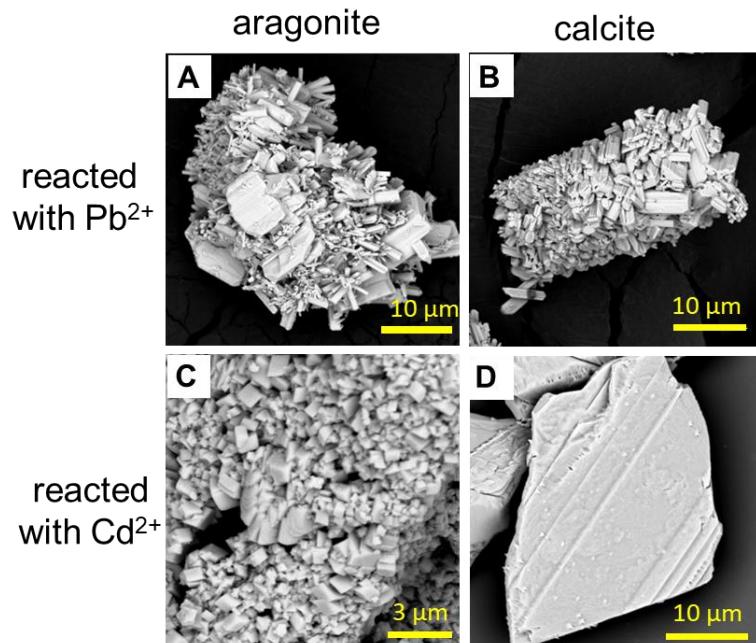
771

772

773

774 Fig. 1. X-ray diffraction data of (A) aragonite and (B) calcite before (gray)
 775 and after reaction with acidic Pb^{2+} - and Cd^{2+} -containing solutions for 16 hr (at pH 2.7; 5 mM $[\text{Pb}^{2+}]_{\text{initial}}$ (blue) and 5 mM
 776 $[\text{Cd}^{2+}]_{\text{initial}}$ (red), respectively).

777


778

779

780

781

782

783

784

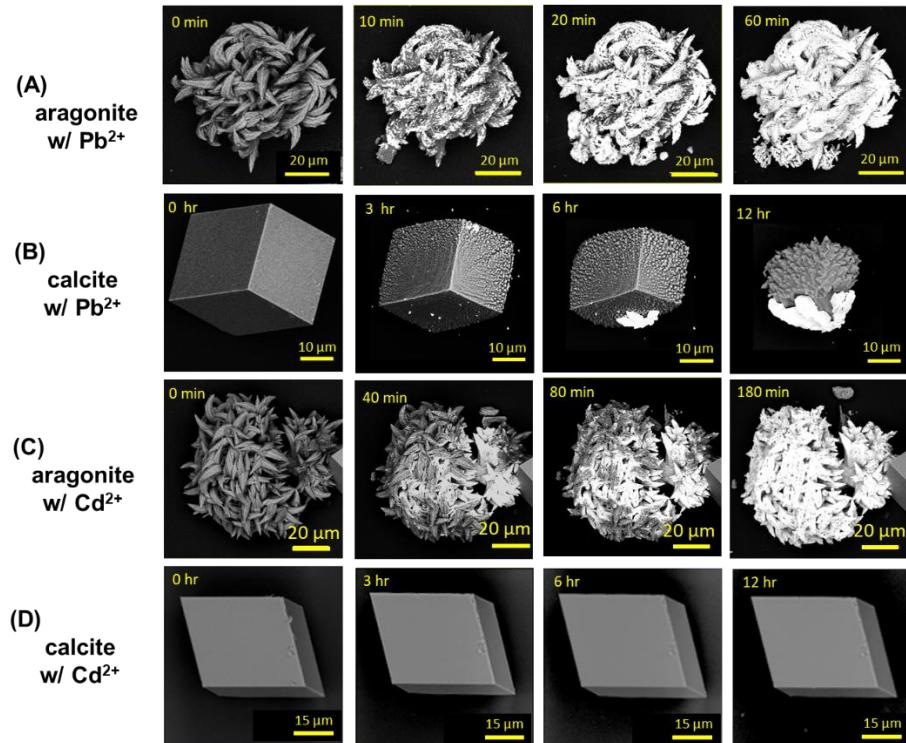
785

786

787 Fig. 2. SEM images of (A, C) aragonite and (B, D) calcite reacted with acidic Pb^{2+} - and Cd^{2+} -
 788 containing solutions (at an initial pH 2.7; 5 mM $\text{Pb}(\text{NO}_3)_2$ and 5 mM CdCl_2) for 16 hr. Starting CaCO_3
 789 materials were powder specimens of aragonite and calcite. (A, B) Reactions with Pb^{2+} led to rod-shaped
 790 cerussite crystals grown on both calcite and aragonite substrates. (C) Aragonite reacted with Cd^{2+} was
 791 replaced by rhombohedral otavite crystals whereas (D) no discrete phases of otavite were found for
 792 calcite substrates reacted with the Cd solution. The presence of Cd^{2+} on the reacted calcite crystal was
 793 detected by EDS (0.03 to 0.11 at.%; Figure S.1) suggesting a sorption reaction.

794

795


796

797

798

799

800

801

802

803

804

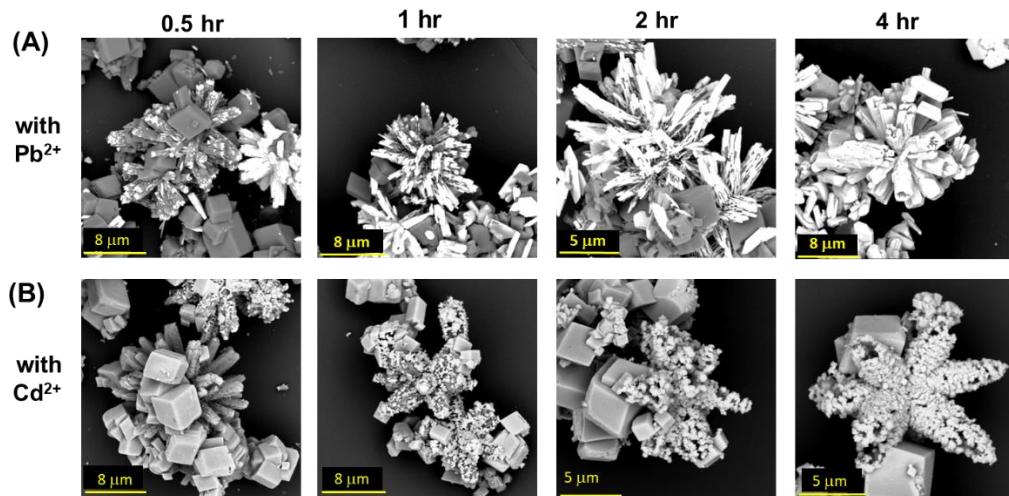
805

806 Fig. 3. SEM images of the morphological evolution of individual aragonite and calcite crystals
 807 reacted (A, B) in acidic Pb^{2+} solution (initial pH 3.0; 1 mM $\text{Pb}(\text{NO}_3)_2$) and (C, D) in acidic Cd^{2+} solution
 808 (initial pH 4.0; 10 mM CdCl_2).

809

810

811


812

813

814

815

816

817

818

819

820

821 Fig. 4. SEM images of the morphological evolution of calcite/aragonite mixtures reacted with acidic
822 (A) Pb^{2+} - and (B) Cd^{2+} - containing solution (initial pH = 3.0; 5 mM $\text{Pb}(\text{NO}_3)_2$ and 10 mM CdCl_2) for 4 hr.

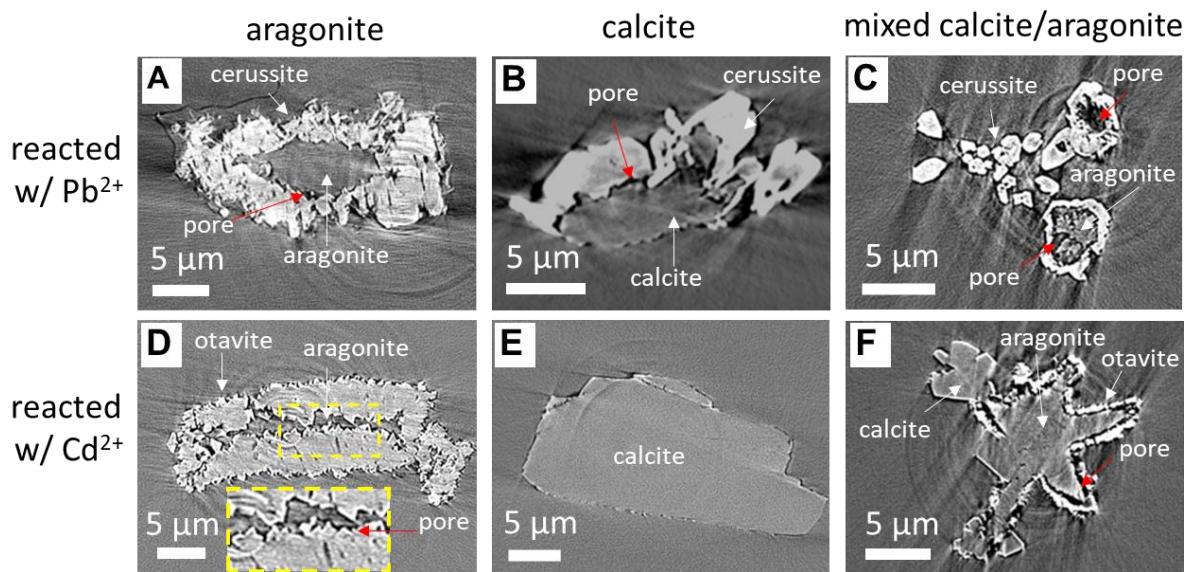
823

824

825

826

827

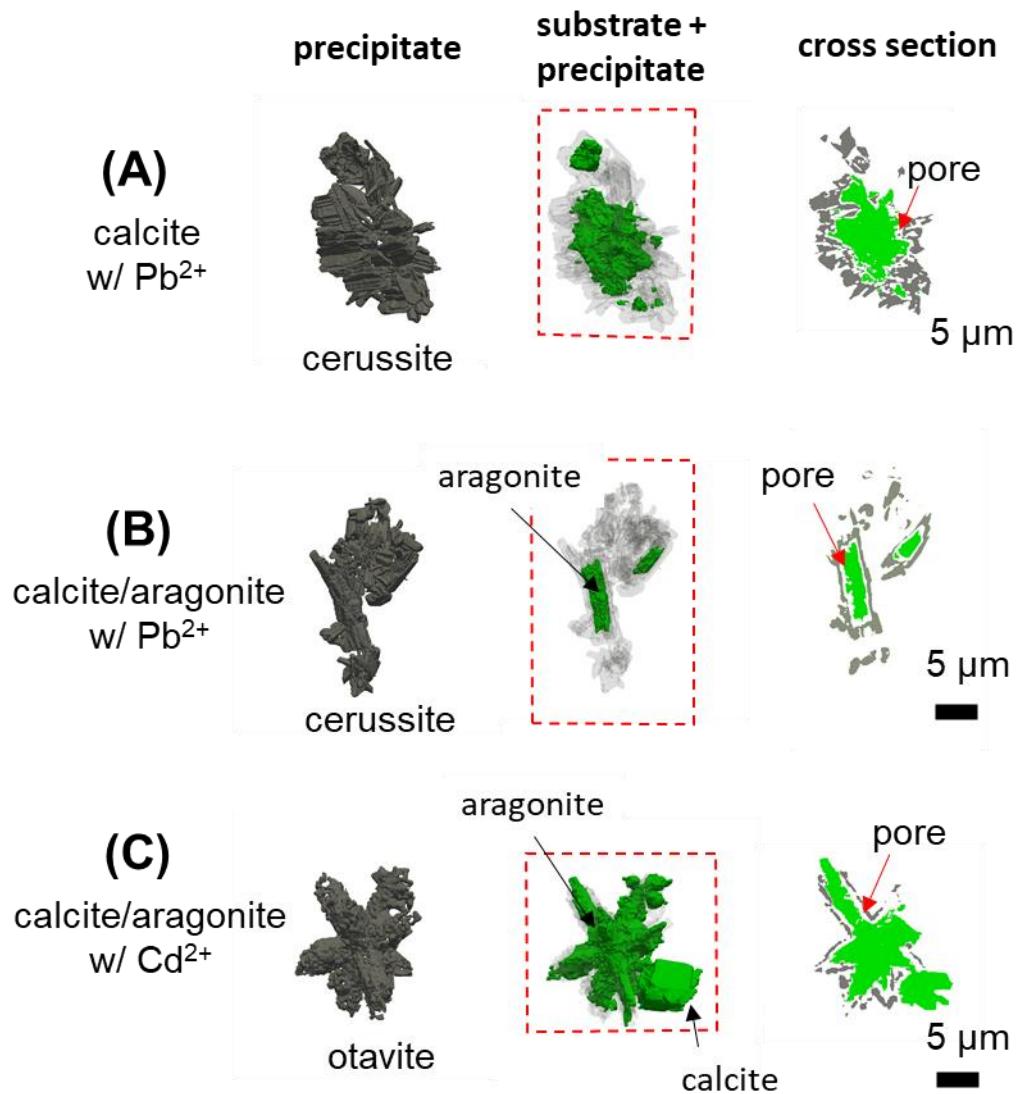

828

829

830

831

832
833
834
835
836


837
838
839
840

841 Fig. 5. Nano-tomographic images of (A, D) aragonite and (B, E) calcite powder specimens reacted
842 with acidic Pb²⁺- and Cd²⁺- containing solutions (initial pH 2.7; 5 mM Pb(NO₃)₂ and 10 mM CdCl₂) for
843 16hr in comparison with (C, F) calcite/aragonite aggregates reacted with acidic Pb²⁺- and Cd²⁺-containing
844 solutions (initial pH 3.0; 5 mM Pb(NO₃)₂ and 10 mM CdCl₂) for 4 hr. (A, B, C, D, F) In Pb²⁺ and Cd²⁺
845 reacted calcite and aragonite, pores were found between the substrate and the precipitate. (E) In reaction
846 of calcite with Cd²⁺, the formation of otavite (if any) was limited to the external surface (the thickness of
847 any otavite layer is well-below the resolution of the TXM measurement (50 nm). The internal structure of
848 calcite crystal remains unreacted.

849
850

851

852

853

854

855

856 Fig. 6. 3D structures of (A) calcite reacted with Pb^{2+} and (B, C) calcite/aragonite mixture reacted with
857 Pb^{2+} and Cd^{2+} , showing the precipitates, cerussite and otavite, in spatial relationship with the substrate
858 minerals (the first and second columns). The cross sections of these structures (defined in the red-dotted
859 boxes in the second column) are visualized in the third column.